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1 ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of
the major challenges humanity has faced thus far. Over the past few months, large amounts of
informaƟon have been collected that are only now beginning to be assimilated. In the present
work, the existence of residual informaƟon in the massive numbers of rRT-PCRs that tested
posiƟve out of the almost half a million tests that were performed during the pandemic is
invesƟgated.  This  residual  informaƟon is  believed to be  highly  related to  a  paƩern in the
number of cycles that are necessary to detect posiƟve samples as such. Thus, a database of
more than 20,000 posiƟve samples was collected, and two supervised classificaƟon algorithms
(a  support  vector machine and a neural  network)  were trained  to temporally  locate each
sample based solely and exclusively on the number of cycles determined in the rRT-PCR of
each individual. Finally, the results obtained from the classificaƟon show how the appearance
of each wave is coincident  with the surge of each of  the variants present in the region of
Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly idenƟfied with
the classificaƟon algorithm.

2 INTRODUCTION
There have been 235 million cases of and more than 4.5 million deaths associated with SARS-
CoV-2, the causal agent of coronavirus disease 2019 (COVID-19)  1. The standard method for
the detecƟon  of  SARS-CoV-2 is  based on real-Ɵme  reverse  transcriptase  polymerase chain
reacƟon  (rRT-PCR)  performed  using  a  nasopharyngeal  swab  sample  2.  Massive  tesƟng,  in
conjuncƟon with other control measures, has been implemented to idenƟfy symptomaƟc or
asymptomaƟc carriers to prevent the spread of SARS-CoV-2. The cycle threshold (Ct) value is
inversely related to the amount of RNA of the virus present in the sample, which has awaked
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interest as an indirect method to predict infecƟvity, disease progression, severity and even
associated mortality 3.

rRT-PCR tests  are  commonly  considered qualitaƟve tests  (i.e.,  providing  just  a  posiƟve or
negaƟve result); however, they provide a Ct value for each target gene, which indicates the
number of PCR cycles required to reach the threshold level of fluorescence associated with a
posiƟve result. Hence, the Ct value is inversely proporƟonal to the viral load, although this
correlaƟon is not linear and depends on many factors. A recent work reviewed several works
published on the connecƟon of Ct with paƟent condiƟons and clinical outcomes4.

In addiƟon, research has shown that although Ct is correlated with viral loads, it is not gene-
independent. MutaƟons that affect the template sequence where the primers bind can affect
the amplificaƟon efficiency and, therefore, the Ct values for a specific gene. For SARS-CoV-2,
increases in Ct values or nondetecƟon of different genes associated with specific mutaƟons of
the virus have been described  5,  6,  7.  In fact, variant B.1.1.7 can be efficiently idenƟfied with
specific tests through an undetectable S gene target or significant increase in the Ct value of
the S gene compared to other targets8, 9, 10; nevertheless, a significant delay of the Ct to N gene
was observed in another test  11,  which confirms that the differences in Ct  values between
genes depend on the virus mutaƟons but also on the primers used and, therefore, could be
considered assay-dependent.

The mutaƟon rates of coronavirus are low in general. However, in the case of SARS-CoV-2, the
numbers  reached  in  the  pandemic  have  led  to  the  accumulaƟon  of  mutaƟons  and  the
emergence of mulƟple lineage and variants. Some of them are classified as variants of interest
(VOIs),  and  variants  of  concern  (VOCs)12 13 14 ,  which  have  relevant  epidemiological
characterisƟcs that may affect the virus’s properƟes, spreads, clinical characterisƟcs of disease,
and vaccine and drug performance. For this reason, it is important to track known variants and
implement surveillance systems capable of detecƟng significant changes in the predominant
variants,  the  variants  causing  an  outbreak  or  even  the  emergence  of  a  variant  of  high
consequence (VOHC). The gold standard for idenƟfying and tracking variants in circulaƟon is
the whole genome sequencing, although it has important limitaƟons related to costs, resource
availability, lack of experƟse, standardizaƟon and data delay. 

Currently, machine learning or deep learning models have been used in the medical field and,
more  specifically,  in  the  field  of  COVID.  In  parƟcular,  several  works  have  developed
classificaƟon models based on X-ray images 15 16. Beyond image-based models, several works
have  addressed  informaƟon  from  blood  17 or  medical  informaƟon  18,  19.  More  specifically,
according to the present work, 20 present a model established to predict PCR results based on
clinical informaƟon alone.

There  are  two  main  approaches:  unsupervised  learning  and  supervised  learning.  In
unsupervised learning, we should allow the algorithm to seek its own way to classify the data;
however, for the supervised approach, we must give the algorithm a target set of clusters. In
this work, we opted for the laƩer.

The  Microbiology  Department  of  the  University  Hospital  of  Vigo  (Complexo  Hospitalario
Universitario de Vigo, CHUVI), was a pioneer in the use of pooling in saliva for detecƟng SAR-
CoV-2  in  a  nonsymptomaƟc  populaƟon  21;  and  over  the  pandemic,  the  ‘pooling  lab’  has
screened more than 750,000 individual samples by pooling. When we analyzed the results of
the posiƟve samples in pools versus individuals (data not yet published), we observed how the
relaƟonship between Ct values remained constant for each sample despite the increase caused
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by diluƟon. These relaƟonships between Cts seemed to be able to be grouped into similar
profiles, and some groups seemed to have temporal accumulaƟon. These findings and those
explained  in  the  previous  paragraph  made  us  consider  whether  there  is  an  underlying
'signature' or 'paƩern' in the Cts results of an rRT-PCR that can be used for the classificaƟon of
samples.

The main goal of this work is to assess whether there is a Ct paƩern that is characterisƟc of
virus  variants.  By  creaƟng  a  sufficiently  large  database  to  efficiently  train  a  classificaƟon
algorithm, we demonstrate that there is an underlying signature response to the rRT-PCR of
the main virus variants and that the Ct results of a standard rRT-PCR test can be efficiently
employed to infer  the most  likely  variant infecƟng an individual. Due to limitaƟons in  the
number of tests completely sequenced, we will train our algorithm to predict the waves inside
the  evoluƟon  of  the  pandemic  and  then  compare  this  predicƟon  with  the  arrival  and
predominance of the different virus variants in the area where this study was conducted.

The study protocol 2021/295 was approved by the Galician network of commiƩees of research 
ethics.

3 METHODOLOGY AND MATHEMATICAL BACKGROUND

3.1 Brief descripƟon of the rRT-PCR technique employed, primers, and soŌware.

We performed nucleic acid extracƟon in a MicrolabStarlet IVD plaƞorm using the STARMag
96×4 Universal  Cartridge  Kit  (Seegene Inc,  Seoul,  South Korea).  To detect  SARS-CoV-2,  we
applied the Allplex™ SARS-CoV-2 Assay (Seegene Inc, Seoul, South Korea), a mulƟplex one-step
rRT-PCR  able  to  simultaneously  detect  four  viral  targets,  including  the  structural  protein
envelope (E) gene, the RNA-dependent RNA polymerase (RdRP) gene, the spike (S) gene, the
nucleocapsid (N) gene, and an exogenous RNA-based internal control (IC). This rRT-PCR step
was run on a CFX96™ system (Bio–Rad Laboratories, Hercules, CA, USA), and the analysis was
performed  using  Seegene  Viewer-specific  SARS-CoV-2  soŌware  (Seegene  Inc,  Seoul,  South
Korea),  resulƟng  in  separate  cycle  threshold  (Ct)  values  for  the  E  and  N  genes  and  one
combined Ct value for the RdRp and S genes (RdRp/S) in the FAM, Cal Red 610 and Quasar 670
channels, respecƟvely. The HEX channel is used for internal control. Regarding interpretaƟon
of the results,  according to the manufacturer’s instrucƟons, Cts values ≤ 40 are considered
detected, and Cts value >40 or not applicable (N/A) are considered not detected.

3.2 DescripƟon of the dataset employed in this work

PosiƟve samples from two different sources were used for this  study. First,  3,274 posiƟve
samples  were  obtained  from  the  688,763  samples  processed  by  the  pooling  techniques
between  August  2020  and  July  2021.  Second,  we  also  included  17,144  posiƟve  samples
obtained  from  the  313,939  samples  processed  in  the  microbiology  laboratory  between
February 2020 and March 2021.

The  samples  processed  in  the  ‘pooling  lab’  are  screenings  to  detect  SAR-CoV-2  in  a
nonsymptomaƟc populaƟon. The parƟcipants were asked to collect saliva (self-sampling) in
TRANSPORT  MEDIUM-2  (Vircell®  Ref:  TM013)  immediately  aŌer  waking  up,  following  the
manufacturer's instrucƟons. Although each result pertains to an individual rRT-PCR for each
sample,  these  samples  were  first  flagged  as  possibly  posiƟve  by  group tesƟng.  Then,  the
original samples from the posiƟve pool are individually analyzed. These are the results that are

3

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.12.21266286doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266286


used here. Individual samples and pools were analyzed following the same standard rRT-PCR
protocol described in 3.1.

The other samples were nasopharyngeal swabs processed individually in the laboratory of the
CHUVI Microbiology Departament as part of the assistance rouƟne for SARS-CoV-2 diagnosis. It
is important to note that the supply of this source of posiƟve samples ended prematurely in
March 2021 due to the need to change the reagent used in this laboratory (AllplexTM SARS-
CoV-2 Assay to AllplexTM SARS-CoV-2/Flu A/Flu B/RSV assay, both from Segene Inc.) because of
the high demand. In this way, we were able to keep the AllplexTM SARS-CoV-2 assay to group
tesƟng, since in this case, an assay change requires a full re-evaluaƟon of the system, and the
increase in  the Cts for the  N gene previously  described by  Wollschäger  et.  al.11 may have
greater significance in group tesƟng. As explained in SecƟon 3.3, the data from 12,313 posiƟve
samples obtained by the AllplexTM SARS-CoV-2/Flu A/Flu B/RSV assay between February and
August 2021 could not be included in the present study.

3.3 CharacterizaƟon of the wave concept

Since the pandemic began in March 2020, the concurrent increases and decreases in cases
have been linked to the concept of "wave, which are determined using subjecƟve, unofficial
criteria.  To  the  best  of  the  authors’  knowledge,  this  is  an  abstract  nomenclature  whose
rigorous definiƟon has not yet been clearly established to date. To characterize the pandemic
dynamics in our area, we tracked the curve of acƟve cases at the level of Galicia and, more
specifically,  Vigo and determined the boundaries between the so-called ‘waves’  in  a data-
driven way.

The database of acƟve cases in the enƟre Galician region during the SARS-CoV-2 pandemic was
obtained  from  data  provided  by  the  public  health  service  of  the  Autonomous  Spanish
Community. In order to determine the Ɵme limits of each wave, the contagion curve is fit to a
smoothed spline (R2=0.99), and the waves are defined by the local minima and maxima of the
curve, as shown in Figure 1. Therefore, it can be concluded that although vaguely defined,
waves are quite disƟnguishable, and the number of samples is inherently higher near the peak
of each wave and much lower in their fronƟers. AddiƟonally, each new wave could also be
associated with a higher proporƟon of samples with lower Ct values at the beginning 22.

Figure 1: Smooth spline approximaƟon of the infecƟon curve in Vigo during the pandemic.
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Focusing now on the data available for this study,  Figure 2 shows how the existence of the
waves is reduced to four clearly differenƟated peaks. First, the slight increase in the number of
cases experienced in autumn of 2020 is not seen in the data collected. The peak of cases in the
second wave is concentrated in the last months of the year.

Figure 2: Number of posiƟve SARS-CoV-2 tests in Vigo, averaged by week, detected by pooling
in CHUVI, with the old PCR reagents (blue) and with the new PCR reagents (orange).

As  will  be  explained in this  work,  the  key  aspect  is  the  capacity  of  the  machine  learning
algorithm to correctly predict the wave to which each sample belongs based on the numerical
results of rRT-PCR for each gene. Therefore, a change in the target genes of the PCR performed
during the fourth wave is  too strong to indicate the temporal  posiƟon of  those tests  and
therefore had to be removed from our database to avoid giving an unfair advantage to the
algorithm. Unluckily, the dire circumstances under which laboratories had to work during the
pandemic led to this type of disturbance. Fortunately, in our case, it only significantly affected
the fourth wave.

3.4 DescripƟve analysis of the database used in the work

Even aŌer extracƟng the samples that could lead to unfair results, the resulƟng database used
in  this  study  corresponds  to  a  set  of  20,418  PCR  samples  collected  by  the  Microbiology
Department of the CHUVI from March 2020 to July 2021. For each sample that tested posiƟve
for SARS-CoV-2 the database included an anonymized idenƟficaƟon number, the date when
the sample was taken, the threshold value for each target gene (E, N and RdRP/S) and the
threshold value for the internal control (IC). The RdRP and S genes share the same channel;
therefore, we obtained a single Ct value for both genes.
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Figure 3 shows the distribuƟon of the number of cycles from the analyzed gene profiles, where
the average Ct value is approximately 26 for genes E and N and close to 28 for the combinaƟon
of genes RDRP/S.

Figure 3: Gene E (blue), N (green) and RDRP/S (yellow) distribuƟons from the pooling dataset.

Some visual features arise from the simple analysis of the data collected. As seen in Figure 4,
the RdRP/S gene distribuƟon seems to be slightly offset toward higher Ct values; and in fact, a
more abrupt  end is shown.  However,  a  strong linear  relaƟonship between the number  of
cycles of the three genes can be observed from the database (R2

E-N = 0.96, R2
R-N = 0.95, and R2

E-R

= 0.97). This is anƟcipated since the presence of the genes is expected to be similar and each
number of cycles is allegedly related to the viral load of the individual; thus, the values of the
numbers of cycles detected in any sample are usually quite close.

Figure 4: RelaƟonship between the number of cycles of genes E, N and RDRP/S.
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Figure  5 shows the  temporal  evoluƟon  of  the  number  of  cycles  of  each  gene  during  the
pandemic.  The figure clearly shows that,  at least at  first  glance,  there is  no trend or Ɵme
evoluƟon that points to Ct differenƟaƟon over Ɵme.

Figure 5: EvoluƟon of the number of cycles of each gene against the number of
posiƟve cases during the pandemic.

3.5 Working hypothesis

Since  ML  algorithms  require  a  high  volume  of  training  data  to  be  effecƟve  and  genome
sequencing for variant determinaƟon was impracƟcal due to the high dimensionality of our
database, we decided to use the wavenumber as the characterisƟc target cluster. Hence, the
working hypothesis is the following:  each wave has a disƟnguishable paƩern (signature) on
the rRT-PCR results that allow an ML algorithm to efficiently predict the wave to which each
individual test belongs. If that hypothesis is proven true, some interesƟng conclusions can be
extracted.

To  cluster  the  samples,  a  supervised  learning  technique  would  allow  predicƟng  the
membership of a sample to a wave based simply on the number of cycles presented as a result
of the PCR. Supervised learning algorithms are based on using labeled input data, i.e., with a
correct  answer  with  reference  to  its  classificaƟon.  Thus,  as  the  algorithm  is  trained,  it
compares its predicted output with the correct input response unƟl the error in its decision is
minimized.

3.6 ClassificaƟon techniques employed - SVM and NN

3.6.1. Support Vector Machine (SVM)
From the diverse exisƟng classificaƟon algorithms, the first opƟon tested was a support vector
machine  (SVM),  a  kernel-based  network  that  performs  linear  classificaƟon  on  vectors
transformed to a higher dimensional space, i.e.,  it  separates these vectors by means of an
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opƟmal hyperplane in the feature space that contains the main characterisƟcs of the baseline
data 23. According to the kernel trick 24, the creaƟon of such a feature space is obtained by the
transformaƟon ϕ :X⊂ Rd→U⊂ R s, where s≥ d (d represents the dimension of the original
space, and  s corresponds to the dimension of the feature space), allowing linear separaƟng
hyperplanes in the feature space to be equivalent to nonlinear separators in the original space.

SVMs tailored for  classificaƟon are based on a sample  zn , z i=(x i , y i ),  where  x i∈ X⊂ Rd,

y i∈ Y={−1,1},∧i=1:n is linearly separable. I.e., it can be divided by a decision funcƟon

f w ,b (x )=sign (⟨ w ,x ⟩+b) ,where w∈ Rd
∧b∈ R.  The  opƟmal  separaƟng  hyperplane  is

defined as  the  maximum  margin  separator  hyperplane  that  maximizes  its  distance to  the
classes. It has two major weaknesses: the requirement of linear separability of the sample and
their linear character.

Figure 6: Support vector machine explanaƟon.

In turn, this margin, or geometric margin, τ w ,b, with respect to the sample zn is described as

γ ( τw ,b )= min
i∈ {1 :n}

1
‖w ‖

|⟨ w ,x i ⟩ +b|=
1
‖w ‖

min
i∈ {1 :n}

|⟨ w , x i ⟩ +b|

The  opƟmal  hyperplane  is  obtained  as  the  soluƟon  of  the  following  problem  with  its
corresponding restricƟons:

max
w∈ Rd , b∈ R{γ ( τw , b)= min

i∈ {1 :n}
|⟨ w , x i ⟩ +b|}

Figure 7: Maximum margin for a support vector machine.

Considering  that  this  is  a  mulƟclass  problem  since  more  than  two  input  parameters  are
considered for training, it is important to differenƟate two approaches: one-vs.-all and one-vs.-
one.

● One-vs.-All   25: This approach is based on building c SVM models where the ith classifier
is  trained with  all  the  examples  of  the  ith  class  coded  as  +1  and the rest  of  the
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observaƟons are coded ash -1 (hence its name one-against-all as each class is piƩed
against the rest).

● One-vs.-One:   This  methodology  is  based  on  the  construcƟon  of  c(c  -  1)/2  binary
classifiers trained with elements of two classes 2 to 2. Thus, for each element of class i,
the classificaƟon between the other elements of different classes can be established.

In the present work, both alternaƟves were tested. Since the SVM model used was opƟmized,
it provided a beƩer result in the one-versus-one applicaƟon.

3.6.2. Neural Networks
Neural networks were born from the field of biology in the search to create a system that
would follow the learning paƩerns of the human brain. This was achieved through the work of
psychiatrist  McCulloch and mathemaƟcian PiƩs  26,  whose first model  consisted of an input
layer (containing the original data); an output layer (containing the classificaƟon result) and a
certain  number of  hidden layers  with their  corresponding  number  of nodes connected by
weights,  which  were assigned based on common characterisƟcs.  MathemaƟcally,  a  neural
network can be denoted by the funcƟon  f : X⊂ Rd→Y ⊂ Rc  27 that can be expressed as
follows:

f ( x )=ϕ (ψ ( x ))ϕ :X⊂ Rd→T⊂ Rpψ :T⊂ R p→Y ⊂ R c

where d is the dimension of the input space, p is the number of neurons of the hidden layer, c
is the dimension of the output layer, T  is the hidden space, ϕ  is the acƟvaƟon funcƟon of the
hidden layer and ψ  is the acƟvaƟon funcƟon of the input layer.

For  the  case  of  arƟficial  neural  networks  called  mulƟlayer  perceptrons  (MLPs)  that  are
characterized by having a series of neurons called  perceptrons,  a back propagaƟon process
that propagates the error back to the training in order to reduce the error unƟl the NN learns
the necessary informaƟon is used. Its expression can be shown as:

f ( x )=∑
j=1

p

ϕ j ¿¿

where  w j and  w0 are the weights of the input layer and  c j and  c0 are the weights of the
hidden layer.

In this case, the neural network uƟlized was a feedforward, fully connected model specialized
for classificaƟon (Figure 8). This means that all the neurons in each layer are connected to the
neurons in the previous layer, with each fully connected layer mulƟplied by a weight matrix
plus  a  bias  vector  that  must  be  considered.  Moreover,  an  acƟvaƟon funcƟon,  which  was
previously menƟoned, is placed between the layers, allowing nonlinear learning of paƩerns
between layers. Finally, the last layer followed by the soŌmax acƟvaƟon funcƟon results in the
network soluƟon and consequent wave classificaƟon predicƟons.
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Figure 8: Feedforward, fully connected neural network structure.

3.6.2. Structure of the model
Figure 9 includes the informaƟon detailing the several  steps that  consƟtute the enƟre ML
pipeline. First, the number of cycles of each of the genes for a single sample and an addiƟonal
number of cycles corresponding to the internal control are taken as input parameters. Then,
the training process starts aŌer the machine learning algorithm is chosen.

The output of the algorithm corresponds to a confidence score that represents the probability
that a sample belongs to a parƟcular group. Considering that the main objecƟve is to predict
the membership of a sample to a wave,  the output of  this  algorithm will  correspond to a
confidence level associated with the probability that a sample belongs to a wave. Thus, the
wave with the highest confidence level assigned to it will be the one chosen as the predicted
wave.

Subsequently,  the  predicƟon will  be compared with the real  wave value.  If  the predicƟon
coincides with the real  value,  it  represents a good esƟmaƟng;  conversely, it  represents an
incorrect classificaƟon. The actual wave value of the sample is determined from the date of
the sample taken and the esƟmated cutoffs with the approximaƟon of the wave of acƟve cases
to a spline.

Figure 9: PredicƟve scenario of an ML model.

4 RESULTS
This secƟon will discuss the results obtained during the present invesƟgaƟon. The secƟon will
begin  with  the  characterisƟcs  of  the  algorithms  used,  then  address  choosing  the  best
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alternaƟve  by  evaluaƟng  the  outcome  and  end  with  some  conclusions  drawn  from  the
analysis.

4.1 Metrics

First, for the training of both models, a technique called cross-validaƟon was uƟlized to avoid
overfiƫng (i.e., the situaƟon in which the network overlearns and extracts some noise as the
main structure of the data, which affects the generalizaƟon of the predicƟons that tend to be
incorrect).  The  idea  behind  cross-validaƟon  is  to  divide  the  database  into  a  number  of
randomly chosen parƟƟons, usually balanced, in order to train the model on subsets that it has
not seen before. Thus, in this case, the database was divided into five parts. Four parts were
used  for  training  and  the  remaining  part  was  used  for  tesƟng.  Then,  the  part  used  for
validaƟon was alternated as each training step was completed.

The criteria used to compare the results of the supervised algorithms are two widely known
basic metrics: the  accuracy and the  mean absolute error (i.e., MAE). Considering that cross-
validaƟon was uƟlized, the accuracy was calculated as the percentage of observaƟons correctly
classified considering only  the number  of  samples  held  out  for  validaƟon  in each training
segment. Moreover, the MAE measures the average magnitude of the absolute differences
between the predicƟon and the real value using EquaƟon 4.1:

MAE=
1
p
∑
j=1

p

¿¿ (4.1)

where  p represents the total number of incorrectly classified samples,  y j is the predicƟon
from the algorithm and y j

¿
¿ is the real value. As a linear score, all individual differences are

weighted equally in the average, and the result include the units of the variable the model is
seeking  to  predict.  For  this  case,  a  difference  of  one  unit  corresponds  to  a  predicƟon
correlated to the next or previous wave with respect to the correct wave. Therefore, if the
MAE falls close to unity, it will be interpreted as the algorithm having the tendency to mostly
fail between conƟguous waves where paƩern differenƟaƟon is more complex.

Among the diverse metrics used to evaluate a model, the confusion matrix is oŌen used to
evaluate the results of a model and idenƟfy its "weak points".  In this  matrix, the diagonal
shows the percentage of correctly idenƟfied results (i.e., second waves idenƟfied as such), and
the off-diagonal elements show the failure rates.

Furthermore, the confusion matrix also shows the  true posiƟve rate (i.e., the TPR) and  false
negaƟve rate (i.e., the FNR) in the right-hand columns. The TPR is the proporƟon of samples
correctly classified with respect to their true class, and the FNR is the proporƟon of samples
incorrectly classified with respect to their true class.

4.2 Overview of the performances of the SVM and NN

The classificaƟons made with both algorithms obtained similar results. This can be seen in the
accuracy results in  Table 1.  This similarity was expected from the linearity observed in the
data, which led to equivalent results for both approaches. The cases in which the SVM shows a
real improvement over the other techniques are usually related to nonlinear trends among the
original data, which was not found in the present study.
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Table 1 includes the model  characterisƟcs for  the  SVM,  following a one-vs.-one mulƟclass
method with no standardizaƟon of the data; and for the NN, which has a unique hidden layer
with 100 neurons and uses the ReLU acƟvaƟon funcƟon. It is important to note that despite
the  large  difference  in  training  Ɵmes  between  the  two  algorithms,  their  accuracies  are
pracƟcally idenƟcal (this can be checked by examining the accuracies and MAEs in the same
table).

Table 1: ClassificaƟon algorithm specificaƟons and training results.

Figure 10 and  Figure 11 include the confusion matrices for the algorithms, where the blue
color is related to responses that are correct and the orange tone is related to misclassified
samples. The fourth wave is the most clearly idenƟfied, with an accuracy of over 94% in both
cases. However, the Ɵme frame between the second and third waves, as well as the transiƟon
from the first to the second, causes more confusion in the algorithms. As seen in the TPR
column, the lowest hit percentage corresponds to the first wave in the case of the SVM (Figure
10) and to the third wave in the case of the NN (Figure 11).

Focusing now on the MAEs, it is worth highlighƟng the fact that the fourth wave, with the
highest accuracy, is the one with the highest MAE, which means that those points that have
been  misclassified  are  usually  associated  with  the  first  or  second  wave  rather  than  the
conƟguous wave.

Figure 10: Support vector machine results.
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Figure 11: Neural network results.

4.3 ClassificaƟon results

When discussing the results, the outcome offered by the SVM is considered since they showed
quite similar  results  and the SVM is  a model  that has certain advantages over the neural
network  in  terms of  performance and extrapolaƟon of  results.  One such advantage is  the
opportunity to avoid retraining the model with the input of new samples, which is required in
the case of the neural network.

Figure 12 shows the result of the classificaƟon by the SVM divided by waves, highlighƟng the
predicted wave class assigned by the algorithm to the sample using color. The conƟnuous
black line shows the evoluƟon of the number of infecƟons throughout the pandemic (i.e., the
number of posiƟve cases) and the scaƩered points in Ɵme show the average confidence with
which the classifier made the decision each day. That is, the average confidence is a raƟo that
shows the confidence with which the classifier assigns a wave to each individual.

As seen in Figure 12, the majority of individuals are classified within their wave, and those
points  (located in  the  middle-boƩom area of  the  figure)  that  have been  misclassified are
usually assigned to the upcoming or preceding wave.

An example of this confusion can be seen clearly between the second and third waves, where
the yellow dots (individuals from the second wave that have been idenƟfied as third) can be
idenƟfied within the second wave region. This can also be noƟced, to a lesser extent, in the
secƟon of the first wave where a small cloud of green dots is located in the lower area (that is,
real first one individual wrongly predicted by the classifier as second wave samples).
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Figure 12: SVM classificaƟon result for the data uƟlized.

Moreover, Figure 13 shows how the increase in failures is related to a higher uncertainty in the
soluƟon obtained by the classifier. It should be considered that since the classifier has four
possible answers, if a decision is made with a score close to 0.25, it means that all four opƟons
are necessarily similar in terms of score level. In contrast,  those answers obtaining greater
certainty (i.e., with a confidence level close to unity), correspond to a higher number of correct
classificaƟons and almost no confusion. Hence, the algorithm seems to be well aware of its real
performance.

It is worth menƟoning that since the ground truth for each sample is based only on the date of
their tests, which in the end is converted into a class membership (wave), the overlapping
waves and the underlying causes that will be discussed later can easily be explained the fact
that some (maybe many) of the individuals misclassified by ML could be in fact individuals
misclassified to their assigned waves.

In  fact,  the  algorithm  precision  tends  to  be  higher  at  wave  centers  where  the  sample
characterizaƟon is more solid. In contrast, those points that are located near the fronƟers of
the  waves  tend  to  be  more  conflicƟng  (which  can  be  easily  seen,  for  example,  in  the
intersecƟon between the second and third waves in Figure 13).
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Figure 13: RaƟo as a funcƟon of the confidence intervals for the SVM results.

5 DISCUSSION
Based on the results obtained in the classificaƟon, a deep reason to jusƟfy how a mathemaƟcal
model, using only the detected number of cycles of each gene together with the number of
cycles detected by the internal control as input  data, could have such a high and accurate
precision rate for each wave (as shown in the gray areas of Figure 14) was sought.

StarƟng with the results  corresponding to the first  wave (Figure  14 a)),  the accuracy  area
(whose  maximum  reaches  80%  at  the  peak  of  the  wave)  coincides  temporally  with  the
appearance of variant 20A in the Galician region. More specifically, the end of the wave also
coincides temporally with the peak and decrease in acƟve variant 20B cases (dashed line in the
yellow area). This indicates that in addiƟon to being characterized by variant 20A, this wave
also picks up some features of variant 20B that cause a spike in the failure rate in October 2020
and again in July 2021.

In the case of the second wave (Figure 14 b), the tendency of the accuracy rate to follow the
presence of specific variants sƟll persists with the appearance of 20E (EU1) at the start of the
second wave. Even so, this wave shows a higher error rate prior to its beginning and once it
has ended since  the 20B variant  is  present simultaneously  with 20E (EU1)  throughout  the
enƟre wave. Again, the figures show how the peaks in the error rate (red solid line) correspond
approximately with spikes of 20B. Furthermore, the figures also show that from January 2021,
the error rate decreases as the 20E (EU1) variant disappears.

The third wave (Figure 14 c), once again, its characterized by the presence of the 20E(EU1)
variant  together  with  20I.  This  again  causes  a  certain  spike  in  the  error  rate  due to  the
presence of these same variants during the rest of the waves. However, it is clearly observed
that a higher accuracy corresponds to the coincidence of a higher percentage of cases of these
variants simultaneously.

Finally, the fourth wave (Figure 14 d) is more clearly idenƟfied than the rest because the 21A
variant is only present during the summer months of 2021. This means that the failure rate
remains pracƟcally null unƟl the arrival of this wave in April 2021.
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Figure 14: Accuracy compared to the prevalence of variants throughout the pandemic divided
into the four waves (a, b, c and d, respecƟvely), where the gray area is idenƟfied as the rate of

correctly classified samples, and the solid red line represents the rate of incorrect
classificaƟons.

5.1 LimitaƟons

The main limitaƟon of this study is that it is applied only to the data from a single area. This is
jusƟfied by the fact that the dataset required for training had to avoid any trace of data that
could lead the algorithm to disƟnguish data from other data. In fact, as menƟoned above, this
reduced the size of our dataset since we had to discard many tests due to the use of a different
set of target genes. The purpose of this work is to show that a disƟnguishable signature on the
Ct paƩern seems to exist, but unƟl proven using different labs, test condiƟons, etc., no further
generalizaƟon should be made than the mere existence of this paƩern.

5.2 Assessment of the potenƟal interest of the proven concept

The  ML  tool  proposed  in  this  work  represents  an  addiƟonal  tool  that  can  improve  the
relevance  of  rRT-PCR  results.  The  classical  interpretaƟon  of  a  qualitaƟve,  Boolean  result
(posiƟve or negaƟve) can be completed with addiƟonal informaƟon regarding the esƟmaƟon
of probable virus variants (if recognized by an ML algorithm).  This can be useful for  many
purposes,  such  as  the  following:  pandemic  control  (quick  detecƟon  of  the  arrival  of  new
variants),  as  a  screening  tool  for  virus  sequencing,  as  a quality  check of  the  tests  and/or
reagents, etc.

In addiƟon, this work is just the iniƟal step toward a completely new methodology applied to
rRT-PCR not only in the case of SARS-CoV-2 but also in many other diseases.

16

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 15, 2021. ; https://doi.org/10.1101/2021.11.12.21266286doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266286


6 CONCLUSIONS
In  this  work,  we found that  an ML algorithm trained with a  sufficiently  rich database can
efficiently idenƟfy the moment in the SARS-CoV-2 pandemic when an individual was infected
based on a simple, standard, rRT-PCR test with three channels (E, N and RdRP/S). No addiƟonal
informaƟon  regarding  gender,  age,  condiƟon,  etc.  was  required  by  the  algorithm.  The
subjacent  reason  for  the  precision  of  the  ML  algorithm  seems  to  be  an  underlying
characterisƟc signature of the main SARS-CoV-2 variants. As shown, the predicƟon seems to be
aligned with the arrival and retreat of the different variants from the region where the tests
were  performed.  Only  by  collecƟng  a  sufficient  amount  of  data  of  different  variants,
individuals, tests, laboratories, etc. can the concept presented here be proven directly and not
through the wave clustering concept employed here.

The  results  of  this  work  can  be  a  first  step  toward  a  new  accessible  and  inexpensive
surveillance method for tracking and/or selecƟng candidate samples for sequencing. Even with
its  limitaƟons,  this  method  may  help  monitor  the  changes  to  the  virus  and  extend  the
surveillance to areas where current systems are scarcely implemented and have contributed
significantly to the expansion of VOCs.
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