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Abstract: 

From a comprehensive and systematic search of the relevant literature on signal data signature 
(SDS)-based artificial intelligence/machine learning (AI/ML) systems designed to aid in the 
diagnosis of COVID-19 illness, we aimed to reproduce the reported systems and to derive a 
performance goal for comparison to our own medical device with the same intended use. These 
objectives were in line with a pathway to regulatory approval of such devices, as well as to 
acceptance of this unfamiliar technology by disaster/pandemic decision makers and clinicians. 
To our surprise, none of the peer-reviewed articles or pre-print server records contained details 
sufficient to meet the planned objectives. Information amassed from the full review of more than 
60 publications, however, did underscore discrete impediments to bringing AI/ML diagnostic 
solutions to the bedside during a pandemic. These challenges then were explored by the authors 
via a gap analysis and specific remedies were proposed for bringing AI/ML technologies in 
closer alignment with the needs of a Total Product Life Cycle (TPLC) regulatory approach. 
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1. Introduction: 

The onset of the SARS-CoV-2 outbreak in Wuhan, China in December 2019 and subsequent 
WHO declaration of a global pandemic in March 2020 has rallied workforces of every skillset to 
the cause. Frontline healthcare teams, supply chain employees, educational staff, and utilities 
personnel were called upon as Essential Workers. Anticipating the needs for processing large 
amounts of pandemic-related data, the Artificial Intelligence/Machine Learning (AI/ML) and 
Data Science (DS) communities also joined forces to contribute their talents to the response 
effort. AI/ML technologies were applied to the development and maintenance of numerous types 
of signal data signature (SDS) libraries, registries, and clinical datasets from forced cough 
vocalizations (FCV). Voice, breath, and FCV research already had established that neural 
networks coupled with feature extraction analysis by AI/ML engines could be used to identify a 
variety of respiratory and neurological diseases. Drawing from this prior body of work, teams 
across the globe began working independently to establish SDS-based software systems to aid in 
the diagnosis of COVID-19 illness. But how many of the resulting software-as-medical-devices 
(SaMDs) would have the safety and performance profiles to support a viable regulatory pathway 
to market? And would the application and usability of this unfamiliar technology gain 
acceptance for clinical use during a disaster response? 

To answer these questions, we prospectively planned a PRISMA 2020 systematic review of the 
relevant literature. Our primary objectives were to demonstrate reproducibility of the published 
models by building each COVID-19 diagnostic software system for which sufficient details were 
reported and to conduct head-to-head evaluations both across the completed models and also in 
comparison to our own AI/ML system. As a secondary objective, our intent was to determine a 
literature-derived performance goal (PG) for the completed models for comparison to our device 
with the same intended use.  

 

2. Background 

Implementation of AI/ML solutions to clinical needs hinges upon strong adherence to scientific 
principles, good clinical practice, and the medical device regulatory process. Specific to times of 
public health emergency, numerous governments and regulatory agencies have authority to bring 
devices, drugs or biologics with a risk-to-benefit profile deemed acceptable into use for affected 
populations. The US-FDA Emergency Use Authorization (EUA), the WHO Emergency Use 
Letter (EUL), and a global array of expedited governmental and healthcare agency review 
pathways are all examples of routes to emergency clinical use. And key to achieving rapid 
acceptance of and fostering trust in newer technologies during disasters or emergencies is 
keeping the regulatory process central to all aspects of design, development, and deployment. In 
other words, documentation spanning the Total Product Life Cycle (TPLC) from inspiration to 
post-market surveillance.  

In response to the immense need for COVID-19 diagnostic testing during the pandemic, 
scientific teams of diverse disciplines have developed hundreds of devices, most of which were 
based upon established methods of laboratory analysis. There were other approaches, though, 
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proposed by AI/ML and Data Science professionals in search of a scalable diagnostic device that 
did not require wet specimens or laboratory processing. Academic institutions from around the 
world have cataloged, analyzed, and published peer-reviewed articles on SDS libraries that were 
amassed both before and after December 2019. This collective wealth of data contains FCV 
recordings from years prior to the pandemic (not COVID-19), post-December 2019 recordings of 
COVID-19 negative persons as confirmed by RT-PCR (not COVID-19), and FCV recordings 
from persons diagnosed COVID-19 positive and verified by RT-PCR (yes COVID-19). While 
some author groups employed in-house collections of recordings, there are a number of publicly 
available SDS libraries that are identifiable from literature searches and downloadable for use in 
the development of SDS-based COVID-19 diagnostic software systems. 

 

3. Materials and Methods: 

Certain terms will be adopted uniformly throughout this review, to provide clarity. The term 
“article” will be reserved for peer-reviewed references and those obtained from pre-print servers 
(non-peer-reviewed) will be termed “records”. While many of the references refer to an SDS 
collection from FCV as a “registry”, the reviewers will use the term “library”, so as not to 
suggest that the same degree and quality of clinical data typically included in medical device 
registry exists in each SDS collection. Lastly, the shorter phrase “SDS Library” will be 
representative of each SDS library from FCV. 

3.1. Literature Searches 

On 12 October 2021 and updated on 7 November 2021, we conducted systematic searches of the 
relevant literature for the purpose of presenting a comparative evaluation of AI/ML systems 
designed to aid in the diagnosis of COVID-19 from FCV. Searches of the peer-reviewed 
literature were prioritized but, given the collaborative “shareware” culture of the AI/ML and 
Data Science communities, pre-print servers were searched for possible contributions. EndNote 
2020 was the designated reference manager and PubMed was searched via this software. Serial 
searches of “Any Field” in PubMed, “Full Text and Metadata” in the IEEE Xplore digital library 
of the Institute of Electrical and Electronics Engineers,(ieeexplore.ieee.org), “All Fields” in the 
arXiv open-access archive (arxiv.org), and “Full Text or Abstract or Title” in bioRxiv and 
medRxiv (medrxiv.org) were performed using the identical search terms as listed below: 

• covid and classifier 
• covid and neural network 
• covid and cough and artificial intelligence 
• covid and cough and AI  
• covid and cough and machine learning 
• covid and cough and ML 
• covid and cough and classifier  
• cough and neural network  
• forced cough vocalization 
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The results from these serial searches were combined and systematically filtered to achieve a 
final article pool from which all references would be evaluated for contribution to the stated 
objectives. Following a basic PRISMA 2020 workflow, our search methodology is illustrated 
below in Figure 1: 

 

Figure 1 - PRISMA 2020 Flow Diagram for New Systematic Reviews  
                  (inclusive of Databases, SDS Libraries, and Other Sources) 
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3.2. Classification System for SDS Libraries 

Since the introduction of levels of evidence into the scientific literature, many professional 
organizations and journals have adopted some variation of this classification system. Diverse 
specialties are often asking different questions, though, and it has been recognized that the type 
and level of evidence needs to be modified accordingly [1]. Evidence-Based Medicine 
classification systems specifically are based upon research design questions that take into 
account prospective vs retrospective data collection, data collection methods, data sources, data 
verification, control design, study population sampling, diagnosis, and decision analysis. In order 
for comparisons to be made across the many SDS libraries used in the above references, an 
appropriate classification system was required.  

Grades of Data are another classification system, derived from the Level of Evidence (data 
collection design) and modified in concert with the same research design questions, but only as 
they apply to each data subset. Therefore, an SDS library with a Level 2b design is expected to 
yield Moderate Grade data. If some retrospective data were to be included in a given library, the 
inclusion of this data subset would reduce the grade level for the overall collection by one grade 
level to Low Grade data. Likewise, if some or all of the retrospective data also had incomplete 
clinical data, then the grade of data would be reduced by two levels (one each for retrospective 
and incomplete clinical data), degrading the library data to Insufficient [2, 3]. Conversely, if an 
SDS library with a Level 2b design yielding Moderate Grade data were to have a subset verified 
by two RT-PCR tests within 24 hours of the FCV recording, that subset of data would be 
classified as High Grade Data and the entire library would be elevated by one data grade.  

To permit assignment of design levels and stratification of data as reported, the Levels of 
Evidence design and associated Grades of Data criteria were modified according to the needs of 
AI/ML training, validation, and testing sets. This yielded a classification system appropriate to 
the topic of our review and is shown below as Table 1.  

Table 1 – Levels of Evidence and Grade of Data Classification System for SDS Libraries 

Design 
 Level 

Data  
Grade 

Library 
Design 

SDS  
Collection 

Lab 
Confirmation 

Clinical  
Confirmation 

Possibly Elevated 
by Mined Data? * 

1a High Prospective Systematic 2 tests within 
24 hours of 
SDS 

Yes No 

1b High Prospective Systematic No No 

1c High Prospective Systematic 

1 test within 24 
hours of SDS 

No Yes 

2a Moderate Prospective Systematic Yes No 

2b Moderate Prospective Systematic No No 

2c Moderate Prospective Crowd-Sourced No Yes 

3a Low Prospective Crowd-Sourced 1 test > 24 
hours of SDS 

Yes No 

3b Low Prospective Crowd-Sourced No No 

4 Insufficient Retrospective Wiki-Sourced 
No 

No No 

5 Insufficient Retrospective Synthetic No No 
* higher grade data mined from lower design levels may be incorporated to elevate the overall data grade 
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4. Results: 

From the final pool of references, all were read and evaluated across a multidisciplinary team of  
Data Scientists, Biotechnical Engineers, Healthcare Clinicians, Product Development and 
Clinical/Regulatory Affairs professionals. There were 57 references proposing a specific 
COVID-19 diagnostic AI/ML model or application (33 peer-reviewed articles and 24 pre-print 
server records) and the remaining 7 articles were Editorials and Technical notes reserved for 
potential contribution to the Discussion. 

4.1. Primary Objectives 

Although each of the 57 references purported to include a fully-detailed AI/ML solution, only 14 
contained enough information for us to attempt building the stated solution. Unfortunately, no 
single reference included sufficient details to build a complete model or system, rendering 
comparisons across models (including our own) unattainable. The most common omissions 
pertained to the model’s architecture or the flow of data through the model’s layers. Thus, the 
primary objectives of this review could not be met. 

4.2. Secondary Objective 

Determination of a literature-derived PG was the secondary objective of this review and is a 
familiar endpoint in regulatory pathways. To realize this goal, the intent was to mine the data as 
reported and as trained for the individual models and calculate the PG. AI/ML software solutions 
meeting the 5 prospective criteria as below, defining a comparable population, were to be 
included in the calculation: 

• Commonly defined sensitivity and specificity of the model when tested with the 
respective test set 

• False positive and false negative were reported in some fashion 
• Test sets were of statistically significant size, based upon Exact Binomial Test 
• Data sets represented good quality data, defined as a Design Level 1 or 2 and Data Grade 

of High or Moderate 
• Results for PPA and NPA (directly reported or calculable from the details presented in 

the reference) were compared to RT-PCR for COVID-19 test results, in keeping with 
submission criteria for US-FDA EUA or WHO EUL 

There were 6 of 57 references found to have a Level of Evidence design of 2 or better, High or 
Moderate Grade data, and a statistically significant SDS library size provided the testing results 
to meet criteria (see Table 2). And of these same 6 references, only 2 were peer-reviewed 
articles. None of the reference met all criteria, rendering the secondary objective unattainable. 
Additionally, no more than 2 of the 6 references shared a common endpoint, disabling even that 
aspect of potential comparison.  
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Table 2 – Articles Meeting 3 of 5 Criteria for Establishing a Literature-Derived Performance Goal 

Author FCV/SDS Library Name Level of Evidence 
(Collection Design) 

Grade of Data 
Collected 

FROM PEER-REVIEWED ARTICLES 
Andreu-Perez et al. [4] In-House Collection 2a Moderate 
Verde et al. [5] Coswara 2a Moderate 
FROM PRE-PRINT SERVER RECORDS 
Alkhodari et al. [6] Coswara 2a Moderate 
Chang et al. [7] Coswara DiCORA Cough Sub-Challenge 2a Moderate 
Chetupali et al. [8] Coswara  2a Moderate 
Muguli et al. [9] Coswara 2a Moderate 

 

4.3. Gap Analysis 

We previously had developed a categorization system specific to our objectives and determined 
the level of evidence and grade of data for each of the 57 references. To emphasize aspects of 
each library population rather than individual articles, this time we reorganized the information 
as seen below in Table 3:  

Table 3 - SDS Libraries Represented in Current Literature Search Article Pool 

FCV/SDS Library Name Author Level of Evidence 
(Collection Design) 

Grade of Data 
Collected 

FROM PEER-REVIEWED ARTICLES    
Coswara [10], [11], [12], [5] 2a Moderate 
In-House Collection [13] 2a Moderate 
In-House Collection [4] 2a Moderate 
In-House Collection [14] 2a Moderate 
In-House Collection [15] 2a Moderate 
In-House Collection [16] 2a Moderate 
In-House Collection [17] 2a Moderate 
In-House Collection [18-20] 2a Moderate 
In-House Collection [21] 2a Moderate 
Israeli COVID-19 Dataset [22] 2a Moderate 
Cambridge COVID-19 Cough Database [23], [24], [25], [12] 3a  Low 
Carnegie Melon COVID-19 Voice Detect [26] 3a Low 
Corona Voice Detect [27] 3a Low 
COUGHVID [23], [28] 3a Low 
ICBHI Dataset 2017 [29] 3b Low 
MIT Open Voice Dataset COVID-19 Cough [23], [30] 3a Low 
NYU COIVD Cough Dataset [23] 3a Low 
Pertussis dataset [12] 3a Low 
Environmental Sound Classification (ESC-50) [31] 3b Low 
FreeSound [32, 33], [34] 3b Low 
Novel Corona Virus Dataset 2019 (Kaggle) [35] 3b Low 
Sarcos Dataset [11] 3b Low 
Univ. of Lleida [12] 3b Low 
Vgg-16 [36] 3b Low 
Virufy [37], [38, 39], [12] 3b Low 
Google Audio Set [34] 4 Insufficient 
Instagram [40] 4 Insufficient 
NoCoCoDa [33], [38] 4 Insufficient 
Twitter [40] 4 Insufficient 
YouTube [40] 4 Insufficient 
DCASE [32, 33] 5 Insufficient 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.21266271doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266271
http://creativecommons.org/licenses/by-nd/4.0/


Page 8 of 16 
 

    
FROM PRE-PRINT SERVER RECORDS    

Coswara [6], [41], [42], [43, 44], 
[45] 

2a Moderate 

Coswara DiCOVA Cough Sub-Challenge [46], [7], [9] 2a  Moderate 
In-House Collection [47] 2a Moderate 
In-House Collection [48] 2a Moderate 
In-House Collection [43] 2a Moderate 
In-House Collection [49] 2a Moderate 
AICovidVN 115M [50] 3a Low 
Brooklyn [42] 3a Low 
Cambridge COVID-19 Cough Database [8], [41, 51], [46]] 3a  Low 
ComPare CSS [46], [42], [52, 53] 3a  Low 
COUGHVID [46], [8] 3a Low 
COVID-19 Sounds Dataset [45] 3a Low 
MIT Open Voice Dataset COVID-19 Cough [47], [8], [45] 3a Low 
TASK dataset [42] 3a Low 
Wallacedene dataset [42] 3a Low 
Environmental Sound Classification (ESC-50) [54], [55], 

[56] 
3b Low 

Crowdsourced Respiratory Sound Data [48] 3b Low 
Flusense (negatives) [47], [43] 3b Low 
FreeSound Database (negatives) [47], [42], [43] 3b Low 
Google Audio Set [42] 3b Low 
IATos [57] 3b Low 
Medina Medical Group Russia [58] 3b Low 
Sarcos Dataset [42] 3b Low 
Virufy [51] 3b Low 
NoCoCoDa [51] 4 Insufficient 
YouTube [59] 4 Insufficient 

 

Looking at the review data from this vantage point, we observed that all of the SDS libraries 
collected by author groups themselves for the purpose of their model development (identified as 
In-House Collections) had Level 2a design that yielded Moderate Grade data. And only the 
projects employing the Coswara library (whether or not the reference was peer-reviewed) and the 
Israeli COVID-19 dataset ranked equally.  

Since the intended objectives could not be met, we reexamined the data from our review for 
alternative utility. The logical next steps from a regulatory approach were to complete a formal 
gap analysis, to focus on the issues that rendered our aims unattainable. Perhaps the challenges  
central to researching diagnostic AI/ML solutions for COVID-19 were representational of the 
greater challenges faced by AI/ML development teams entering the medical device market, 
particularly during a public health emergency? Answering this question and itemizing the 
contributing factors became our new objectives. 

The results of our gap analysis are summarized below in Table 4, itemizing the recurring themes 
identified in the body of literature assembled during this review. Each gap directly impacted our 
ability to meet primary and secondary objectives but also would affect the market-readiness of 
any medical device. Plans proposed here to mitigate or resolve these gaps were intended to apply 
not only to future AI/ML development publications but also to support realization of a regulatory 
pathway, keeping the needs of the TPLC in mind and clinical relevance at the core. 
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Table 4 - Gap Analysis Summary 

Current State Ideal State Gap Remedy 
Low quality data within 
available COVID-19 
SDS libraries/registries 

High quality data Lack of an evidence-
based system of data 
categorization 
 
 

Employ a system that combines 
familiar medical Levels of 
Evidence and Grading of Data 
into a single architecture for the 
evaluation of SDS data 

 Inherent subjectivity of 
symptom reporting and 
clinical diagnosis 
framing bias 

Include objective measures of 
illness to optimize the Grade of 
Data  

Undersized datasets for 
pre-trial training, 
validation, and testing 

Adequate sizing of all 
datasets 

Lack of statistical 
significance of datasets  

Ensure that datasets are 
statistically significant prior to 
clinical trial design (key to 
calculating sufficient trial 
population size and trial 
endpoints) 

None of the AI/ML 
model articles reported or 
proposed a plan for 
deployment in the clinical 
world 

Incorporation of 
clinically relevant steps 
for deployment early in 
the design, development, 
and testing processes 

Focus of reports are on 
software design and 
development, often 
without clear 
correlation to clinical 
application 

Include input from a 
multidisciplinary team, 
including regulatory, across the 
spans of the TPLC  

None of the models met 
the minimum bar for 
emergency use 
consideration by FDA or 
WHO 

Models and pathways to 
regulatory submission are 
compared to current 
standards for safety and 
performance 

Minimum criteria of 
regulatory standards 
not met, as reported in 
the references 

Compare each stage of the 
TPLC to regulatory standards, 
demonstrating that all criteria 
were attained or are attainable  

Models could not be built 
as reported 

Adhere to the scientific 
process of data 
validation, verification, 
and reproducibility 

Incomplete 
documentation of 
codesets, datasets, and 
code implementations 

Report complete documentation 
or at least provide the resulting 
transfer learning, to enable 
cross-checking of outcomes 

 
5. Discussion 

5.1. Employing Remedies to Bridge Gaps 

Data quality issues and the ultimate impact on model function underscored the most common 
challenges noted in both the research and editorial articles contributing to this review [60], [61]. 
To enhance the data quality and optimize the Grade of data, several authors suggested methods 
to verify symptomology and augment clinical diagnosis of subjects with suspected COVID-19 
illness. Specific technologies cited for improving library and data collection design include 
Internet-Of-Things (IOT) sensors, mobile digital health products, and mHealth wearable devices 
[62]. [60] [63], [61], [64], [65], [66].  

5.2. Review of Level 2a, Moderate Grade, Statistically Significant Articles 

At first glance, the reference pool identified by our searches and reviews of the literature 
appeared to yield relatively complete descriptions of working COVID-19 diagnostic AI/ML 
models available for download or as a live working model via the Internet. Re-creation of these 
models began as a promising endeavor, despite the need for training, validation, and testing 
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specifics. Each was built by our teams according to the plans presented in the respective 
reference but, regrettably, none of the models were reproducible as a fully deployed or fully 
deployable device. 

The recurring theme throughout our review process was that most references, at least as 
documented, provided more exploration than execution of diagnostic SaMD models for COVID-
19. Some notable exceptions were the technological contributions offered in articles by Imran et 
al. [31] and Orlandic et al [28] and also the pre-print paper by Chowdhury et al. [41]. But 
without inclusion of a clear regulatory pathway, the authors did not bring the TPLC full-circle 
for the models they presented [41, 51] [28, 31]. Two additional publications of distinction were 
Andreu-Perez et al. [4] and Verde et al. [5]. As the only articles meeting a majority of criteria for 
establishing a performance goal for the AI/ML systems of interest, their respective work is 
summarized below and accompanied by a table of model-specific strengths and challenges. 

Andreu-Perez, et al [4] reported on an AI/ML system to screen for COVID-19 based upon FCV. 
The SDS library employed was an in-house library collected in Spain, which was categorized in 
the current review as Level 2a design and a statistically significant amount of Moderate Grade 
data. Each SDS record was analyzed by the ML and SDS processing system, filtered by a cough 
detector, and results are given to the user. Incoming recordings were filtered, cleaned, and then 
passed through their cough detector based on empirical mode decomposition (EMD). Cough 
information then was transformed into tensor form using Mel-Frequency Cepstral Coefficients 
(MFCCs), Mel-scaled spectrograms, and Linear Predictive Coding Spectrum (LPCS) 
coefficients. Extracted from each SDS were 33 features which were mapped onto a 3D tensor, 
using a CNN with three main layers stacked four times. The authors achieved a true positive 
accuracy of 97.18% and a true negative rate of 96.64%. However, since false positive and false 
negative data were not reported, Positive Percent Agreement (PPA) and Negative Percent 
Agreement (NPA) could not be determined.   

Table 4: Summary of Andreu-Perez et al. [4] 

STRENGTHS CHALLENGES 
• Technically robust AI/ML system • Outcome is not a definitive diagnosis (only a 

probability of likely or unlikely COVID-19) 
• Platform independent  • Incompletely documented 
• Broadly accessible web-based format • Web-based systems cannot turn off hardware-

based sound processing (alters the source SDS) 
• GDPR compliant • Design for anonymity did not include maintenance 

of patient records or mandatory reporting  

 

In the second of two AI/ML systems for in-depth discussion, Verde et al. [5] also employed 
Coswara as their source of SDS data. The authors analyzed a variety of ML algorithms to detect 
COVID-19 through the phonetic vowel sounds of /a/, /e/, and /o/ that are inherent to FCV as the 
feature for analysis. In their listing of the model performances, the Support Vector Machine 
(SVM) performed the best overall: achieved percentages for Accuracy, F1-Score, Specificity, 
Precision, and Recall were 97.07, 82.35, 97.37, 73.68, 93.33 respectively and Area Under the 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.21266271doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266271
http://creativecommons.org/licenses/by-nd/4.0/


Page 11 of 16 
 

Curve = 0.954. But as with Andreu-Perez et al. [4], since false positive and false negative data 
were not reported, PPA and NPA were not calculable. 

Table 5: Summary of Verde et al. [5] 

STRENGTHS CHALLENGES 
• Expressed a desire for a mobile healthcare solution 

via a smartphone 
• Did not report how the SVM algorithm would be 

embedded into a mobile health solution 
• Emphasized importance of conducting a controlled 

clinical trial to validate the AI/ML system 
• Focus of study was the algorithms and the data, 

rather than a deployable holistic solution 

 

5.3. Introduction of Our System in Development 

Our AI/ML system for the diagnosis of COVID-19 illness, in common with the Level 2a is based 
upon the SDS from FCV. Having determined the Level 2a design and Moderate Grade SDS 
libraries from a systematic review of the literature, we selected Coswara as the source for 
statistically significant sized datasets. Incoming recordings are filtered, cleaned, and then passed 
through a cough detector. Once the SDS has been declared an FCV through audio analysis, it is 
then segmented into individual FCV segments. This is completed using hidden Markov 
modeling, which detects the onset and completion of each FCV within a file, standardizing the 
FCV for the classification models. FCV information is then transformed into tensor form using 
Mel-Frequency Cepstral Coefficients (MFCCs), Mel-scaled spectrograms, and Fast Formant 
Transformation (FFT) to yield SDS for feature analysis. Each SDS feature is analyzed 
separately, extracted, and mapped using an ensemble based upon successful neural network 
modeling techniques of 2D-CNN and RNN in the peer-reviewed literature [4] [31] [28]. Our 
process also employs ML algorithms to detect COVID-19 illness via the phonetic vowel sounds 
inherent to FCV as the feature for analysis in a manner similar to Verde et al. [5]. In anticipation 
of our upcoming clinical trial, we have achieved a Positive Percent Agreement (PPA) greater 
than 0.90 and Negative Percent Agreement (NPA) greater than 0.85 in benchtop testing. 

Table 6: Summary of Our System in Development (Pre-Trial) 

STRENGTHS CHALLENGES 
• Technically robust AI/ML system • Complex design requiring coordination with 

multiple contractors for Laboratory Information 
Management, Public Health reporting UX/UI 
testing, and Specialty Regulatory compliance 

• Dedicated app disables hardware sound processing • Requires cellular or internet data access 
• Provides a definitive diagnosis (COVID-19 illness 

yes or no) 
• Has not yet undergone clinical trial 

• Designed to meet current ISO, medical device 
standards and cybersecurity requirements 

 

• HIPPA compliant reporting and data storage  
• Designed for Federated Data and Swam Learning 

to respect local and international data boundaries 
 

• Regulatory guidance and documentation from 
early in development 

 

• Design and development proceeded in concert 
with planning of clinical trial to support EUA 
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6. Conclusion 
 

While unable to meet the intended objectives of this systematic review of the AI/ML system 
literature on SDS from FCV aiding in the the diagnosis of COVID-19 illness, the authors did 
complete a gap analysis that identified the principal issues and significant challenges facing this 
growing field of study. The consequences of such gaps directly affected not only the quality of 
data available in the relevant literature but also prevented analyses to assess regulatory readiness 
of the devices and applications presented. Acceptance of unfamiliar technology by disaster or 
pandemic decision makers and clinicians would require bridging of these gaps through adherence 
to a clear and well-documented TPLC approach to a viable regulatory pathway. 
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