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Abstract  31 

Understanding the impact of stressors on the rating of perceived exertion (RPE) is 32 

relevant from a performance and exercise adherence/participation standpoint. Athletes 33 

and recreationally active individuals dehydrate during exercise. No attempt has been 34 

made to systematically determine the impact of exercise-induced dehydration (EID) on 35 

RPE. The present meta-analysis aimed to determine the effect of EID on RPE during 36 

endurance exercise and examine the moderating effect of potential confounders using a 37 

meta-analytical approach. Data analyses were performed on raw RPE values using 38 

random-effects models weighted mean effect summaries and meta-regressions with 39 

robust standard errors, and with a practical meaningful effect set at 1 point difference 40 

between euhydration (EUH) and EID. Only controlled crossover studies measuring RPE 41 

with a Borg scale in healthy adults performing ≥ 30 min of continuous endurance 42 

exercise while dehydrating or drinking to maintain EUH were included. Sixteen studies 43 

were included, representing 147 individuals. Mean body mass loss with EUH was 0.5 ± 44 

0.4%, compared to 2.3 ± 0.5% with EID (range 1.7 to 3.1%). Within an EID of 0.5 to 3% 45 

body mass, a maximum difference in RPE of 0.81 points (95% CI: 0.36-1.27) was 46 

observed between conditions. A meta-regression revealed that RPE increases by 0.21 47 

points for each 1% increase in EID (95% CI: 0.12-0.31). Humidity, ambient temperature 48 

and aerobic capacity did not alter the relationship between EID and RPE. Therefore, the 49 

effect of EID on RPE is unlikely to be practically meaningful until a body mass loss of at 50 

least 3%.  51 

Keywords: hydration, hypohydration, performance, rating of perceived exertion, RPE 52 
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INTRODUCTION 54 

Rating of perceived exertion (RPE), a subjective estimation of the intensity or difficulty 55 

of a physical task, is widely used by professionals in the field of exercise sciences, 56 

coaching and sports medicine to monitor or prescribe exercise intensity (87). Developed 57 

by Gunnar Borg (19, 20), the Borg RPE scale is a universally accessible, comprehensible, 58 

useful, non-invasive, valid and inexpensive tool that can be used in diverse populations 59 

such as in children, adolescents, young and older adults, and under different conditions, 60 

including leisure and elite sports, clinical rehabilitation and scientific research. Although 61 

the etiology of RPE is unclear, it is proposed that it is either centrally derived (64) or 62 

generated by neuronal processes that integrate afferent signals from various peripheral 63 

and central sources, as well as from psychological factors (20, 88).  64 

The RPE is a pivotal component of aerobic exercise. Indeed, it acts as a regulator of 65 

exercise intensity (1, 93) and exercise duration (26, 35, 77) and, thus, modulates exercise 66 

capacity in competitive athletes and, as important, is at the core of the decision to engage 67 

and adhere to the regular practice of physical activity among recreationally active 68 

individuals (32, 33). Given that physiological and psychological signals can act 69 

individually or in concert to disturb RPE, it follows that limiting the number of 70 

physiological or emotional stressors to a minimum during exercise should ensure optimal 71 

performance for the athlete and lead to a sense of fulfillment in recreationally active 72 

individuals (1). 73 

Depending on a host of factors, sweat losses typically reach 0.5 to 1.7 L/h during exercise 74 

(13). Athletes as well as recreationally active individuals do not usually replace all their 75 

fluid losses during exercise. Exercise-induced dehydration (EID), best represented by the 76 
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acute body mass loss accrued during exercise, alters thermoregulatory, metabolic and 77 

cardiovascular functions (24, 43, 62, 63, 71), more particularly in individuals with low 78 

aerobic fitness (69) and may predispose to the development of thirst, headaches, 79 

tiredness, mental fatigue (44) and impaired mood (6, 39), while its impact upon cognitive 80 

performance is still debated (45). These factors may contribute to increasing RPE during 81 

exercise, ultimately impeding exercise performance in athletes (55) and potentially 82 

decreasing exercise adherence and participation in recreationally active individuals (33, 83 

82) which, from a societal and health perspective, is not suitable. Indeed, both the 84 

affective response and RPE are associated with long-term physical activity participation 85 

(97).  86 

The relationship between EID and RPE has received much scientific attention, with some 87 

studies showing that EID can significantly increase RPE (2, 14, 16, 37, 38, 42, 43, 54, 56, 88 

62, 63, 71, 72, 75, 95, 99), while others did not (8, 12, 17, 28, 30, 31, 34, 40, 51, 53, 59, 89 

61, 68, 73, 74, 84, 89). At this time, no attempt has been made to systematically 90 

determine the impact of EID on RPE. Discrepancies between findings could potentially 91 

be related to methodological differences among studies, albeit this remains to be 92 

determined and confirmed with the aid of relevant analyses.   93 

Efforts have yet to be deployed to determine, using a meta-analytic approach, the impact 94 

of EID on RPE. More specifically, there is a need to answer these questions: 1) does the 95 

change in RPE during exercise relate to EID?; 2) what is the magnitude of the effect of 96 

EID on RPE across different levels of EID; 3) is the magnitude of the effect of EID on 97 

RPE practically important?; 4) are there any identifiable factors among ambient 98 

temperature, humidity level, exercise intensity, exercise duration and aerobic capacity 99 
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that may moderate the relationship between EID and RPE and; 5) to which extent 100 

“cardiovascular strain” mediates the relationship between EID and RPE? The goal of this 101 

study, therefore, is to use a meta-analytic approach to provide answers to the above-102 

mentioned questions. Findings will be valuable to scientists, physical trainers, sports 103 

nutritionists, physicians, exercise physiologists, sports psychologists and any individuals 104 

engaged in regular exercise. Also, such findings will be valuable to elucidate whether the 105 

changes in body water are part of an integrated signal. 106 

 107 

METHODS 108 

Experimental approach to the problem 109 

Although the relationship between EID and RPE has received scientific attention, results 110 

are controversial. No attempt has been made to summarize and determine the magnitude 111 

of changes in RPE across different levels of EID. Such a gap indicates a need to use a 112 

systematic approach with meta-analysis to further our understanding of the relationship 113 

between these variables. 114 

Figure 1 reports the search strategy used for study selection. The literature search, limited 115 

to original peer-reviewed articles published in French or English, was performed with the 116 

PubMed, MEDLINE, SPORTDiscus, AMED and CINAHL databases, combining a “title 117 

field” and an “abstract field” research using the following keywords alone or in 118 

combination: cycling, dehydration, drink, effort, endurance, euhydration, exercise, 119 

exertion, fluid, hydration,  hypohydration, perceived effort, perceived exertion, 120 

perception, performance, rate of perceived exertion, rating of perceived exertion, RPE 121 

and running. The exact search strategy can be found in supplementary material 1. A first 122 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.21266279doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266279
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

 
 

selection based on the title was performed; afterward, the abstract and method sections of 123 

all potential articles were read. When hydration status was manipulated and RPE 124 

measured, the methodological section was carefully read to verify eligibility. Published 125 

abstracts, case studies, non-peer-review manuscripts and conference proceedings were 126 

not considered. Cross-referencing was performed on included studies and 6 127 

narrative/systematic reviews (3, 23, 48, 55, 66, 79). When needed, authors of included 128 

studies were contacted and asked to share experimental raw data. The last search of the 129 

literature was done on December 17, 2020. The review and the protocol were not 130 

registered. The meta-analysis was conducted using the Preferred Reporting Items for 131 

Systematic Reviews and Meta-analysis (PRISMA) guidelines. 132 

 133 

Figure 1 about here 134 

 135 

Criteria for considering studies for inclusion in the meta-analysis 136 

Inclusion criteria were: (1) controlled study using a randomized crossover design in 137 

healthy adults (≥�18 years old); (2) ≥ 30 min of continuous running or cycling endurance 138 

exercise; (3) final EID in the experimental group > 1% of pre-exercise body mass and ≥ 139 

0.5% than the euhydrated (EUH) control condition; (4) dehydration progressively 140 

induced during, not before exercise (46); (5) body mass change with EUH was within -1 141 

to + 0.5% of the pre-exercise body mass (46); (6) fluid replacement was given orally; (7) 142 

if carbohydrates (CHO) or caffeine were provided during exercise, the amount was 143 

identical between conditions (9, 29) and; (8) data required to compute changes in EID 144 

and RPE included. Exclusion criteria were: (1) sports-specific and intermittent exercises; 145 
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(2) use of diuretics or sweatsuit to accelerate EID; (3) provision of fluid according to 146 

thirst sensation; (4) uncontrolled ambient conditions or experimentation timing; (5) 147 

collection of muscle biopsies and; (6) carrying of loads during exercise.  148 

 149 

Assessment of trial quality  150 

No specific and validated tool to assess the quality of exercise-related studies has been 151 

developed. Moreover, assessing trial quality in meta-analyses using a scale can influence 152 

the interpretation of results (57). Hence, trial quality assessment was not performed in the 153 

present meta-analysis.  154 

 155 

Data extraction 156 

Using double data entry, data regarding (1) study characteristics; (2) participants 157 

characteristics; (3) exercise protocol characteristics; (4) EID levels and; (5) RPE were 158 

extracted and coded in spreadsheets. When not provided by authors, data only available 159 

in figures were extracted using WebPlotDigitizer.  160 

 161 

Exercise duration and intensity and participants’ �� O2max 162 

Exercise duration was computed as the average exercise time completed during both the 163 

EID and EUH conditions. Exercise intensity was taken as the average of the mean % 164 

V� O2max at which both the EID and EUH conditions were performed. Mean exercise 165 

intensity was computed using a weighted average for those studies that used a 166 

combination of exercise intensities. When not measured by authors, exercise intensity 167 

was estimated and computed as explained by Goulet (46). Most studies (4, 8, 16, 25, 31, 168 
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38, 68, 74, 75, 84, 89, 94, 95, 98) reported participants’ V� O2max; Barwood, Goodall and 169 

Bateman (15) and Dugas, Oosthuizen, Tucker, et al. (30) did not, and these values were 170 

calculated as in Goulet (46). 171 

 172 

Fluid intake, exercise-induced dehydration and dehydration rate measurement 173 

Hydration rate (mL/min) was computed as the total amount of fluid intake divided by 174 

exercise duration, with the relative hydration rate (mL/min/kg) corrected for pre-exercise 175 

body mass (kg). The percent change in body mass from the pre- to post-exercise period 176 

was used as an index of the level of dehydration incurred during exercise. While this 177 

index is an imperfect representation of EID (65) as it is impacted by both metabolic water 178 

production and gas exchange during exercise, measurement error is relatively low 179 

amounting to an overestimation of fluid loss of ~ 100 mL/h during moderate intensity 180 

exercise.  181 

When not provided, pre-exercise body mass was taken as that provided in the sample 182 

description, whereas % body mass loss was computed using the following equation:  183 

Pre-exercise body mass (kg) - post-exercise body mass (kg) / pre-exercise body mass (kg) 184 

x 100                        185 

(1) 186 

Thus, any positive value represents a body mass loss while negative values indicate body 187 

mass gain. 188 

Assuming a high repeatability of (11), and consistency in (60), sweating rate and thus 189 

body mass loss (22) during exercise at a given intensity, dehydration rate (% body mass 190 

loss/min) was computed as follows:  191 
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End of exercise body mass loss (%) / exercise duration (min)                       192 

(2)  193 

Dehydration rate was used to calculate the % body mass loss associated with each 194 

measurement of RPE within a single study. For example, if in a study RPE was measured 195 

at 30, 60 and 90 min and the dehydration rate was 0.03%/min, therefore the 196 

corresponding % body mass losses were respectively taken as 0.9 (ex., 30 min x 197 

0.03%/min), 1.8 and 2.7%. In some studies, this iteration process had to be stopped when 198 

body mass loss surpassed 1% in the EUH condition (8, 31, 38, 74, 94). This procedure 199 

enabled us to pinpoint the behavior of RPE across a wide range of % body mass loss 200 

changes, using research data available from all included studies. To provide a practical, 201 

easy to understand and clear visual characterization of the effect of body mass loss on 202 

RPE during exercise, Figures 2a and b present the relationship between % body mass loss 203 

and RPE at fixed and anchored body mass loss levels, according to the classification 204 

presented in Table 1.   205 

 206 

Table 1 about here 207 

 208 

Measurement of perceived exertion during exercise 209 

Perceived exertion data are presented according to the original 6-20 Borg scale. Dugas, 210 

Oosthuizen, Tucker, et al. (30) and Walsh, Noakes, Hawley, et al. (95) used the Borg-211 

CR10 scale (range 0-10); for those studies, RPE was converted back to the 6-20 scale 212 

according to Arney, Glover, Fusco, et al. (7). For Barwood, Goodall and Bateman (15) 213 

(hot and cold drink conditions), Dugas, Oosthuizen, Tucker, et al. (30) (0, 33 and 66% 214 
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conditions) and Murray, Michael and McClellan (75) (5- and 10-min conditions) merging 215 

of experiments were performed to eliminate data dependency.  216 

 217 

Moderating variables 218 

The following variables were a priori identified as potential moderators for the 219 

relationship between RPE and EID: ambient temperature, relative humidity, exercise 220 

duration and intensity and participants’ V� O2max. Ambient temperature and relative 221 

humidity are interdependent, as are exercise intensity and duration. To take this into 222 

account, absolute humidity and a composite score of exercise stress (product of exercise 223 

intensity (% V� O2max) and exercise duration (min)) were also considered as moderating 224 

variables.   225 

 226 

Mediating variable 227 

Heart rate was considered a potential mediating variable regarding the relationship 228 

between EID and RPE. Core temperature would have been another one to consider, but 229 

the paucity of data prevented us from evaluating its impact. For each study, mean 230 

exercise heart rate difference between the EUH and EID conditions was computed by 231 

averaging the sum of the heart rate difference computed at each measurement point. 232 

 233 

Statistical analyses 234 

Software 235 

Data were analyzed in their original form using Microsoft Office Excel 2020 (version 236 

1902, Redmond, WA, USA), MetaXL, Comprehensive Meta-Analysis (version 2.2.064, 237 
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Englewood, NJ, USA), STATA/MP (version 14, College Station, TX, USA), SPSS 238 

macros provided by Lipsey and Watson (46, 47) and IBM SPSS Statistics (version 21, 239 

Armonk, NY, USA) software. 240 

 241 

Weighted mean effect summaries 242 

Each of the studies included in the meta-analysis took measurements of RPE during 243 

exercise at more than one EID level. Therefore, a meta-analysis of repeated measures was 244 

performed in an effort to limit the violation of the assumption of data independence in the 245 

data structure (85). First, an all-points forest plot was constructed to determine the mean 246 

effect of EID on RPE at body mass loss levels fixed and anchored at 0.5, 1, 1.5, 2, 2.5 247 

and 3%. This method allows us to illustrate the rate of increase in RPE across this range 248 

of body mass losses. Moreover, it allows for more precision in establishing the 249 

relationship between RPE and body mass loss as this strategy increases the n for any 250 

dehydration point. All RPE data within a given EID level were independent of each 251 

other; however, each study contributed in providing RPE-related data to more than one 252 

EID level. Nevertheless, the assumption of independence was protected for each of the 253 

EID levels. Post-hoc analyses were done using the False Discovery Rate procedure, with 254 

the number of a priori defined comparisons taken as 6, mirroring each of the EID levels 255 

compared. Second, to establish the mean effect of EID on RPE for each increase in 1% 256 

body mass loss, a forest plot was constructed from the slope estimates of the relationships 257 

between EID and RPE for each of the included studies, using non-weighted linear 258 

regression analyses with the intercepts forced through the origin (85). For this forest plot, 259 

n was taken as the number of EID levels included in the regression analysis. Initially, the 260 
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analyses were performed separately by subgroups. However, data from studies using 261 

time-trial type exercise protocols were combined with those using fixed-intensity exercise 262 

protocols given the low number of studies using time-trial type exercise and because 263 

variations in RPE within the different EID levels were similar and, in all instances, < 1 264 

point. Nonetheless, on few occasions, analyses excluding time-trial type exercises will be 265 

presented when deemed interesting. Weighted mean effect summaries were determined 266 

using method of moment random-effects model. A more intuitive approach was used to 267 

verify whether it would change the outcomes in comparison to our approach. For that, we 268 

averaged, within a given hydration condition, all RPE measurements across time, and 269 

then observed the difference in RPE between conditions. 270 

 271 

Practical significance of the weighted mean effect summaries and slope estimate 272 

The qualitative interpretation of the practical significance of the effect of EID on RPE 273 

was performed as in Goulet & Hoffman (48). Previous studies observed reliability of the 274 

RPE scale to be < 1 point (41, 58). Because the minimal increment of the scale is 1 point, 275 

this threshold was taken and accepted as the smallest worthwhile practical difference in 276 

RPE. 277 

 278 

Heterogeneity, publication bias and sensitivity analysis 279 

Cochran’s Q and I² statistic were both used to assess between-study heterogeneity and the 280 

degree of inconsistency among results of included studies. Cochran’s Q test was 281 

considered significant at p ≤ 0.1 (18). The following classification was used to interpret 282 

the I² statistic: low (< 40%), moderate (40-59%), substantial (> 60%) (52). Publication 283 
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bias was performed using visual assessment of funnel plots with Trim and Fill 284 

adjustments. A sensitivity analysis was performed on each of the forest plots by removing 285 

each study once from the models to determine whether this would change the magnitude 286 

of the outcome summaries.  287 

 288 

Meta-regression analyses 289 

The potential mediating effect of heart rate and moderating effect of the a priori defined 290 

confounders were determined by regressing the slope estimates upon the mean heart rate 291 

difference between conditions or each of the confounders, respectively. Confounder and 292 

mediator variables included at least 10 data points from 10 different studies. A multiple 293 

meta-regression combining all moderators (with the exception of absolute humidity and 294 

composite score of exercise stress) was performed to understand the strength of our 295 

proposed model. Meta-regression analyses were performed using method of moment 296 

random-effects model, with 95% robust (Huber-Eicher-White-sandwich) standard errors.  297 

 298 

Statistical significance 299 

Otherwise stated, in all instances, results were considered significant at p < 0.05 or when 300 

the 95% confidence interval did not include 0. 301 

 302 

Variance computations 303 

When raw data were obtained from the authors, variances were directly calculated from 304 

the Δ standard errors or standard deviations of the absolute changes in RPE between 305 

conditions. Otherwise, individual variances for changes in RPE were estimated as in 306 
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Goulet and Hoffman (48) using an imputed weighted correlation coefficient of 0.81 307 

deriving from 40 correlation coefficients obtained from 5 different studies whose authors 308 

provided raw data.  309 

 310 

RESULTS  311 

Search results and characteristics of the included studies 312 

After removing duplicates, 3652 titles were checked (Figure 1). In the remaining 130 313 

articles assessed for eligibility, 16 were included in the meta-analysis (Table 2). The 314 

studies were published between 1994 and 2019 in 10 different peer-reviewed journals. 315 

Four studies were conducted in the USA (16, 74, 75, 98), 3 in the UK (8, 15, 38), 316 

Australia (25, 31, 68), and South-Africa (30, 89, 95) and 1 in Canada (84), France (94) 317 

and New-Zealand (4).  318 

 319 

Participant’s characteristics 320 

A total of 147 endurance-trained individuals are represented among the 16 included 321 

studies, with women representing only 1% of the total sample. Mean sample size was 9 ± 322 

3 individuals per study (range 6-15). None of the included studies reported information 323 

about ethnicity. The mean age, height, body mass, body mass index, V� O2max and peak 324 

power output of the participants were respectively 27 ± 4 years, 179 ± 2 cm, 73 ± 3 kg, 325 

23 ± 1 kg/m2, 62 ± 6 mL/kg/min and 389 ± 39 W.  326 

 327 

Characteristics of the exercise protocols 328 
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Among the selected studies, 81% (n = 13) used cycling as the mode of exercise while the 329 

remaining used running (n = 3). The mean ambient temperature and relative humidity 330 

were respectively 28 ± 6°C and 48 ± 10%, with a mean wind speed of 10 ± 11 km/h. The 331 

mean exercise duration and intensity were respectively 79 ± 27 min (range 51-127 min) 332 

and 65 ± 13% of  V� O2max.  333 

 334 

Fluid consumption and exercise-induced dehydration levels 335 

Mean rates of fluid consumption in the EUH and EID conditions were respectively 18.9 ± 336 

7.5 and 1.0 ± 2.0 mL/min, representing 0.26 ± 0.1 and 0.01 ± 0.03 mL/kg/min. The 337 

average fluid temperature was 17 ± 13°C. The mean end-of-exercise body mass loss was 338 

0.5 ± 0.4% (range 1 to -0.3%) when EUH was attempted to be maintained, compared to 339 

2.3 ± 0.5% (range 3.1 to 1.7%) with EID, for a mean difference of 1.7 ± 0.7% (range 2.8 340 

to 0.9%) between conditions. Mean dehydration rates of 0.007 ± 0.005 and 0.03 ± 341 

0.009%/min were observed during the EUH and EID conditions, respectively.  342 

 343 

Weighted mean effect summaries 344 

Figure 2a depicts the changes in RPE that occurred during exercise between the EUH and 345 

EID conditions across levels of body mass losses of 0.5, 1, 1.5, 2, 2.5 and 3%, and for 346 

absolute values of RPE which fluctuated from ~ 12 (light) to 16.5 (hard) points. Figure 347 

2b pinpoints the weighted mean difference in RPE between the EUH and EID conditions 348 

across each of these levels of body mass losses. Results of the forest plot illustrate that, 349 

compared with EUH, EID slowly increased RPE during exercise from 0.22 points (95% 350 

CI: -0.05-0.48) when body mass loss was trivial (0.5%) to 0.60 points (95% CI: 0.29-351 
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0.92) when body mass loss was light (1.5%), up to 0.81 points (95% CI: 0.36-1.27) when 352 

body mass loss was moderate (3%). Only at 0.5 and 1% body mass losses were the 353 

differences in RPE between the EUH and EID conditions not significant. In none of the 6 354 

weighted mean summary effects models did the removal of each study one at a time 355 

significantly and practically impacted the outcome that body mass loss has upon RPE. 356 

For each of the EID subgroups, the practical impact of body mass loss on RPE was likely 357 

or almost certainly trivial. Distribution of point estimates around each of the 6 weighted 358 

mean effect summaries was appropriate, which indicates no publication bias. Cluster 359 

analysis indicates that heterogeneity was substantial with an I2 of 72% and a Cochran’s Q 360 

of 204.9, p < 0.01. At the subgroup level, substantial inconsistencies were also observed 361 

at the 0.5, 1, 1.5 and 2, but not 2.5 and 3% body mass loss levels where heterogeneity 362 

was low. When the analyses were performed without the studies that used time-trials, 363 

results were similar, with the exception that the differences in RPE between the EUH and 364 

EID condition reached 1.2 points (95% CI: 0.61-1.80) when body mass loss was 365 

moderate (3%). 366 

Cluster analysis indicates that EID, on average, increases RPE by 0.45 point (95% CI: 367 

0.31-0.59, Figure 2b). Using the more intuitive approach, we observed an overall effect 368 

of 0.38 points (95% CI: 0.22-0.53, Q = 125.3, p < 0.01, I2 = 88%). When studies that 369 

used time-trials were removed, the results were, again, extremely similar: 0.50 points 370 

(95% CI: 0.33-0.67, Q = 174.8, p < 0.01, I2 = 77%) vs. 0.44 points (95% CI: 0.24-0.64, Q 371 

= 114.2, p < 0.01, I2 = 90%) with the more intuitive approach.    372 

 373 

Figure 2 about here 374 
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 375 

Figure 3a illustrates the slope estimates for the regression of RPE on the % body mass 376 

loss for each of the included studies. Figure 3b shows a forest plot combining the 16 377 

slope estimates to derive a weighted mean summary effect. Results show that for each 378 

1% body mass loss, RPE increased on average by 0.21 points (95% CI: 0.12-0.31), 379 

thereby theoretically suggesting that it is not before reaching a body mass loss of ~ 5% 380 

that EID may potentially affect RPE in a meaningful way. A sensitivity analysis revealed 381 

that the removal of each study one at a time from the model did not significantly nor 382 

practically alter the outcome of the weighted mean effect summary, with variations in the 383 

slope estimate ranging from 0.13 (95% CI: 0.06-0.20) to 0.35 points (95% CI: 0.17-0.53). 384 

Inconsistency among research observations was substantial with an I2 of 75% and a 385 

Cochran’s Q of 58.99, p < 0.01. Point estimates were not equally distributed on each side 386 

of the weighted mean summary effect, thereby suggesting publication bias. A trim and 387 

fill analysis adjusting for missing studies at the left side of the mean changed the 388 

weighted mean effect summary to 0.10 points (95% CI: 0.00-0.22). When the analyses 389 

were performed without the studies that used time-trials, results showed that for each 1% 390 

body mass loss, RPE increased on average by 0.38 points (95% CI: 0.17-0.59, Q = 56.2, 391 

p < 0.01, I2 = 80%). Figure 3c depicts the relationship between RPE and % body mass 392 

loss while including all 59 study-specific data points, which violates the assumption of 393 

independence among data. Nevertheless, the weighted regression analysis provides a 394 

slope estimate (0.26 points, 95% CI: 0.10-0.42) which is congruent to the one built from 395 

combining all 16 slope estimates.   396 

 397 
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Figure 3 about here 398 

 399 

Meta-regression analyses 400 

Figure 4 shows the relationships between the changes in slope estimates and (a) 401 

temperature, (b) humidity level, (c) exercise duration, (d) exercise intensity, (e) aerobic 402 

capacity and (f) mean heart rate difference across the different studies. Individually, none 403 

of these variables significantly correlated to the extent of changes in RPE for each 1% in 404 

body mass loss. When all these variables were combined in a multiple meta-regression 405 

model (except heart rate), the goodness of fit reached 66%. The same picture was 406 

observed using the model derived from of all 59 study-specific data points. No significant 407 

relationships were also observed between the changes in slopes estimates and absolute 408 

humidity (p = 0.26) or the composite score of exercise stress (p = 0.65). 409 

 410 

Figure 4 about here 411 

 412 

DISCUSSION  413 

Despite that exercisers have access to a large and diversified arsenal of tools to monitor 414 

exercise intensity, the ability to maintain a certain speed or power output is, ultimately, 415 

tributary to RPE (26, 35, 77). On the other hand, enjoyment of exercise is an important 416 

component of participation and adherence, and the more the exercise is perceived to be 417 

strenuous, the less likely the exercise behaviour is to be maintained (33). In a sense, 418 

therefore, RPE can be considered as the ‘’mastermind’’ of exercise performance or 419 

adherence. Consequently, factors susceptible to negatively impact the sense of effort 420 
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during exercise should be given particular attention. Albeit the current results do show 421 

that EID increases RPE (response to question #1), the effect was shown to be below our 422 

identified threshold of 1 point, at least for the included studies where the greatest level of 423 

EID reached was 3% (response to questions #2 and #3), and not moderated by key 424 

confounders or associated with changes in heart rate (response to question #4 and #5). 425 

Therefore, our results highlight for the first time that EID has a spurious effect on RPE, 426 

contrarily to what is believed.  427 

It has been suggested that RPE may act as a mediator of the effect of EID on endurance 428 

performance (24, 55). This is legitimate from a physiological perspective, as the 429 

documented impact of EID on thermoregulatory, cardiovascular and metabolic functions 430 

(24, 55) should result in a higher perceived strain and, hence, RPE. However, our results 431 

including observations from cycling and running exercises conducted at clamped and 432 

self-paced intensities and under different environmental conditions show that although 433 

the change in RPE statistically relates to EID, the magnitude of the effect is unlikely to be 434 

practically meaningful until a body mass of at least 3%. Of course, the design of the 435 

present meta-analysis precludes from inferencing about the repercussion of the EID-436 

induced increase in RPE on endurance performance. Nevertheless, we are aware of no 437 

studies which have been able to establish a decisive relationship between RPE and 438 

endurance performance. That being said, if scientists agree upon the simplistic and 439 

imperfect model indirectly linking the EID-induced increase in RPE with the decline of 440 

endurance performance, the present findings clearly dispute this assertion.   441 

It is proposed that EID may reduce exercise participation/adherence in recreationally 442 

active individuals because of its impact upon RPE (36, 82). Based on urinary indices, 443 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.21266279doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266279
http://creativecommons.org/licenses/by-nd/4.0/


20 
 

 
 

studies have suggested that 40-50% of recreationally active individuals begin exercise in 444 

a light hypohydration state (82, 91) and lose ~ 0.6% of their body mass while drinking 445 

fluid ad libitum during freely chosen exercise sessions (82). Furthermore, untrained 446 

individuals have lower sweat rate (69, 70) and generally an easy access to water during 447 

exercise. Regarding women, they generally have a lower sweat rate than men and drink 448 

more (sometimes more than their sweat losses) during exercise (10, 80). Therefore, it is 449 

unlikely that those individuals will reach EID levels ≥ 3% of body mass during typical 450 

physical activities and, hence, that the EID-associated increase in RPE should not be a 451 

cause for concern. Moreover, studies have reported worsened affective response when 452 

participants begin exercise in a low hypohydration state (82) or when dehydration occurs 453 

progressively during exercise (8). And it seems that the acute affective response to 454 

exercise more than the acute change in RPE relates to long-term adherence to exercise 455 

(86, 97). 456 

Although it is agreed upon that the brain is the organ responsible for the regulation of 457 

RPE, whether it is centrally derived and largely independent of peripheral afferent signals 458 

(21, 64, 67, 90) or results from the integration and interpretation of afferent feedback 459 

from the peripheral machinery (5, 50, 78, 88) is debated (see  (1, 49, 81, 83) for further 460 

details). If the first theory is favoured, then it follows that EID would likely not alter the 461 

ability of the brain to produce motor forward commands, termed efference copies or 462 

corollary discharges (92). It has been shown that acute EID and the associated 463 

hyperosmolality does not alter brain volume (96), potentially highlighting the fact that the 464 

cerebral cortex operates close to optimally under dehydrating conditions. On the other 465 

hand, interpreting the current results within the context of the second theory would imply 466 
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that EID provokes minimal homeostasis alterations, at least up to a body mass loss of 3%. 467 

This claim is reasonable given that the EID-induced increase in heart rate (~ 4 beats/min, 468 

n = 14) and core temperature (~ 0.2°C, n = 9) (both results not shown) was marginal 469 

compared with EUH.  470 

There was substantial heterogeneity among research findings, as illustrated in Figure 3b. 471 

This is unremarkable given that studies used a variety of protocols within which factors 472 

known to influence RPE were present. Meta-regressions were conducted to examine the 473 

moderating effect of a priori selected confounders. They showed that, in isolation, 474 

neither humidity, exercise duration, exercise intensity, aerobic capacity nor ambient 475 

temperature significantly correlated to the extent of changes in RPE for each 1% of body 476 

mass loss. However, while aggregated into one model, those 5 variables explained 66% 477 

of the variance observed among the changes in RPE for each 1% of body mass loss. This 478 

figure is impressive and depicts the importance of the identified confounders in the 479 

overall moderation of the relationship between EID and RPE. Hence, it cannot be 480 

excluded that the significance of several influential variables within each of the included 481 

studies masked the ability to clearly identify the independent moderating effect of some 482 

or all of the confounders.  483 

There was a trend for the change in heart rate to be associated with the change in RPE for 484 

each 1% of body mass loss. Such an observation was to be expected because EID is 485 

known to exacerbate heart rate (3) and the latter has been reported to be closely related to 486 

RPE (50). Indeed, the 6-20 Borg scale was initially developed in healthy individuals to 487 

correlate approximately with exercise heart rate. Roughly, our model indicates that for 488 

each increase in heart rate of 1 beat/min there should be an increase in RPE of 0.1 points 489 
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for each 1% of body mass loss. Providing that the mean change in heart rate during 490 

exercise was < 10 beats/min between EUH and EID, our observation of a lack of a 491 

meaningful effect of EID on RPE makes sense. Nevertheless, it is important to bear in 492 

mind that the relationship between heart rate and RPE is only correlational in nature, not 493 

causal (50). Indeed, research has shown that it is possible to dissociate the change in heart 494 

rate from the change in RPE (e.g., using pharmacological agents) (27, 76). Therefore, our 495 

observation of a close relationship between the changes in heart rate and RPE for a given 496 

body mass loss should not be taken as a possibility that heart rate could act as a mediator 497 

of the relationship between EID and RPE. 498 

Results of this meta-analysis must be interpreted with the following considerations or 499 

limitations in mind. The literature search was limited to English and French citations; 500 

studies published in different languages may have been missed. Similarly, in the literature 501 

of concern, RPE is almost exclusively studied as a secondary outcome. This complicates 502 

study identification which may have led us to miss key studies. Validity of RPE 503 

measurement depends upon the proper instructions provided to participants (49); no 504 

studies reported on whether they dispensed such instructions. Little information is 505 

available regarding what represents a meaningful change in RPE; therefore, having used 506 

a different threshold may have modified our conclusions. While they would have 507 

provided insight into the possible mechanisms linking EID to RPE, data such as thirst 508 

sensation, changes in plasma osmolality and volume were not considered as they were 509 

reported by too few included studies. Finally, the present results apply to adults, primarily 510 

males, up to an EID level of 3% body mass and for exercise up to ~ 2 h in duration in 511 

thermoneutral to warm environments.  512 
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In conclusion, while from a statistical point of view, EID > 1% of body mass increases 513 

RPE, the present results suggest that its effect is unlikely to be practically meaningful 514 

under running or cycling exercise conditions until a body mass loss of at least 3% is 515 

reached. 516 

 517 

PERSPECTIVES 518 

Perceived exertion can be considered as the ‘’mastermind’’ of exercise performance or 519 

adherence. Exercise-induced dehydration is generally thought to increase RPE. The 520 

greater RPE associated with EID may contribute to reducing (1) exercise performance in 521 

athletes and (2) exercise participation/adherence in recreationally active individuals. 522 

Findings of the present meta-analysis suggest that from a statistical point of view, EID > 523 

1% of body mass increases RPE. However, the effect of EID on RPE is unlikely to be 524 

practically meaningful under running or cycling exercise conditions, even at 3% of body 525 

mass loss. Thus, our results suggest that concerns about the impact of EID upon RPE and, 526 

thus, by extension, the effect of the latter on endurance performance or exercise 527 

participation/adherence seem not warranted, at least not until a body mass loss of 3%.  528 
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 835 

 836 

Tables  837 

Table 1. Classification of percent body mass losses. 838 

Classification 

From to corresponds to 

0.26 0.75% 0.5% 

0.76 1.25% 1.0% 

1.26 1.75% 1.5% 

1.76 2.25% 2.0% 

2.26 2.75% 2.5% 

2.76 3.25% 3.0% 

 839 

 840 

 841 

 842 
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Table 2. Summary of characteristics of included studies. 843 

References 

Participants: n 

(women), age 

(years), V�O2max 

(mL/kg/min) 

Protocol: total 

duration (min), 

exercise mode, 

temperature (°C), 

relative humidity 

(%), wind speed 

(km/h), fluid 

temperature (°C) 

Fluid intake 

(mL/kg/min) 

Same time of 

the day, 

familiarisation, 

same diet 

before 

Body mass loss 

(%)$, 

dehydration 

rate (% body 

mass loss/min)$ 

RPE measurement 

Studies that evaluated perceived exertion during fixed intensity exercise 

Backhouse et 

al. (2007) (8) 

15 (0) endurance-

trained, 21, 65  

90, running at 70% 

V�O2max, 20, 47, 0, 10 

 

Only 60 min 

included in the 

EUH: 0.14 

EID: 0.0 

Yes, no, yes At the end of 

90 min:  

EUH: 1.4, 

0.016 

EID: 2.7, 0.030 

Borg 6-20 scale, 

reported every 20 

min. 

 

No differences. 
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analysis because 

body mass loss >1% 

at 80 min in EUH#. 

 

 

At 60 min#: 

EUH: 0.9 

DEH: 1.8 

 

Barwood et 

al. (2018) 

(15) 

10 (0) non-heat 

acclimatised 

trained cyclists, 

25, 60* 

60+5, cycling at 

55% Pmax (59% 

V�O2max) followed by 

80% Pmax (90% 

V�O2max) time to 

exhaustion, 34, 34, 

10.1, 27 

EUH: 0.20 

EID: 0.0 

Yes, no, yes At the end of 

the 

performance:  

EUH: 0.9, 

0.014 

EID: 2.1, 0.033  

 

 

Borg 6-20 scale, 

reported every 15 

min. 

 

No differences. 

Raw data provided by 

authors. 

 

Below et al. 

(1995) (16) 

8 (0) endurance 

trained, 23, 63 

50+11, cycling at 

80% of V�O2max 

EUH: 0.31 

EID: 0.05 

Yes, yes, yes At the end of 

the 

Borg 6-20 scale, 

reported every 10 
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followed by a 

performance test at 

79% V�O2max, 31, 54, 

12.6, 38  

Same CHO intake 

performance: 

EUH: 0.5, 

0.008 

EID: 1.9, 0.031 

 

 

min. 

 

RPE only 

significantly higher in 

EID at 40 and 50 min. 

 

Costa et al. 

(2019) (25) 

11 (0) competitive 

endurance runners, 

34, 59 

120, running at 70% 

V�O2max, 25, 46, 10.6, 

24.7 

EUH: 0.18 

EID: 0.0 

Yes, no, yes EUH: 0.6, 

0.005 

EID: 3.1, 0.026 

Borg 6-20 scale, 

reported every 30 

min. 

 

RPE only 

significantly higher in 

EID at 120 min.  
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Ebert et al. 

(2007) (31) 

8 (0) well-trained 

cyclists, 28, 66 

120+17, cycling at 

53% Pmax (55% 

V�O2max) followed by 

cycling hill-climb 

time-to-exhaustion 

trial at 88% Pmax 

(85% V�O2max), 29, 

37, 15, - 

Same CHO intake  

 

Only 120 min 

included in the 

analysis because 

body mass loss >1% 

at the end of the 

EUH: 0.28 

EID: 0.05 

Yes, yes, yes  At the end of 

the 120 min: 

EUH: -0.3, -

0.0025 

EID: 2.5, 0.021 

 

 

Borg 6-20 scale, 

reported every 15 min 

 

No differences. 

Raw data provided by 

authors. 
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performance in 

EUH#. 

 

Funnell et al. 

(2019) (38) 

Only 

unblinded 

group 

7 (0) trained, non-

heat acclimated 

cyclists/triathletes, 

26, 64 

 

 

120+15, cycling at 

50% Pmax (51% 

V�O2max) followed by 

a time-trial (77% 

V�O2max), 31, 48, 

21.2, 37 

 

Only 120 min 

included in the 

analysis because 

body mass loss >1% 

at the end of the 

EUH: 0.23 

EID: 0.02 

Yes, yes, yes At the end of 

the 120 min:  

EUH: 0.5, 

0.004 

EID: 3.0, 0.025 

Borg 6-20 scale, 

reported at 60 and 120 

min. 

 

RPE only 

significantly higher in 

EID at 120 min. 

 

Raw data provided by 

authors. 
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performance in 

EUH#. 

 

McConell et 

al. (1999) 

(68) 

8 (0) well-trained 

cyclists and 

triathletes, 26, 64 

45+15, cycling at 

80% of V�O2max 

followed by an "all-

out" performance at 

77% V�O2max, 21, 41, 

wind but speed not 

reported, room 

temperature 

 

EUH: 0.31 

EID: 0.0 

Yes, yes, yes At the end of 

the 

performance: 

EUH: 0.0, 0.0 

EID: 1.9, 0.032 

Borg 6-20 scale, 

reported at 10, 30, 45 

and 60 min. 

 

No differences. 
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Muñoz et al. 

(2012) (74) 

10 (0) healthy 

runners, 25, 60 

90+23, running at 

30% V�O2max 

followed by a 5 km 

time-trial (72% 

V�O2max), 33, 30, 0, 7 

 

Only 90 min 

included in the 

analysis because 

body mass loss >1% 

at the end of the 

performance in 

EUH#. 

 

EUH: 0.12 

EID: 0.0 

Yes, yes, yes At the end of 

90 min: 

EUH: 0.9, 

0.010   

EID: 1.8, 0.020 

Borg 6-20 scale, 

reported every 5 min. 

 

No differences. 

Raw data provided by 

authors. 
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Murray et al. 

(1995) (75) 

15 (0) trained, 29, 

50 

60, cycling at 50% 

V�O2max, 32, 70, 0, 5 

EUH: 0.35 

EID: 0.0 

Yes, no, - EUH: 0.1, 

0.002 

EID: 1.7, 0.028 

Borg 6-20 scale, 

reported every 5 min.  

 

RPE significantly 

higher in EID than 

EUH (5 min 

condition) from 30 to 

60 min. No difference 

between EID and 

EUH (10 min 

condition). 

 

Vallier et al. 

(2005) (94) 

8 (0) competitive 

trained cyclists or 

triathletes, 31, 63 

180, cycling at 60% 

V�O2max, 20.5, 50, 9, 

18.5 

EUH: 0.17 

EID: 0.0 

Yes, no, yes At the end of 

the 180 min:  

EUH: 2.2, 

Borg 6-20 scale, 

reported every 20 

min.  
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Only 80 min 

included in the 

analysis because 

body mass loss >1% 

at 80 min in EUH#. 

0.012 

EID: 4.1, 0.023 

 

At 80 min#: 

EUH: 1.0 

DEH: 1.8 

 

 

No differences. 

However, the increase 

in RPE appears earlier 

in EID (100 min) 

compared to EUH 

(120 min). 

 

Walsh et al. 

(1994) (95) 

 

 

6 (0) endurance 

trained 

competitive 

cyclists or 

triathletes, 26, 61 

60+8, cycling at 

70% V�O2max 

followed by a time 

to exhaustion at 

90% V�O2max, 30, 60, 

3, 5 

EUH: 0.23 

EID: 0.0 

Yes, no, yes At the end of 

the 60 min: 

EUH: 0.2, 

0.0033 

EID: 1.8, 0.03 

Borg CR10 scale, 

reported every 10 

min. 

 

RPE higher in EID at 

60 min only. 
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Wingo et al. 

(2005) (98)  

9 (0) trained 

cyclists, 25, 55 

45+7, cycling at 

64% V�O2max 

followed by 

maximal test at 78% 

V�O2max, 35, 40, 0, 35 

EUH: 0.47 

EID: 0.0 

Yes, yes, -  At the end of 

the 

performance: 

EUH: 0.3, 

0.006 

EID: 2.5, 0.049 

Borg 6-20 scale, 

reported at 15 and 45 

min. 

 

No differences.  

Raw data provided by 

authors. 

 

Studies that evaluated perceived exertion during self-paced intensity exercise 

Ali et al. 

(2017) (4) 

9 (0) moderately 

trained cyclists, 

33, 55 

 

68.5, cycling time-

trial at 78% V�O2max, 

19, 48, 0, 6 

EUH: 0.11 

EID: 0.0 

 

Yes, yes, yes EUH: 0.6, 

0.009 

EID: 1.9, 0.028 

 

Borg 6-20 scale, 

reported every 25% of 

exercise completed 

(every 17.1 min) 

No differences.  

Raw data provided by 
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authors. 

 

Dugas et al. 

(2009) (30) 

 

 

 

6 (0) highly 

trained cyclists, 

23, 77* 

 

 

127, 80 km cycling 

time-trial at 47% 

Pmax (50% V�O2max), 

33, 50, 37.5, - 

Same CHO intake 

EUH: 0.32 

EID: 0.10 

 

 

 

Yes, yes, yes EUH: 0.5, 

0.004 

EID: 3.0, 0.024 

 

 

Borg CR10 scale, 

reported at 40 and 80 

km (at 63 and 127 

min). 

 

No differences. 

Perreault-

Brière et al. 

(2019) (84) 

 

 

9 (2) heat- or 

partially heat-

acclimatized, 

healthy, 

endurance-trained 

competitive 

cyclists and 

60, cycling time-

trial at 80% V�O2max, 

30, 49, 27.5, 5 

 

 

EUH: 0.37 

EID: 0.0 

Yes, yes, yes EUH: 0.6, 

0.010 

EID: 2.9, 0.048 

 

Borg 6-20 scale, 

reported every 5 min.  

 

No differences. 

Raw data provided by 

authors. 
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References are listed in alphabetical order for both sections. EID: exercise-induced dehydration (experimental condition), EUH: 844 

euhydrated control condition, RPE: perceived exertion, -: missing data, *: estimated V�O2max using Hawley & Noakes (1992) equations. 845 

Value of 0 was attributed when wind speed was not provided. #: indicates the % of body mass loss taken for analysis for those studies 846 

triathletes, 30, 59  

 

Women tested 

during the 

follicular phase. 

 

Robinson et 

al. (1995) 

(89) 

8 (0) endurance-

trained cyclists, 

25, 66 

60, cycling time-

trial at 79% V�O2max, 

20, 60, 10.8, 5 

EUH: 0.32 

EID: 0.0 

Yes, yes, yes EUH: 0.9, 

0.016 

EID: 2.3, 0.038 

Borg 6-20 scale, 

reported every 10 

min.  

 

No differences. 
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in which body mass loss surpassed 1% in the EUH condition. $: any positive value represents a body mass loss while negative values 847 

indicate body mass gain. 848 

 849 
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Figure legends 850 

Figure 1.  851 

Flowchart showing the selection process used for the inclusion and exclusion of studies. 852 

Figure 2.  853 

(a) Changes in perceived exertion (means ± SD) occurring during exercise between the 854 

control (EUH) and exercise-induced dehydration (EID) condition across levels of 855 

exercise-induced dehydration of 0.5, 1, 1.5, 2, 2.5 and 3% body mass. AU: arbitrary 856 

units. EID: exercise-induced dehydration. EUH: euhydration. (b) Forest plot showing the 857 

mean differences in perceived exertion across different levels of exercise-induced 858 

dehydration. Filled diamond symbol represents the weighted mean change in perceived 859 

exertion between conditions. Size of squares is proportional to the weight of each study. 860 

CI: confidence interval. 861 

Figure 3 862 

(a) Slope estimates for the regression of perceived exertion on the % body mass loss for 863 

each of the included studies; (b) Forest plot combining all slope estimates to derive a 864 

weighted mean summary effect; (c) Relationship between perceived exertion and % body 865 

mass loss while including all study-specific data points. 866 

Figure 4 867 

Relationships between the changes in slope estimates and (a) temperature, (b) humidity 868 

level, (c) exercise duration, (d) exercise intensity, (e) aerobic capacity (V�O2max) and mean 869 

(f) heart rate difference across the different studies included in the meta-analysis. 870 

Otherwise stated n = 16. 871 

 872 
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Records screened after duplicates removal
(n=3652)

Records excluded
(n=3522)

Full-text articles assessed for eligibility
(n=130)

Full-text articles exluded
(n=114)

Combinaison of the following reasons: n=37
Pre-exercise hypohydration: n=18
Team sport/intermittent exercise/non-endurance 
exercise: n=14
No intervention/no difference between
conditions: n=12
No randomization: n=8
CHO intake not matched: n=8
Ad libitum/thirst driven fluid intake: n=4
Invasive procedure (biopsy, load carrying): n=3
Intravenous fluid remplacement : n=3
No RPE data available: n=3
Duplicates: n=2
Diuretic-induced dehydration/sweat suit: n=2

Full-text articles included
(n=16)

Records identified
through

SPORTDiscus
(n=748)

Records identified
through MEDLINE 

(n=1983)

Records identified
through CINAHL 

(n=567)

Records identified
through PubMed

(n=2173)

Records identified
through AMED 

(n=31)

Cross-referencing
(n=38)

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.21266279doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266279
http://creativecommons.org/licenses/by-nd/4.0/


Impact of Exercise-induced Dehydration on Perceived Exertion During Endurance 
Exercise: A Systematic Review with Meta-analysis 

 
 
Keywords and strategy used for the research of potential studies 
 

Hydration (S1) Hydrat* or Dehydrat* or Hypohydrat* or Euhydrat* or 
fluid or drink* 

Title or 
abstract 

Perceived exertion (S2) 
“Perceived exertion” or “Perceived effort” or “Rate of 

perceived exertion” or “Rating of perceived exertion” or 
“RPE” or percept* or exertion or effort 

Title or 
abstract 

Exercise (S3) Exercise* or run* or cycl* or endurance or performance Title or 
abstract 

Overall research S1 AND S2 AND S3  
Note: Research has been done on EBSCO with 4 different databases: SPORTDiscus, 
CINAHL, AMED and MEDLINE. The same research was also done using PubMed. Last 
search: December 17, 2020  
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Exercise-induced dehydration level (% body mass loss)

EID EUH

No exertion

Extremely light

Very light

Light

Somewhat hard

Hard

Very hard

Extremely hard

Maximal exertion

ES
3.532.521.510.50-0.5-1-1.5-2

Study or Subgroup  

Ali et al., (2017) a  

McConell et al., (1999) a  

McConell et al., (1999) b  

Ali et al., (2017) c  

Ebert et al., (2007) b  

Robinson et al., (1995) b  

Ebert et al., (2007) a  

Backhouse et al., (2007) b  

Ebert et al., (2007) c  

Barwood et al., (2018) a  

Wingo et al., (2005) a  

Costa et al., (2019) b  

Funnell et al., (2019) c  
McConell et al., (1999) c  

Backhouse et al., (2007) d  

Backhouse et al., (2007) a  

Wingo et al., (2005) d  

Below et al., (1995) a  

Robinson et al., (1995) a  

Ali et al., (2017) b  

Barwood et al., (2018) b  

Dugas et al., (2009) c  

Ebert et al., (2007) d  
McConell et al., (1999) d  

Muñoz et al., (2012) a  

Perreault-Brière et al., (2019) a  

Perreault-Brière et al., (2019) b  

0.5% EID subgroup  

1% EID subgroup  

Robinson et al., (1995) d  

Ali et al., (2017) d  

Muñoz et al., (2012) d  

Walsh et al., (1994) b  

Muñoz et al., (2012) c  

Robinson et al., (1995) c  

Dugas et al., (2009) f  

Muñoz et al., (2012) b  

0.5% EID  

Q=40.85, p=0.00, I2=71%

1% EID  

Q=39.10, p=0.00, I2=69%

1.5% EID  

Q=52.60, p=0.00, I2=75%

2% EID  

Q=32.47, p=0.00, I2=69%

2.5% EID  

Q=1.14, p=0.77, I2=0%

3% EID  

Q=4.41, p=0.22, I2=32%

Overall  
Q=204.87, p=0.00, I2=72%

Perreault-Brière et al., (2019) c  

Ebert et al., (2007) e  

2% EID subgroup  

Below et al., (1995) b  

1.5% EID subgroup  

Perreault-Brière et al., (2019) e  

Perreault-Brière et al., (2019) f  

2.5% EID subgroup  

Below et al., (1995) c  

3% EID subgroup  

Murray et al., (1995) a  

Walsh et al., (1994) a  

Perreault-Brière et al., (2019) d  

Robinson et al., (1995) e  

Vallier et al., (2005) a  

Vallier et al., (2005) b  

Costa et al., (2019) c  

Vallier et al., (2005) c  
Walsh et al., (1994) c  

Costa et al., (2019) e  

Costa et al., (2019) f  

Barwood et al., (2018) d  

Walsh et al., (1994) d  

Barwood et al., (2018) c  

Funnell et al., (2019) f  

Murray et al., (1995) b  

Vallier et al., (2005) d  

Murray et al., (1995) c  

    ES (95% CI)

  -0.50  ( -0.97, -0.03)

  -0.40  ( -1.00,  0.20)

  -0.40  ( -1.00,  0.20)

  -0.30  ( -1.48,  0.88)

  -0.20  ( -0.85,  0.45)

  -0.15  ( -0.84,  0.54)

  -0.10  ( -0.67,  0.47)

  -0.10  ( -0.43,  0.23)

  -0.07  ( -0.84,  0.70)

   0.00  ( -0.80,  0.80)

   0.00  ( -0.47,  0.47)

   0.00  ( -0.36,  0.36)

   0.00  ( -0.61,  0.61)
   0.00  ( -0.85,  0.85)

   0.00  ( -0.43,  0.43)

   0.10  ( -0.33,  0.53)

   0.10  ( -0.59,  0.79)

   0.20  ( -0.13,  0.53)

   0.20  ( -0.61,  1.01)

   0.20  ( -0.62,  1.02)

   0.20  ( -0.67,  1.07)

   0.20  ( -0.27,  0.67)

   0.20  ( -0.57,  0.97)
   0.20  ( -0.27,  0.67)

   0.20  ( -0.29,  0.69)

   0.20  ( -0.46,  0.86)

   0.20  ( -0.51,  0.91)

   0.22  ( -0.05,  0.48)

   0.26  (  0.00,  0.53)

   0.30  ( -0.31,  0.91)

   0.30  ( -1.53,  2.13)

   0.30  ( -0.10,  0.70)

   0.30  ( -0.08,  0.68)

   0.30  ( -0.06,  0.66)

   0.30  ( -0.31,  0.91)

   0.30  ( -0.48,  1.08)

   0.40  (  0.00,  0.80)

   0.45  (  0.31,  0.59)

   0.50  ( -0.14,  1.14)

   0.50  ( -0.49,  1.49)

   0.55  (  0.21,  0.88)

   0.60  (  0.19,  1.01)

   0.60  (  0.29,  0.92)

   0.67  (  0.24,  1.10)

   0.67  (  0.10,  1.24)

   0.78  (  0.50,  1.06)

   0.80  (  0.31,  1.29)

   0.81  (  0.36,  1.27)

   0.90  (  0.38,  1.42)

   0.90  (  0.33,  1.47)

   0.90  (  0.26,  1.54)

   0.90  (  0.41,  1.39)

   1.00  (  0.57,  1.43)

   1.00  (  0.08,  1.92)

   1.00  (  0.64,  1.36)

   1.00  (  0.08,  1.92)
   1.00  (  0.58,  1.42)

   1.00  (  0.27,  1.73)

   1.00  (  0.27,  1.73)

   1.05  (  0.00,  2.10)

   1.10  (  0.72,  1.48)

   1.10  (  0.18,  2.02)

   1.60  (  0.58,  2.62)

   1.60  (  1.00,  2.20)

   2.00  (  1.08,  2.92)

   2.20  (  1.57,  2.83)

ΔEID-EUH perceived exertion (AU)ES
3.532.521.510.50-0.5-1-1.5-2

Study or Subgroup  

Ali et al., (2017) a  

McConell et al., (1999) a  

McConell et al., (1999) b  

Ali et al., (2017) c  

Ebert et al., (2007) b  

Robinson et al., (1995) b  

Ebert et al., (2007) a  

Backhouse et al., (2007) b  

Ebert et al., (2007) c  

Barwood et al., (2018) a  

Wingo et al., (2005) a  

Costa et al., (2019) b  

Funnell et al., (2019) c  
McConell et al., (1999) c  

Backhouse et al., (2007) d  

Backhouse et al., (2007) a  

Wingo et al., (2005) d  

Below et al., (1995) a  

Robinson et al., (1995) a  

Ali et al., (2017) b  

Barwood et al., (2018) b  

Dugas et al., (2009) c  

Ebert et al., (2007) d  
McConell et al., (1999) d  

Muñoz et al., (2012) a  

Perreault-Brière et al., (2019) a  

Perreault-Brière et al., (2019) b  

0.5% EID subgroup  

1% EID subgroup  

Robinson et al., (1995) d  

Ali et al., (2017) d  

Muñoz et al., (2012) d  

Walsh et al., (1994) b  

Muñoz et al., (2012) c  

Robinson et al., (1995) c  

Dugas et al., (2009) f  

Muñoz et al., (2012) b  

0.5% EID  

Q=40.85, p=0.00, I2=71%

1% EID  

Q=39.10, p=0.00, I2=69%

1.5% EID  

Q=52.60, p=0.00, I2=75%

2% EID  

Q=32.47, p=0.00, I2=69%

2.5% EID  

Q=1.14, p=0.77, I2=0%

3% EID  

Q=4.41, p=0.22, I2=32%

Overall  
Q=204.87, p=0.00, I2=72%

Perreault-Brière et al., (2019) c  

Ebert et al., (2007) e  

2% EID subgroup  

Below et al., (1995) b  

1.5% EID subgroup  

Perreault-Brière et al., (2019) e  

Perreault-Brière et al., (2019) f  

2.5% EID subgroup  

Below et al., (1995) c  

3% EID subgroup  

Murray et al., (1995) a  

Walsh et al., (1994) a  

Perreault-Brière et al., (2019) d  

Robinson et al., (1995) e  

Vallier et al., (2005) a  

Vallier et al., (2005) b  

Costa et al., (2019) c  

Vallier et al., (2005) c  
Walsh et al., (1994) c  

Costa et al., (2019) e  

Costa et al., (2019) f  

Barwood et al., (2018) d  

Walsh et al., (1994) d  

Barwood et al., (2018) c  

Funnell et al., (2019) f  

Murray et al., (1995) b  

Vallier et al., (2005) d  

Murray et al., (1995) c  

    ES (95% CI)

  -0.50  ( -0.97, -0.03)

  -0.40  ( -1.00,  0.20)

  -0.40  ( -1.00,  0.20)

  -0.30  ( -1.48,  0.88)

  -0.20  ( -0.85,  0.45)

  -0.15  ( -0.84,  0.54)

  -0.10  ( -0.67,  0.47)

  -0.10  ( -0.43,  0.23)

  -0.07  ( -0.84,  0.70)

   0.00  ( -0.80,  0.80)

   0.00  ( -0.47,  0.47)

   0.00  ( -0.36,  0.36)

   0.00  ( -0.61,  0.61)
   0.00  ( -0.85,  0.85)

   0.00  ( -0.43,  0.43)

   0.10  ( -0.33,  0.53)

   0.10  ( -0.59,  0.79)

   0.20  ( -0.13,  0.53)

   0.20  ( -0.61,  1.01)

   0.20  ( -0.62,  1.02)

   0.20  ( -0.67,  1.07)

   0.20  ( -0.27,  0.67)

   0.20  ( -0.57,  0.97)
   0.20  ( -0.27,  0.67)

   0.20  ( -0.29,  0.69)

   0.20  ( -0.46,  0.86)

   0.20  ( -0.51,  0.91)

   0.22  ( -0.05,  0.48)

   0.26  (  0.00,  0.53)

   0.30  ( -0.31,  0.91)

   0.30  ( -1.53,  2.13)

   0.30  ( -0.10,  0.70)

   0.30  ( -0.08,  0.68)

   0.30  ( -0.06,  0.66)

   0.30  ( -0.31,  0.91)

   0.30  ( -0.48,  1.08)

   0.40  (  0.00,  0.80)

   0.45  (  0.31,  0.59)

   0.50  ( -0.14,  1.14)

   0.50  ( -0.49,  1.49)
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