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Abbreviations 

ATC Anatomical Therapeutic Chemical 

CDM common data model 

CDS clinical decision support 

EHR electronic health record 

FDA United States Food and Drug Administration 

ICD International Classification of Disease 

IRB institutional review board 

KMCI KnowledgeMap concept identifier 

MedWAS  medication history-wide association study 

ML machine learning 

NCATS National Center for Advancing Translational Sciences 

NICHD National Institute of Child Health and Development 

NIH United States National Institutes of Health 

NLP natural language processing 

OCM Office of Contracts Management 

OR odds ratio 

OTC over-the-counter 

PheWAS phenome-wide association study 

PS propensity scoring 

RCT 

RD 

randomized, controlled trial 

Research Derivative 

RWE real-world evidence 

VUMC Vanderbilt University Medical Center 
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Abstract 

From the perspective of most regulatory agencies, it is usually unethical to perform 

interventional clinical trials on pregnant people. While this policy recognizes the vulnerability of 

an expectant mother and unborn child, it has created a public health emergency for millions of 

pregnant patients through a dearth of robust safety data for many common drugs. To address this 

problem, we harnessed an enterprise collection of 2.8M electronic health records (EHRs) 

originally collected from routine primary care, leveraging the data linkage between mothers and 

their babies to create a surrogate for randomized, controlled drug trials in this population. To 

demonstrate the feasibility of our clinical trial emulation platform to stimulate new hypotheses 

for post-market drug surveillance, we identified 1,054 drugs historically prescribed to pregnant 

patients and developed a medication history-wide association study and follow-up evidence 

synthesis platform—leveraging expert clinician review and real-world data analysis—to test the 

effects of maternal exposure to these drugs on the incidence of neurodevelopmental defects in 

their children. Our results replicate known teratogenic risks and existing knowledge on drug 

structure-related teratogenic risks. Herein, we highlight 5 common drug classes that we believe 

warrant further assessment of their safety in pregnancy. We also discuss our efforts to develop a 

discovery-to-regulatory framework that could allow for pragmatic translation of our results to 

enhanced regulatory policy. Collectively, our work presents a simple approach to evaluating the 

utility of EHRs in guiding new regulatory review programs focused on improving the delicate 

equipoise of accuracy and ethics inherent to assessing drug safety in an extremely vulnerable 

patient population. 
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Introduction 

At the point of care, pregnant patients are a vulnerable population: physicians must exercise 

caution in prescribing many common drugs to these patients, given the risks of toxicity for their 

developing fetuses1. However, consideration of fetal toxicity in drug development is largely 

nonsystematic. While teratogenicity scores established by regulatory agencies like United States 

Food and Drug Administration (FDA) are discrete, these criteria provide little concrete 

distinction among score classes, making it difficult for drug developers to accurately gauge the 

fetal toxicity risks of a molecule2. FDA’s updated teratology assessment guidelines in the 2014 

Pregnancy and Lactation Labeling Rule aimed to increase the contextual relevance of 

developmental toxicity evaluation, but this guidance has been slow to translate to evaluative 

change at the point of care, which remains largely aligned with the previous five-pronged letter 

scale3,4. The result is a vicious cycle that promotes the approval of drugs without adequate data 

on their safety and efficacy in pregnant populations, as expectant patients are routinely and 

ethically excluded from clinical trials, out of concern for fetal harm upon exposure to drugs with 

uncertain, pre-clinical teratogenicity data. In fact, of 213 new drugs approved by FDA between 

2003 and 2012, only 5% contained human data in the pregnancy section of their labels5. Herein, 

pregnant patients may not receive benefit from available medications, given obstetricians’ 

cautious fears of causing harm to their patients’ fetuses6. These factors have created a substantial 

gap in knowledge on pharmacotherapy for diseases during pregnancy, which has resulted in 

undertreatment of chronic and acute illnesses in pregnant people, while also increasing potential 

risk of harm to their fetuses. 

 

Therefore, the inability to generate new drug safety and efficacy information in pregnant patients 

through prospective experiments like randomized, controlled trials (RCTs) underscores the 

urgent need for new methods to ethically assess this information, to improve quality of care for 

these underserved patients, and to ensure health equity for this vulnerable population through 

enhanced drug product labelling and marketing. Such an opportunity for discovery of new drug 

safety insights for pregnant patients may be available through strategic analysis of large numbers 

of existing healthcare documents like electronic health records (EHRs) that were collected during 

routine patient care. Collectively, EHRs can uniquely replicate the natural history of pregnancy 

by linking medical information of pregnant patients and their neonates, such as mothers’ 
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prescriptions (while expectant) and the perinatal diseases of their children7–9. This information 

allows for the creation of a unique framework of relational knowledge generation. Namely, a 

surrogate for RCTs in pregnant patients can result from stratifying EHR data into distinct cohorts 

by patients’ documented exposure—or lack thereof—to a drug of interest and subsequently 

developing an inferential model to relate incidences of maternal drug exposure and neonatal 

disease8. While these experiments are not a replacement for prospective clinical studies, such a 

platform of clinical trial emulation presents an ethical way of studying the effects of drug 

exposure in pregnant people with human data, on a significant scale and across all drug classes.  

 

Existing literature that describes the safety of most drugs potentially prescriptible in pregnancy 

remains overwhelmed by conflicting studies—the majority of which only present results from 

pre-clinical animal models of drug testing and the minority of which are empirical case reports or 

case series among relatively few patients10. Deciding to prescribe a drug to a pregnant patient 

involves balanced evaluation of the patient’s need for treatment (drug efficacy) and the risk of 

injury to the patient’s fetus (drug safety). However, providers cannot make these informed 

decisions without robust and definitive safety data. 

 

Previous work that has attempted to clarify knowledge on drug safety in pregnant patients has 

relied on observational and retrospective analyses of databases like public insurance claims, 

measuring the significance in coincidence of a neonatal disease of interest and prescription of a 

drug of interest to the neonates’ mothers7,11. While these studies have added new—and often 

valuable—narratives of drug safety to the literature, our research is innovative because it uses 

EHR data, attempts relational inference, and probes such drug-disease relationships at scale. 

Collectively, these factors allow us to advance the ontological reliability and epistemological 

robustness of data-driven studies of adverse pregnancy outcomes8.  

 

Our research makes novel use of a database of 2.8M EHRs at Vanderbilt University Medical 

Center (VUMC) to curate our trial emulation cohorts. The data innovation in studying EHR data 

over evaluating public insurance claims is that this choice mitigates significant demographic 

biases (e.g., poverty) that are present within public payor records. Overcoming the effects of 

such potentially confounding variables requires the integration of advanced methods of 
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propensity scoring (PS) to properly evaluate the coincidence of maternal drug exposure and 

pediatric disease, which defies the key algorithmic design principle of parsimony and results in 

poor model performance12. In contrast, VUMC is an urban medical center that features a 

demographically diverse patient population, as previous studies using these EHR data affirm13. 

Indeed, self-reporting patient registries—another popular choice for observational data to study 

health outcomes in pregnancy—are also inherently limited in their integrity, as patients are often 

unreliable historians of their own care14. In contrast, our study promotes data integrity by 

studying provider-maintained healthcare information.  

 

Technical innovation in this project also rests within the rigor of the analytical methods we 

employ (Figure 1, below)8. We apply a mode of systematic, relational inference to maternal drug 

exposure and perinatal disease that we believe is more directly and appropriately aligned with the 

etiology of drug-associated birth defects, compared to the highly coincidental frameworks that 

dominate the literature. We achieved inference suggestive of causality through harmonizing the 

phenome-wide association (PheWAS), which was originally developed at VUMC to discover 

genetic links to clinical phenotypes, with a rigorous, standardized consensus prioritization 

approach that considered clinical practice and RCT data to move from data-based associations 

towards etiology discovery15. By developing a medication history-wide association study 

(MedWAS) to suggest pharmacological determinants of neonatal diseases, we optimized on 

algorithms that underlie PheWAS to explore nascent patterns across the drug-disease hypotheses 

that our model revealed. In this way, we used MedWAS as a novel method of clinical trial 

emulation8. Target trials are an epidemiological method of retrospective data analysis that make 

use of existing clinical information and high-powered statistical algorithms to create artificial 

subject profiles from all relevant and available patient data within a cohort of interest. This 

curation then allows for relational analysis of subjects’ drug histories against a morbidity of 

interest, facilitating potential simulation of a clinical trial when prospective experiments are not 

feasible16–18. The approach in this manuscript alludes to a target trial by following similar 

approaches to  data curation and stratification, statistical inference, and outcomes prioritization, 

though unlike the archetypal target trial developed by Hernán and Robbins for claims data and 

consortial data banks16, our distributed workflow for practicably applying trial emulation to a 

single health system’s mother-baby EHRs means that some aspects of our procedure rely on 
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manual evidence synthesis, rather than harnessing end-to-end automation. To our knowledge, 

there have been very few (and relatively small) RCT emulation projects evaluating pregnant 

patients19, allowing us to innovate in exploring the power of this novel method at scale8,20.  

 

Using MedWAS, we present systematic RCT simulation across all drugs prescribed to pregnant 

people and all diseases within neonatal EHRs at VUMC: herein lies the conceptual innovation of 

our approach. Historically, researchers studying the safety of pharmacotherapy in pregnancy 

with statistical methods have communicated through a “one drug—one disease—one 

publication” model. While this practice provides bandwidth for deep interrogation of a single 

drug-disease hypothesis, it further diversifies the pool of existing data that remains conflicting 

and inconsistent, since the methods in such papers can become overfitted for studying the safety 

of other drugs that are prescriptible in pregnancy. In contrast, our approach is sufficiently 

powered to analyze maternal prescriptions and neonatal diseases across a large healthcare 

enterprise. In this way, our platform provides a reproducible framework of drug safety 

assessment that may be sufficiently generalizable to accommodate testing of new drugs. We are 

unaware of such a drug-agnostic and phenotype-agnostic model in the available literature on 

drug safety in pregnancy. 

 

[INSERT FIGURE 1 (FROM APPENDIX) HERE.] 

 

We have a record of work in using statistical methods like PheWAS to generate strong 

hypotheses of efficacy for new drug development9,21,22. Here, we apply that expertise to construct 

MedWAS as an innovatively scalable, RCT-emulatory approach for the surveillance of drug 

safety in pregnancy. We also present potential avenues for complementarity between MedWAS 

and our previous attempts to develop a machine learning (ML) approach capable of identifying 

chemical structures that predispose drugs towards increased teratogenic risk when prescribed 

during pregnancy23.  
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Methods 

The approach that we describe below is an explanatory summary of the data preprocessing (for 

cohort selection) and informatics procedures (for drug-disease testing) that we provide in 

cookbook format within the “Supplementary Information” that accompanies this manuscript. A 

diversity and inclusion report for the maternal and neonatal EHRs we analyzed is also included 

in the “Supplementary Information” accompanying this manuscript. 

 

We tested the hypothesis that an RCT emulation platform can effectively establish relational 

inference between mothers’ exposures to drugs with uncertain safety and perinatal diseases in 

their neonates. In establishing the feasibility of our tool to accomplish post-market drug 

surveillance, we restricted ourselves to the analysis of only neurological morbidities as a base 

case, given that the ontologies that codify these diseases have strong bases of relational logic24. 

We expect the general framework of the analytical and signal evaluation procedures we present 

here will be analogously applicable to interrogation of neonatal diseases in other organ systems. 

 

The Institutional Review Board (IRB) of Vanderbilt University approved the research that we 

describe below as exempt from human subjects research (IRB #191553).  

 

Cohort Selection and Data Curation 

To mimic the enrollment of pregnant patients in a drug safety trial, we used ML to curate and 

block appropriate treatment and control (drug-exposed vs. not drug-exposed) cohorts across all 

1,054 agents that are documented as prescriptions to pregnant patients in eStar, VUMC’s EHR 

system. A listing of these agents is available in “Supplementary Information.” To select our 

cohorts, we probed VUMC’s Research Derivative (RD), a database of fully identified clinical 

and administrative information from 2.8M patients that contains data like International 

Classification of Disease-9/10 (ICD-9/10) billing codes (which codify nearly all existing human 

morbidities), patient demographics, lab results, medications, and clinical narratives from five 

different relational health information systems that source directly from patient care25,26. To 

effectively create trial emulation cohorts across the agents we probed from these data, we first 

established the following phenotyping rule as inclusion criteria for patient “enrollment” in 

treatment and control groups:  
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Population: RD; Include: Mom/baby link (1 or more), where specified medication (1 or more 

where date during mother EHR pregnancy=yes) and clinic note in baby EHR suggests record 

of care (1 or more postpartum).  

Herein, our criteria for allocating pregnant patients to a drug treatment group required baseline, 

confirmed pregnancy among all candidate mothers, with a record of at least one prescription of 

the specified drug in the mother’s EHR during their gestational period and successful delivery of 

a neonate who received their own EHR at VUMC (such that their health outcomes were 

available for our analysis). Defining pregnancy and gestational period in a systematic way from 

the EHR remains a non-standardized analytical practice and therefore required us to develop an 

inferential approach reliant on a data dictionary of relevant ICD-10 codes for gestational period. 

For interested readers, we describe this approach in “Supplemental Information.” We designed 

our inclusion criteria to maximize the data available to our model, so we could achieve the 

highest power for demonstrating preliminary proof-of-concept for our approach. Herein, we 

harnessed downstream evidence synthesis to vet our trial outcomes, rather than establishing very 

tight inclusion (and exclusion) criteria a priori to mitigate confounding variables.  

 

Next, we leveraged a suite of natural language processing (NLP) tools to extract phenotypic 

attributes and maternal drug exposures from narrative EHR data among all patients within the 

94,872 EHRs (48,434 mother-baby EHR pairs) that met our inclusion criteria for at least one 

study drug. These tools included a general-purpose NLP tool (KnowledgeMap concept identifier 

(KMCI)27,28), ML-based clinical note section tagger (SecTag29,30), and MedEx, an NLP algorithm 

for identifying medication exposures within free clinical text29,31. KMCI identifies Unified 

Medical Language System concepts32 using a shallow parser, word sense disambiguation, and 

semantic regularization, and includes a module to identify negation27. MedEx uses context-free 

grammar and a rule-based approach to extract detailed medication information (including dose, 

frequency, and route) from free text. MedEx encodes an ingredient barcode for all drugs, such 

that drug mentions extracted from EHRs are continuously linked to existing drug ontologies 

from which additional pharmacological data may be mined (e.g., RxNorm concept unique 

identifier33)29,31. These standardized systems have been used to process more than 60 million 

documents at Vanderbilt and elsewhere. Here, we used them to capture all drug mentions and 

available ICD-9/10 codes and to facilitate requisite matching of free-text disease terms to 
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concept unique identifiers for candidate mothers and their linked neonates, as well as to extract 

all available demographic information for “enrolled” mothers and babies. Enacted across all 

combinations of diseases and maternal drug histories in our population, our workflow enabled 

the curation and stratification of patient data to empower >1.7M combinatorial RCT simulations, 

as we describe below.  

 

Implementation of MedWAS 

PheWAS is a common, systematic ML approach to identify novel associations between disease 

and genetic variants and to discover pleiotropy using EHR data linked to DNA. It is a method 

that scans phenomic data for genetic associations using Phecodes mapped to ICD-9/10 codes 

from the EHR. Multiple publications demonstrate that PheWAS is a feasible method to rapidly 

generate novel hypotheses on the underpinnings of disease15,34–37. We repurposed the PheWAS 

framework to develop an innovative MedWAS, in identifying the extent to which the perinatal 

phenotypes in our cohorts are plausibly related to exposure to the drugs in each simulated trial’s 

treatment group. Herein, our proof-of-concept MedWAS model took an input of babies’ 

neurological diseases from all mother-baby cohorts we constructed and outputted the maternal 

medication exposures putatively related to babies’ phenotypes. While it is easiest to envision our 

trial platform through the canonical stratification of mother-baby cohorts by maternal drug 

exposure, our adoption of neonatal disease-contingent inference across treatment-defined 

maternal cohorts allowed us to develop capacity for discovery of multiple drug exposures as 

etiologies for our phenotypes of interest. 

 

MedWAS operated in direct analogy to PheWAS by using its component logistic classification 

methods (logit) to identify neonatal disease as a function of maternal exposure to a drug of 

interest and by reporting a p-value for each of these drug-disease tests that reflected the strength 

of logit alignment after correction for multiple testing of a drug across all neonatal diseases in 

our cohorts. In doing this across 1,054 native maternal drug exposures and the neurological 

subset of 1,678 EHR-embedded phenotypes—first, on a pilot-scale, with 5.7K EHR pairs, and 

subsequently on our full data set of 49K mother-baby dyads—each trial was controlled by cases 

of neonatal disease linked to pregnant patients without a record of exposure to the test drug. 

Herein, we also computed an odds ratio (OR) as a proxy for the effect size of hypothetical drug-
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disease enrichment across each of our tested case and control populations. Because there are 

known associations among the representations of input and output data and PheWAS model 

performance35–37, we iteratively assessed MedWAS performance with several standard 

representations of the drug and disease data (i.e., different levels of Anatomical Therapeutic 

Chemical (ATC) codes for drug entities38 and Phecodes and ICD-9/10 codes for diseases39) from 

our cohorts to prevent confounding of our results by data type. Figure 2, below, summarizes the 

premise of our MedWAS approach. The list of 1,678 Phecodes we employed is publicly 

accessible through the open-source code for the PheWAS package (see 

https://github.com/PheWAS/PheWAS).  

 

[INSERT FIGURE 2 (FROM APPENDIX) HERE.] 

 

Evidence Synthesis and Hypothesis Prioritization 

While the explicit goal of our work was to establish a platform for generating hypotheses of drug 

safety that may be pursued in more targeted studies in the future, we affirm that a non-

deterministic challenge in pursuing our experiments was accurate prioritization of MedWAS’s 

predicted drug-disease relationships by their clinical, biological, and statistical plausibility, given 

the number of RCT simulations we executed rapidly within our analytical framework. We 

attempted to meet this challenge by ranking our results with the following heuristics: 

concordance with known fetal safety risks from published drug labels, a soft constraint of 

Bonferroni significance (with correction from baseline p ≤ 0.05) and OR > 1, compelling clinical 

reviews from obstetrician and pediatrician consults on the plausibility of substantially implicated 

drug prescriptions and teratogenic outcomes, reproducibility between MedWAS outputs and the 

results from our previous work that identified drug structures linked to adverse birth outcomes23, 

and evidence against “confounding by indication” from harmonizing systematic chart review of 

mothers’ baseline disease states with knowledge of known vertical disease transmission risks 

within our treatment cohorts. Our application of the p-value as a soft prioritization constraint that 

complemented systematic review from our clinical stakeholders aligns with guidance to this 

effect from American Statistical Association40.  
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To parse MedWAS results we believed were not clinically plausible or were potentially 

confounded, we began by restricting all signals associated to nutraceutical products, as we 

recognized that patient history-informed capture of food and nutritional supplement use data in 

the EHR is highly unreliable. These agents are available over-the-counter (OTC) and often 

incompletely reported by patients, such that mention of the agent does not always imply true 

exposure during gestation41. Then, we consulted a pediatrician with expertise in clinical 

pharmacology on our study team to identify neurological Phecodes with unlikely manifestation 

in the perinatal period; these diseases were mainly neurocognitive (e.g., dyslexia) and therefore 

excluded from consideration as true model results. Our pediatrics consult further stratified 

higher-level versions of the phenotype embeddings in our model outcomes as incident in infants, 

toddlers, school-age children, or adolescents, based on disease pattern presentations from clinical 

practice. Consequently, we excluded all outcomes not plausibly detectable in infants.  

 

Following our pediatrician’s review, we consulted a practicing obstetrician on our study team, 

who has training in clinical pharmacology and maternal-fetal medicine, to identify the 

plausibility of prescription of the drugs implicated in our model during pregnancy. In completing 

this review, our obstetrics consultant synthesized knowledge from her own prescriptive practice, 

prescriptive guidelines from American College of Obstetricians and Gynecologists, Society for 

Maternal-Fetal Medicine, departmental practice guidelines at Vanderbilt, and clinical decision 

software (CDS) like UpToDate4 and Reprotox42 to stratify our signals as “high-yield” and “low-

yield” outcomes. We defined high-yield outcomes as those which demonstrated statistical 

significance, at least 1% co-incidence rate between drug prescription and pediatric disease (such 

that, with our sample sizes of mothers prescribed each drug and neonates born with each disease, 

we prioritized only non-unary outcomes), and unclear prescriptive recommendations and/or 

practice guidelines for implicated drugs (e.g., FDA score C and conflicting case reports 

described in CDS). These drugs also had plausible prescription during the first trimester of 

pregnancy, when the majority of neurological organ development occurs. Low-yield outcomes 

included signals rooted in drugs available OTC, such that EHR data on drug use were not 

reliable for our first-pass analysis, and signals with drugs sparsely prescribed to pregnant patients 

in the United States of America due to lack of regional drug supply and/or existing guidance 

against prescription of these drugs during pregnancy. Our consideration of the latter revealed to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 14, 2021. ; https://doi.org/10.1101/2021.11.12.21266269doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.12.21266269
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

us that our low-yield signals may be artifactual noise from our inferential approach to defining 

gestational period, if these drugs appeared in pregnant patients’ EHRs before discontinuation, 

when providers first learned of their patients’ pregnancies.  

 

Our designation of the yields of our signals were powered by a spreadsheet model we developed, 

which codified the considerations above by fields including the following. In an ad hoc fashion, 

both consultants, as well as a pharmacologist, removed drugs from consideration which 

presented with implausible pharmacokinetics for their associated toxicities (e.g., non-systematic 

absorption). 

• “drug’s original indication” (to help identify potential cases of confounding by maternal 

morbidity) 

• “FDA drug class”  

• “trimester of prescription” 

• “intrapartum or immediate postpartum prescription?” (a response of “yes” to this 

question resulted in a signal’s relative de-prioritization, given our interest in antepartum 

exposures and the difficulty of perfectly ascertaining gestational period within the EHR) 

• “duration of prescription” 

 

Figure 3, below, provides a summary of our process for developing and vetting MedWAS data. 

 

[INSERT FIGURE 3 (FROM APPENDIX) HERE.] 
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Data Availability Statement 

Disclosure of our MedWAS data, though de-identified and aggregated, is subject to approval and 

oversight by the Office of Contracts Management (OCM) at VUMC, as our source data is 

derived from protected health information (PHI), and some drug-disease pairs are individually 

identifiable. Therefore, institutional policies prevent us from publicly releasing our data tables 

and their annotations, but, within the data sharing regulations of our institution, we have 

attempted to provide meaningful information on the content and formatting of our outputs 

throughout this manuscript. We are committed to open-source science and to ensuring the 

reproducibility of the research we present here; therefore, we are happy to discuss data transfer 

requests with researchers interested in our results. Interested investigators should contact the 

Corresponding Authors at the addresses accompanying this manuscript, and they are happy to 

discuss forwarding such requests to OCM. 
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Results and Discussion 

We present MedWAS as a simple and flexible process of generating novel hypotheses for post-

market drug surveillance of drug safety in pregnancy, which takes strategic advantage of the 

milieu of primary medical care for pregnant patients and the data routinely generated through 

these encounters. The approach also relies on known patterns of prescriptive behavior in 

pregnancy to emulate—at limited capacity—baseline cohort randomization before testing the 

effects of drug exposure. While we cannot claim “full” randomization, we acknowledge the 

following assumptions towards a level of randomized assignment of drug vs. no drug for 

pregnant patients with disease: first, prescriptive strategies for these patients are likely 

heterogeneous, given limited safety data and providers’ differing risk-benefit evaluations of 

prescriptions. Therefore, not all diseased patients will receive pharmacotherapy, resulting in 

inherent randomization. We acknowledge that even with this assumption, an exact, 50%-50% 

split in drug treatment is unlikely to manifest. Second, undue bias towards treatment at baseline 

is unlikely to exist (i.e., providers are not naturally “instructed” to treat all ailing pregnant 

patients with drugs), so the lack of a prior treatment probability supports the randomization 

described above. Coupled with the controlling inherent to each MedWAS test, this 

randomization allows us to claim foundational RCT emulation via MedWAS; we present key 

results from our platform below, along with a discussion of the advantages, several limitations, 

and positive reception of our attempt, which we believe collectively define new opportunities for 

expansion of our approach as a systematic attempt at drug safety assurance that is powered by 

real-world evidence (RWE). 

 

Proof of Concept 

Prima facie, we consider MedWAS successful for its robust capacity to accommodate the 

largescale testing that we envisioned: following our experimental design, pilot testing, and 

localized sensitivity analyses, we executed 1,770,290 drug-disease experiments using a high-

performance cluster with 2,400 processor cores hosted by the Southern Crossroads server43 for 

supercomputing.  

 

As we describe in “Methods,” facing an abundance of generated data, we restricted analysis of 

the reliability of our results to a single physiological system, to allow for deep contextual 
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analysis. Accordingly, we selected to analyze 1,414 neuroteratogenic signals meeting our 

aforementioned definition of statistical significance, given expertise in neuropathogenesis within 

our study team and the spatially and temporally focal nature of many neurodevelopmental 

anomalies to neurulation44, which occurs in the first trimester of pregnancy45. In analyzing this 

functional area, we assume that our insights are sufficiently generalizable to similar physiology 

in other organ systems, but we also acknowledge that signals among systemic developmental 

phenotypes may require more formal network analyses. In considering the validation procedures 

we describe in “Methods” and the evidence requirements we discuss below for signal 

confirmation, we found that MedWAS performed best on the bases of ATC-4 and Phecode 

representations of our drug and disease data, respectively. Choosing these representations 

allowed us to balance data granularity and utility in optimizing model performance, as we tested 

associations of agent names (but not formulations, as would be available from ATC-5 

embeddings) against high-level phenotype codes with logical mappings to the ICD ontology. 

While drug formulation could present interesting relationships to toxicity (e.g., through elevated 

concentrations at sensitive physiological sites like the cervix), we consider that our inability to 

capture this information does not detract from the power of our model to robustly capture 

associations between maternal drug exposures and adverse neonatal outcomes, as the explicit 

goal of our model was to discover relationships between the agents mothers consume and 

adverse outcomes in their neonates. In this way, we consider formulation to have trace effects on 

fetal toxicity, further given that most agents within our list of agents are consumed orally. 

 

We observed replication of 8 well-known teratogens [phenytoin46, valproate47, fenofibrate48, 

quinapril49, retinoids (tazarotene, vitamin A, and adapalene)50, and, topiramate51] and 2 

teratogens confirmed by our clinical consults [salicylates (phenyl salicylate and salicylic 

acid)52,53] within our MedWAS results. We consider the according 22 signals (presented, in part, 

within Table 1, below) as positive population controls for our model: when we identified 

maternal medication history across our health system, we anticipated that such “anchoring” 

drugs would present with associations to neuroteratogenic outcomes. Negative population 

controls (i.e., prescription drugs with known protective effects against teratogenicity and/or zero 

baseline risk of teratogenic outcomes) are inherently uncommon and were therefore difficult for 

us to develop, further given that protective agents like folate are often taken by all expectant 
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mothers receiving medical care during pregnancy, in addition to other potentially toxic drugs54. 

Herein, our replication of positive control signals through MedWAS allowed us sufficient 

confidence to procced with analysis of our model outcomes; our intention to develop structured 

statistical models with inherent controlling—both for each drug-disease test and across our 

population—also affirms our non-exploratory study design. 

 

We considered Bonferroni significance a soft constraint, given increasing consensus that purely 

statistical significance does not directly imply biological significance—especially in the context 

of holistic approaches like PheWAS55. Instead, we maintained signals with significant p-values 

at a baseline of 95% confidence even if they did not demonstrate Bonferroni significance, relying 

on the other evidentiary filters we describe below to determine their relative importance. This 

approach to determining signal significance holds in all places in which we discuss “significant” 

outcomes within this manuscript. 

 

[INSERT TABLE 1 (FROM APPENDIX) HERE.] 

 

Top-Ranking Signals 

With a list of convincing drug-disease hypotheses, anchored in statistical significance, literature 

evidence of preclinical and clinical toxicity, the norms of pediatric and obstetric practice, and 

replicative case series, we identified several classes of drugs with convincing signals of fetal 

toxicity that we believe warrant further assessment through more structured epidemiological 

investigations. These demonstration signals demonstrate the power of our MedWAS approach to 

generate a pliable, hypothesis-generating pipeline for the stimulation of post-market regulatory 

review programs for drug safety in pregnancy. 

 

The following classes of drugs appeared most significantly linked to clusters of adverse 

neurological Phecodes diagnosable in the perinatal period, including “spina bifida” (n = 219 

children), “neural tube defects” (n = 242 children), epilepsy and convulsions (n = 2,343 

children), abnormal (involuntary) movements (n = 602 children), (obstructive) sleep apnea (n = 

1,376 children), and “infantile cerebral palsy” (n = 149 children). We present these relationships 
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not solely from statistical results, but from considering the holistic evidence review that we 

describe above: 

• With limiting p = 4x10-10 and OR = 1.03, anti-epileptic drugs (including gabapentin, a 

drug routinely used off-label56, and known toxicants like valproate and topiramate57, as 

described above) 

• With limiting p = 2x10-7 and OR = 1.06, psychotropic agents (including alprazolam and 

other anxiolytic agents, which are often consumed by pregnant patients but have 

conflicting safety data on their labels58) 

• With limiting p = 1x10-4 and OR = 1.02, anti-emetic drugs (including ondansetron, 

which, while numerously studied in relationship to fetal cardiovascular outcomes59, is 

often consumed in the first trimester and features controversial associations to pediatric 

central nervous system abnormalities60,61) 

• With limiting p = 8x10-8 and OR = 1.50, narcotic analgesics62 (including fentanyl, which 

featured > 60% co-incidence rate between maternal drug exposure and detrimental 

neonatal phenotype and occurred with similar disease links and co-incidence rates to the 

opiate antagonist naloxone) 

• With limiting p = 4x10-3 and OR = 1.83, anti-cancer drugs (including tamoxifen, a drug 

with few uses among pregnant women who choose not to terminate their pregnancies 

upon a cancer diagnosis—despite its narrow therapeutic index, the drug does not feature a 

contraindication for pregnancy on its label63) 

 

Our teratology quantitative structure-activity relationship model we describe in “Introduction”23 

concorded with our present analysis of drugs containing fluoroquinolone and azetidinone motifs, 

providing us with an additional layer of validative evidence review in support of the performance 

of our process. 

 

Overall Limitations and Next Steps 

Our results demonstrate that systematic assessment of the pharmacological determinants of 

pregnancy outcomes is possible with simple methods of RWE synthesis that repurpose 

information routinely collected from primary care and are sufficiently flexible to accommodate 

direct input from the clinical stakeholders who provide care to pregnant patients and their 
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newborn children. In this regard, our process presents the importance of complementing 

quantitative methods with qualitative evidence, as much of the contextual knowledge on 

obstetric prescriptive practice and pediatric disease assessment remains unavailable in structured 

databases. This combination of ML and consensus prioritization among human users for accurate 

outcomes analysis is archetypal of PheWAS and GWAS approaches, as many previous 

publications affirm21,35,64. 

 

Our signals present exciting opportunities for confirmation and further interrogation through 

mechanistic models of human development, as well as for more rigorous evaluation through 

regulatory-facing program development65–67. This expansion is facilitated by the availability of 

an ontology of medical record numbers for patients with each drug exposure and each outcome 

that we tested, facilitating review of individual EHRs to confirm true incidence of prescription 

and disease, as well as to understand confounding variables within the natural history of patients’ 

care that our quality control system did not consider but may otherwise explain disease signals. 

These chart reviews are important and must be undertaken rigorously (e.g., through a repeated 

random sampling approach) for each drug class in which there is interest in deeper study. In this 

way, continuously integrating knowledge about the clinical implementation of implicated agents 

and the manifestations of their related diseases will allow for further specification of our 

hypothesis generation platform in the more probative research that we have planned in the future. 

 

We again affirm that the goal of our research was the development of an enterprise-wide, 

hypothesis-generating pipeline of drug safety signals using clinical trial emulation. This work 

does not aim to identify malpractice and does not comprise clinical guidance on prescriptive 

behavior for pregnant patients. 

 

Despite this orientation and the advantages of our approach, our methods have important 

limitations that can also spark new research questions. Beyond the randomization we describe 

above, ontological barriers prevented us from executing PS to explicitly balance our cohorts 

before attempting MedWAS for the drug-disease inference within closely matched sub-groups. 

We considered alignment of maternal morbidity to the Charlson comorbidity index68 and 

application of the superficial method of PS developed by Choi et al. for PheWAS-empowered 
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drug development studies69, to match mothers with similar baseline medical and demographic 

histories for comparison through MedWAS. While, if successful, this approach could have 

increased the resiliency of our analyses to confounding from variables extraneous to the 

prescription of the drug specified for each trial, we realized that the number of maternal-fetal 

linkages from a single academic medical center like ours is too low to achieve the maximal level 

of controlling in situ. While ~100K EHRs is a moderately-large data set for implementation of 

the present research—and represents the data captured from a large, productive medical center—

this project demonstrated that execution of our methods with automated controls for confounding 

by maternal disease history and patient demography requires access to larger databases to 

prevent attrition of all comparable patient records. Though we could not employ PS in situ, as we 

had originally hoped, we believe that the evidence synthesis workflow we developed—along 

with the availability of manual patient chart review modules alongside MedWAS—successfully 

helped us to address the effects of these potentially confounding variables through our signal 

vetting and prioritization procedure. In future research, we hope to access larger administrative 

databases of patient records, so we may better integrate PS into our quantitative process. This 

access could also allow facilitate testing against more discrete representations of neonatal 

phenotypes than those encoded by Phecodes. 

 

We affirm throughout this manuscript that a central challenge to studying pregnancy and its 

outcomes with EHRs is defining the period of gestation. Many EHR systems rely on a 

“pregnancy flag,” encoding, on the backend, a binary representation of pregnancy status70. This 

flag is problematic71,72, as we have noticed in our EHR system that it often triggers by elevation 

in a patient’s body mass index. Therein, reduced precision from the available marker means that 

inferential approaches to defining the period of pregnancy are necessary to layer other study 

elements, such as identifying a patient’s medication history during gestation. Arithmetic 

approaches—such as subtracting 40 weeks from a patient’s delivery date documented on a labor 

and delivery form to estimate conception date—are possible for first-pass estimation of 

gestational period, but they rely on low missingness in delivery date information within a 

candidate EHR data set. Contrastingly, as we describe in “Methods,” we found that an inferential 

approach to predicting the first date of gestation is an appropriate pathway to addressing 

pregnancy identification, as data missingness in the extraction of delivery date from the provider-
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facing EHR to institutionally-maintained databases for secondary use is surprisingly significant. 

Our approach is also more accurate than the arithmetic approach, as it relies on multiple 

validated signals of obstetric care. We consider this approach more parsimonious than one of 

systematic data imputation followed by arithmetic determination, and we affirm that detailed 

informatics of pregnancy determination in the EHR lie outside the scope of the present study. 

Similarly, we are unaware of a row-level data source on the natural history of pregnancy that 

does not present such ontological limitations or that does not require statistical approaches to 

defining gestational time. Our approach is sufficiently simple to work across other data sets 

aligned to the Observational Medical Outcomes Partnership common data model (CDM)73, while 

enabling our analysts to readily reproduce our phenotyping for future experiments at our 

institution, given the approach’s training on our EHR data. 

 

Also, by design, our study evaluates perinatal outcomes, as testing relationships between in utero 

drug exposures and phenotypes at prolonged stages of the pediatric life course remains highly 

difficult due to the accumulation of potentially confounding etiologies during the natural history 

of childhood74. Therefore, we do not consider the boundaries of our phenotyping capabilities as a 

limitation of our approach; however, we believe that quantifying the extent to which drug 

exposures during pregnancy can create lifelong disabilities is a significant question. Addressing 

this question remains a “grand challenge” in the fields of pharmacoepidemiology and life course 

research and therefore warrants the creation of data management infrastructure that is more 

capable of reliably capturing patients’ childhood progressions through a collection of systems 

more diverse than EHRs75. We affirm that our decision to implement MedWAS across all 

pediatric outcomes, with downstream filtration of results to only perinatal outcomes, allowed us 

to accomplish our goal of discovering potentially iatrogenic etiologies for birth defects, while 

also allowing us to prospectively harness our data for future studies of prenatal determinants of 

adverse health outcomes that manifest later in childhood.  

 

In keeping with the results of most PheWAS studies, we are aware that the signals generated 

from this platform are potentially controversial76 and that despite our attempts to integrate 

multiple streams of clinical, statistical, biological, and archival evidence with manual EHR 

review, several of the hypotheses we generated may be explained by non-pharmacological 
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factors. We believe, however, that the strength of our platform is in the identification of priority 

areas for post-market review of drug use during pregnancy that is anchored in simple methods of 

RWE, that is sufficiently robust to accommodate the diversity of maternal drugs and perinatal 

diseases that naturally manifest in a large health system, and that is sufficiently parsimonious to 

allow for process replication in other health enterprises. We consider that the limited 

preconditioning necessary for execution of our approach makes it pacakageable, and that the 

qualitative aspects of our study design allow us to engage necessary clinical stakeholders for 

drug review more closely than further automated approaches might. 

 

We envision that this work will allow us to partner with regulators of consumer drug products to 

develop new programs that review post-market drug use among pregnant patients. Presently, we 

are working with colleagues at FDA to expand our model on larger and more diverse data sets 

and to integrate new evidence streams into our evaluation process, so we may achieve this goal 

of regulatory impact, while enhancing the analytical power and extent of trial emulation inherent 

to our approach. We consider the engagement of regulatory stakeholders as a very positive 

outcome of this research, which reinforces its implementabilty and provides us with an avenue to 

attempt the next steps we describe above. Furthermore, as part of a bench-to-bedside initiative to 

generate more accurate signals of drug safety in the regulatory evaluation of drug products 

potentially prescriptible to pregnant people, we are currently developing organotypic models of 

the human placenta77 and developing brain78 that can allow us to validate our most convincing 

MedWAS signals on a mechanistic basis. 
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Conclusions 

The systematic exclusion of pregnant people from RCTs remains common practice in the 

development and regulation of most consumer drug products; while this approach protects 

expectant mothers and their unborn children from potentially untoward side effects of 

experimental drug candidates, it translates to a persistent lack of clinical-grade information on 

the safety of most drug products employed at the point of care. Therefore, given the bulk of 

drugs for which it was unethical to include pregnant patients in RCTs but through which this 

population now receives therapeutic benefit, systematic and robust approaches to post-market 

surveillance of drug safety in pregnancy are important to ensure equipoise in ethics and health 

equity for this vulnerable patient population. The use of high-dimensional RWE in this space 

allows for efficient and representative post-approval analytical processes, as human data 

routinely generated from primary care may be repurposed in strategic ways to identify areas 

warranting further assessment for regulatory intervention and quality assurance. 

 

The research that we present in this manuscript proposes and demonstrates the development and 

implementation of such an approach to safety assessment. Through analysis of EHRs from a 

high-volume clinical enterprise, we present a workflow of mixed-methods evidence synthesis 

from clinical trial emulation and the engagement of key stakeholders in the delivery of maternal-

fetal care. Our approach allows for efficient, high-level identification of drug classes that warrant 

further consideration for regulatory program development through more structured, 

epidemiological methods. We are now constructing these downstream validation programs. 

 

In this manuscript, we also unpack the paradox that while regulatory-facing review of EHR data 

is one of very few ways to systematically access data on human drug response during pregnancy, 

the EHR requires important modifications to increase its amenability for such studies. Herein, 

while our signal identification and validation efforts have important limitations, we believe that 

our workflow can generate, at scale, a library of interesting and data-driven hypotheses on drug 

safety risks in pregnancy. We also value this workflow’s emphasis on hypothesis prioritization 

and the engagement of clinical providers in discussions on the need for enhanced labelling of 

pharmaceutical products. We believe the simplicity of our process makes it sufficiently pliable to 
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implement at other health systems with the same CDM underlying their EHRs, which we hope 

will further advance our understanding of the robustness of our approach.  

 

If we can expand our approach and further assess its robustness through the guidance of our 

regulatory collaborators, we believe that the research we present here could have important 

applications to enhancing the continued safety assessment of many drugs commonly consumed 

by the pregnant public. This goal holds immense translational potential.  
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Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: As a powerful framework of retrospective analysis, 
clinical trial emulation could allow pregnant people and their 
children to benefit from drug safety insights that arise from 
analysis of their own medical records. 
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Figure 2: MedWAS allowed us to ethically discover new drug 
safety insights from clinical trial-emulatory analysis of mothers’
drug histories and their neonates’ diseases. 
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Figure 3: Summary of the process to develop and assure the quality of MedWAS signals—the goal of our approach is to 
unearth and prioritize drug safety risks, towards generation of the highest quality hypotheses to inform new regulatory 
review programs. Engagement of obstetric, pharmacological, and regulatory stakeholders is inherent to this process. 
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*Per the “Data Availability Statement,” row-level positive control data may be available upon request.  

 

 

Drug Disease p OR # 
Disease+ 

% Disease+ with Drug 
Exposure 

phenytoin abnormal 
involuntary 
movements 

1x10-6 1.03 195 1 

Table 1*: An example MedWAS outcome for a known teratogenic relationship (fetal 
phenytoin intoxication and chorea) shows statistical significance across several mother-baby 
pairs, as we expected. A collection of 21 similar results across 10 known teratogens supports 
our claim of proof-of-concept for our approach. 
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