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Key messages 

 

What is already known on this subject 

• Despite there being multiple glucose-lowering treatment options available for people with 

type 2 diabetes, current guidelines do not provide clear advice on selecting the optimal 

treatment for most patients.  

• It is unknown whether routinely measured clinical features modify the risks and benefits of 

two common treatment options, DPP4-inhibitor or SGLT2-inhibitor therapy, and which could 

be used to target these treatments to those patients most likely to benefit. 

What this study adds 

• Using data from 10,414 participants in 14 randomised trials, and 26,877 patients in UK 

primary care, we show several routinely available clinical features, notably glycated 

haemoglobin (HbA1c) and kidney function, are robustly associated with differential HbA1c 

responses to initiating SGLT2-inhibitor and DPP4-inhibitor therapies. 

• Combining clinical features into a multivariable treatment selection model identifies 

validated patient strata with 1) a >5 mmol/mol HbA1c benefit for SGLT2-i therapy compared 

with DPP4-inhibitor therapy ; 2) a 50% reduced risk of early treatment discontinuation with 

DPP4-inhibitor therapy compared with SGLT2-inhibitor therapy. 

• Our findings demonstrate a precision medicine approach based on routine clinical features 

can inform clinical decisions concerning optimal type 2 diabetes treatment choices. 
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Abstract 

Objective: To establish whether clinical patient characteristics routinely measured in primary care 

can identify people with differing short-term benefits and risks for SGLT2-inhibitor and DPP4-

inhibitor therapies, and to derive and validate a treatment selection algorithm to identify the likely 

optimal therapy for individual patients. 

Design: Prospective cohort study. 

Setting: Routine clinical data from United Kingdom general practice (Clinical Practice Research 

Datalink [CPRD]), and individual-level clinical trial data from 14 multi-country trials of SGLT2-inhibitor 

and DPP4-inhibitor therapies. 

Participants: 26,877 new users of SGLT2-inhibitor and DPP4-inhibitor therapy in CPRD over 2013-

2019, and 10,414 participants randomised to SGLT2-inhibitor or DPP4-inhibitor therapy in 14 clinical 

trials, including 3 head-to-head trials of the two therapies (n=2,499). 

Main outcome measures: The primary outcome was achieved HbA1c 6 months after initiating 

therapy. Clinical features associated with differential HbA1c outcomes with SGLT2-inhibitor and 

DPP4-inhibitor therapies were identified in routine clinical data, with associations then tested in trial 

data. A multivariable treatment selection algorithm to predict differential HbA1c outcomes was 

developed in a CPRD derivation cohort (n=14,069), with validation in a CPRD validation cohort 

(n=9,376) and the head-to-head trials. In CPRD, we further explored the relationship between model 

predictions and secondary outcomes of weight loss and treatment discontinuation. 

Results: The final treatment selection algorithm included HbA1c, eGFR, ALT, age, and BMI, which 

were identified as predictors of differential HbA1c outcomes with SGLT2-inhibitor and DPP4-

inhibitor therapies using both routine and trial data. In validation cohorts, patient strata predicted to 

have a ≥5 mmol/mol HbA1c reduction with SGLT2-inhibitor therapy compared with DPP4-inhibitor 

therapy (38.8% of CPRD validation sample) had an observed greater reduction of 8.8 mmol/mol 

[95%CI 7.8-9.8] in the CPRD validation sample, a 5.8 mmol/mol (95%CI 3.9-7.7) greater reduction in 

the Cantata D/D2 trials, and a 6.6 mmol/mol [95%CI 2.2-11.0]) greater reduction in the BI1245.20 

trial. In CPRD, there was a greater weight reduction with SGLT2-inhibitor therapy regardless of 

predicted glycaemic benefit. Strata predicted to have greater reduction in HbA1c on SGLT2-inhibitor 

therapy had a similar risk of discontinuation as on DPP4-inhibitor therapy. In contrast, strata 

predicted to have greater reduction in HbA1c with DPP4-inhibitor therapy were half as likely to 

discontinue  DPP4-inhibitor therapy than SGLT2-inhibitor therapy.  
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Conclusions: Routinely measured clinical features are robustly associated with differential glycaemic 

responses to SGLT2-inhibitor and DPP4-inhibitor therapies. Combining features into a treatment 

selection algorithm can inform clinical decisions concerning optimal type 2 diabetes treatment 

choices.  
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Introduction 

SGLT2-inhibitors (SGLT2i) and DPP4-inhibitors (DPP4i) are recommended glucose-lowering 

treatment options after metformin in all major type 2 diabetes clinical guidelines.(1, 2) They 

represent around 60% of second-line treatment initiations in the UK,(3) and 27% in the US,(4). Trial 

data suggest that the average glucose-lowering efficacy of both therapies is similar, although SGLT2i 

are associated with weight loss, whilst DPP4i may be weight neutral.(5) Differences in tolerability 

have not been evaluated in large numbers of patients in routine practice. Whilst current ADA/EASD 

guidelines recommend SGLT2i and/or GLP-1 receptor agonists in people with established 

atherosclerotic cardiovascular disease, heart failure, or chronic kidney disease,(1) this stratification 

only applies to up to 15–20% of people with type 2 diabetes.(6, 7) This means that, for a majority of 

people with type 2 diabetes, there is considerable uncertainty on optimal treatment after initial 

metformin. 

A potential approach to treatment selection in type 2 diabetes is to use individual-level patient 

characteristics to target specific glucose-lowering treatment to those people most likely to 

benefit.(8) The hope is that such a targeted ‘precision medicine’ approach will, when implemented, 

improve glucose-lowering efficacy and drug tolerability, reduce side-effects, and reduce the risk of 

developing diabetes complications.(9) Recent studies have shown the potential for type 2 diabetes 

precision medicine, identifying subgroups with different glycaemic response to specific agents, rates 

of glycaemic progression, and risk of complications.(10-12) However, previous studies have not 

evaluated the clinical utility of the proposed precision medicine approaches, in particular whether 

differential outcomes between drug classes can be robustly predicted.(13) 

In this study we aimed to build on recently proposed ‘effect-modelling’ approaches to detect 

patient-level treatment effects(14-16) to evaluate: 1) whether individual routine clinical features are 

robustly associated with differential glycaemic response to SGLT2i and DPP4i therapies; 2) whether 

combining clinical features to predict HbA1c responses to SGLT2i and DPP4i therapies can inform 

selection of treatment based on optimal glucose-lowering; 3) whether selecting treatments based on 

predicted HbA1c responses relates to changes in weight and the likelihood of treatment 

discontinuation.  
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Methods 

Study population 

Routine clinical data 

Patients initiating SGLT2i and DPP4i therapies after January 1st, 2013, were identified in UK Clinical 

Practice Research Datalink (CPRD) GOLD (July 2019 download),(17) following our published 

protocol.(18) We then excluded those prescribed a SGLT2i or DPP4i as first-line treatment (as not 

recommended in UK guidelines)(2), co-treated with insulin, with eGFR <45 (where use of SGLT2i is 

usually contraindicated), or without a valid baseline HbA1c (<53 or ≥ 120 mmol/mol) value 

(sFlowchart). The following baseline clinical features were extracted, chosen due to availability in 

the majority of patients: HbA1c (most recent value in previous 6 months or 7 days after treatment 

initiation), age at treatment initiation, sex, diabetes duration, BMI, weight, c, eGFR, HDL-cholesterol, 

triglycerides, ALT, albumin, and bilirubin (all most recent value in the 2 years prior to therapy 

initiation). We also identified the number of currently prescribed glucose-lowering treatments, and 

the number of glucose-lowering drug classes ever prescribed.  

Clinical trial data 

Individual participant data from 14 randomised trials of SGLT2i and DPP4i therapies (total participant 

n=10,414) were accessed from the Yale University Open Data Access Project and Vivli.(19, 20) This 

included three active comparator HbA1c efficacy trials of SGLT2i vs DPP4i treatment (CANTATA-D 

and CANTATA-D2 trials of canagliflozin [SGLT2i] versus sitagliptin [DPP4i] /placebo; placebo arms not 

analysed),(21, 22) the BI1245.20 trial of empagliflozin [SGLT2i] versus sitagliptin),(23) six efficacy 

trials of SGLT2i versus placebo/sulfonylurea (four canagliflozin trials,(24-27) two empagliflozin 

trials;(28, 29) non-SGLT2i treatment arms not analysed), the EMPA-REG OUTCOME cardiovascular 

outcome trial (empaglifozin versus placebo; placebo arm not analysed, patients with insulin co-

treatment excluded, and only HbA1c measures on unchanged glucose-lowering therapy 

analysed),(30) and four efficacy trials of DPP4i versus placebo/sulfonylurea (all linagliptin, non-DPP4i 

treatment arms not analysed).(31-34) Participants randomised to different doses of active agents 

were pooled for analysis. Full details of trial inclusion criteria and final study cohorts are provided in 

sTable 1 and Supplement 2. HbA1c outcome data, and baseline assessment data for the same 

clinical features as in CPRD, were extracted. 

Outcomes 
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The primary efficacy outcome was the HbA1c value achieved six months after drug initiation, 

adjusted for baseline HbA1c.(35) In CPRD, this outcome was defined as the closest HbA1c to six 

months (within 3-15 months to maximise the number of patients with a valid outcome) after 

initiation, on unchanged therapy. In clinical trials, this outcome was defined as all on treatment 

HbA1c values at study visits from 3-6 months after randomisation. 

Secondary outcomes in CPRD comprised: 1) achieved weight six months after initiation (closest 

recorded weight to six months (within 3-15 months); 2) treatment discontinuation within six months 

of drug initiation (a proxy of drug tolerability). Patients were required to have three months of 

follow-up time after their last prescription to confirm the drug was discontinued.  

Statistical analysis 

Identifying individual features associated with differential drug response 

In CPRD, linear regression models were used to estimate the association between baseline HbA1c 

and six-month HbA1c by drug, fitting a drug-by-baseline HbA1c interaction term, and baseline HbA1c 

modelled as a 3-knot restricted cubic spline (RCS) to allow for non-linearity. In this model and all 

subsequent CPRD models, we controlled for differences in drug order and potential adherence 

effects by adjusting for the number of current glucose-lowering medications, and the number of 

previously initiated medications. We also adjusted for differences in month of outcome 

measurement by adjusting for the month (relative to baseline) that the HbA1c outcome was 

recorded. We then sequentially assessed associations by drug for other baseline clinical features, by 

adding each in-turn as drug-by-feature interactions to the baseline HbA1c adjusted model. Each 

feature was standardised to allow comparison of effect size across features. We conducted a 

complete case analysis for each feature of interest. To evaluate model fit we visually examined 

normality of residuals and linearity of associations for continuous variables. 

In the trials, we estimated associations for the same clinical features as per CPRD using repeated 

measures mixed effect models and patient-level random-effects, using on-therapy HbA1c values at 

each discrete study visit up to six months post-randomisation. Features were standardised to CPRD 

distributions. For active comparator trials, we compared efficacy by drug using drug-by-feature 

interaction terms. For each clinical feature, trial estimates were then pooled using two-stage 

random effects meta-analysis.(36)  

Treatment selection model derivation 

We set out to develop a counterfactual prediction model to predict HbA1c outcome for an individual 

patient if they were to receive either SGLT2i or DPP4i therapy (treatment selection model). A 
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multivariable linear regression model was developed in a CPRD 60% random sample (derivation 

cohort). The remaining 40% of patients were held back for evaluating model performance. By 

including treatment-by-feature interaction terms, the model facilitated prediction of the outcome on 

each treatment, conditional on the features included as interaction terms, and thus enabled 

prediction of individualised treatment effects. For each person, the difference between the 

predicted HbA1c outcome on each therapy provides an estimate of the ‘individualised’ treatment 

effect. 

To inform variable selection, an initial linear regression model for six-month HbA1c with interaction 

terms between treatment and all baseline clinical features (continuous features modelled as three-

knot RCS) as explanatory variables was fitted. The relative importance of each baseline clinical 

feature for estimating individualised treatment effects was assessed by estimating the proportion of 

chi-squared explained by the interaction term for each feature (which represents the differential 

effect of the feature on HbA1c outcome), with bootstrapped confidence intervals. Stepwise forward 

selection was used to identify the feature subset for the final model, by adding drug-by-feature 

interaction terms in order of relative importance to a base model that included all clinical features 

without interaction terms, with inclusion based on a p<0.01 threshold. Non-differential features 

were omitted from the final model as they explained little variation in predicting overall HbA1c 

outcome (additional R
2
 0.004). To adjust for overfitting in the final model, penalised ridge regression 

was used to optimise for AIC.(37) A complete case approach was used throughout as missing 

baseline data were considered likely to be missing not at random.(38) Standard performance metrics 

were estimated to assess model performance for predicting HbA1c outcome; optimism-adjusted 

model R
2
, root mean square error, and the calibration slope and calibration-in-the-large.(39)  

Treatment selection model external validation 

In contrast to standard prediction models, for treatment selection models, accurately predicting the 

magnitude of difference between therapies (the individualised treatment effect) is more important 

than accurately predicting the outcome.(40) Standard model performance metrics test the ability of 

a model to predict the outcome, and are therefore of limited use in the context of evaluating a 

model estimating individualised treatment effects.(40, 41) The challenge for validation is that, 

without a crossover trial, the difference in treatment effect cannot be measured directly within an 

individual, as each individual will have outcome data available on the treatment initiated, but not on 

the other treatment(s) they could have but did not initiate (the counterfactual outcome).  

What is possible is evaluation of a treatment selection model in validation data by assessing 

differences in observed outcome in patient strata defined by model-predicted individualised 
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treatment effects. Evaluation using this approach for the SGLT2i versus DPP4i treatment selection 

model is described in Figure 1, and was applied to evaluate the model in individual-level 

independent validation data from three randomised SGLT2i versus DPP4i head-to-head trials, and 

the CPRD 40% hold-back set. CANTATA-D and CANTATA-D2 trial participants were pooled (these 

differed only in background therapy [D: metformin only; D2: metformin and sulfonylurea]); 

BI1245.20 participants (drug-naïve to glucose-lowering agents) were analysed separately. The 

following steps were undertaken in each dataset: (1) HbA1c reductions were predicted for both 

SGLT2i and DPP4i therapies for all individuals; (2) predictions were used to estimate individualised 

treatment effects (the estimated difference in HbA1c outcome on the two therapies); (3) strata were 

defined by decile of predicted individualised treatment effect, and by clinically defined HbA1c cut-

offs of predicted individualised treatment effect (SGLT2i benefit: ≥10, 5-10, 3-5, 0-3 mmol/mol; 

DPP4i benefit: ≥5, 3-5, 0-3 mmol/mol); 4) linear regression models were used to contrast within-

strata HbA1c outcome in concordant (i.e. therapy received is the therapy predicted to have greatest 

HbA1c lowering) versus discordant (i.e. therapy received is the predicted non-optimal therapy) 

subgroups. In CPRD, estimates were adjusted for clinical features in the treatment selection model 

(to improve precision and control for potential differences in covariate balance within subgroups). 

Trial estimates were unadjusted. In the randomised trials, the outcome assessed was last-

observational-carried-forward six-month HbA1c. Longer term 12-month HbA1c outcome was 

evaluated in the trials as a sensitivity analysis.  

 

Weight change and treatment discontinuation 

In CPRD, to assess whether selecting treatment based on predicted HbA1c outcome altered other 

short-term patient outcomes, we tested whether six-month weight change and risk of 

discontinuation varied by degree of predicted individualised HbA1c treatment effect. The same 

concordant-discordant approach as for HbA1c outcome was used. For treatment discontinuation, a 

logistic regression model was fitted with predicted HbA1c difference between therapies as the 

exposure (3-knot RCS), adjusting for baseline weight, the number of current glucose-lowering 

medications, and the number of previously initiated medications. For weight change, a linear 

regression was fitted with additional adjustment for baseline weight. Longer term 12-month 

outcomes were evaluated as a sensitivity analysis. 

 

All analyses were conducted using Rv4.0.2. CPRD data preparation was carried out using Stata v15.0. 

We followed TRIPOD (transparent reporting of a multivariable model for individual prognosis or 

diagnosis) guidance for model development and reporting.(39)  
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Patient and public involvement 

People with type 2 diabetes were involved in the MASTERMIND consortium and were key in 

identifying that better, more tailored, evidence was needed for the choice of second and third-line 

glucose-lowering therapy. There was no patient or public involvement when conducting this specific 

study in terms of study design, analysis, interpretation or writing.  
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Results 

Glycaemic response: Baseline HbA1c, current age, diabetes duration, eGFR, ALT and BMI are 

individual clinical features associated with differential HbA1c response with SGLT2i and DPP4i 

therapy  

Baseline clinical characteristics are reported in sTable 1 for all study cohorts. The final CPRD cohort 

comprised 10,253 new users of SGLT2i therapy and 16,624 new users of DPP4i therapy with valid 

HbA1c outcome data (sFlowchart). In CPRD, higher baseline HbA1c was associated with a markedly 

greater HbA1c reduction at 6 months with SGLT2i compared to DPP4i (Figure 2). This association was 

replicated in the active comparator SGLT2i versus DPP4i trials (Figure 2). Adjusted for baseline 

HbA1c, multiple individual features showed evidence of differential responses in CPRD (Figure 3a). 

Differential effects of greatest magnitude were seen for current age and diabetes duration (higher 

age / longer duration associated with greater response to DPP4i but not SGLT2i), eGFR and ALT 

(higher values associated with greater response to SGLT2i, lesser response to DPP4i), and BMI 

(higher BMI associated with a lesser response to DPP4i, no association with SGLT2i response). 

Differential treatment effects for BMI and ALT were replicated in trials, as was the association 

between higher eGFR and greater SGLT2i response (Figure 3b). Associations between higher age and 

lower eGFR with greater  DPP4i response was not replicated (Figure 3b).  

Model development 

In the model assessing all clinical features, baseline HbA1c and eGFR were the most important 

clinical features for predicting differential treatment effects, followed by ALT, BMI, and current age 

(sFigure 1). Only these five differential features significantly improved prediction of HbA1c outcome 

and were included in the final model (derivation cohort n=14,069). The full model equation is 

reported in sTable 3, with non-linear associations for continuous clinical features reported in sFigure 

2. Performance of the model for predicting HbA1c outcome in the derivation cohort is reported in 

sTable 4a. Internal validation showed that the final model explained 29.1% of the variation in HbA1c 

outcome, and was well calibrated (slope 0.9967 [1=perfect]) (sFigure 3a).  

There was evidence of marked heterogeneity in predicted individualised treatment effects, with the 

model predicting a benefit with SGLT2i for 84% (n=11,814) and a benefit with DPP4i for 16% 

(n=2,255) of patients in the derivation cohort (Figure 4). Across deciles of predicted individualised 

treatment effect, there was good calibration between observed HbA1c differences and predictions 

(Figure 4).  
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Model validation: Combined clinical features have clear utility for predicting individualised HbA1c 

treatment effects  

Calibration between observed HbA1c differences and predictions was good in  CANTATA-D/D2 trials 

and the CPRD validation sample, in the smaller BI1245.20 trial overall calibration was less good but 

patient deciles with the greatest predicted HbA1c benefit on SGLT2i had a clear observed benefit in-

line with predictions (Figure 4). In CPRD, SGLT2i-optimal concordant patients (those who received 

SGLT2i and for whom SGLT2i was the predicted best therapy) had a 5.4 mmol/mol benefit compared 

to SGLT2i-optimal discordant patients (those who received DPP4i but for whom SGLT2i was the best 

predicted therapy) (Figure 5). SGLT2i-optimal patients with a predicted SGLT2i benefit ≥5 mmol/mol 

(n=3,756 [40.1% of total]) had an 8.9 mmol/mol observed benefit if they received SGLT2i compared 

to DPP4i.  

The model also identified a smaller group of patients with a potential HbA1c benefit on DPP4i 

therapy. In the CPRD validation set, DPP4i-optimal concordant patients with any predicted benefit 

on DPP4i did not have an observed benefit (0.6 [95%CI -1.4, 2.3] mmol/mol, n=1,540 [16.4%]) 

(Figure 5). Those with a predicted benefit ≥3 mmol/mol on DPP4i (n=450 [4.8%]) had a 1.8 [95%CI -

2.5, 6.0] mmol/mol observed benefit. Results for both SGLT2i and DPP4i-optimal groups were similar 

in both trials, for 6 month (Figure 5) and 12-month HbA1c outcome (sTable 6).   

Model performance for predicting HbA1c outcome in all validation sets is reported in sTable 4b and 

sFigure 3b-d; calibration was good in the CPRD validation set but observed HbA1c outcome was 

consistently lower (better) than predicted HbA1c outcome in the trials, potentially reflecting greater 

adherence in trial participants.  

Weight change does not vary by predicted individualised HbA1c treatment effect, but patients for 

whom DPP4i is the predicted optimal treatment based on HbA1c have a lower risk of 

discontinuation on DPP4i than SGLT2i therapy 

In CPRD overall, at 6 months patients initiating SGLT2i had a greater median weight loss (3.7kg [IQR 

3.2-4.3]) than patients initiating DPP4i (1.0kg [IQR 0.5-1.6) (sTable 7a). There was greater weight loss 

with SGLT2i then DPP4i across all subgroups defined by model predicted differences between 

therapies in HbA1c outcome (Figure 6a). Overall treatment discontinuation within 6 months was 

similar on SGLT2i and DPP4i (median 16.1% [IQR 13.5-20.3] and 14.4% [IQR 12.9-16.7] respectively), 

and in patients predicted to have an HbA1c benefit with SGLT2i over DPP4i (median 15.2% [IQR 13.2-

20.3] and 14.4% [IQR 12.9-16.7] respectively) (Figure 6b, sTable 7b). In patients predicted to have an 

HbA1c benefit on DPP4i, median discontinuation was lower on DPP4i than SGLT2i (14.8% [IQR 12.9, 
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16.8] and 26.8% [IQR 23.4-31.0] respectively). In patients with a predicted HbA1c benefit of ≥3 

mmol/mol on DPP4i, discontinuation on DPP4i was half of that observed for SGLT2i (DPP4i 14.9% 

[IQR 13.0-16.9] versus SGLT2i 33.1% [IQR 29.7-36.9]) (Figure 6b, sTable 7b). Differences were 

consistent at 12 months (sFigure 5).  

 

Clinical characteristics by subgroups defined by model predicted HBA1c differences between 

therapies 

In the overall CPRD cohort (n=36,454 with valid data to fit the treatment selection model; sTable 8), 

patients with a predicted HbA1c benefit ≥5 mmol/mol with SGLT2i than DPP4i therapy (40.8% of all 

patients) were younger (median age 55), predominantly male (66.6%) and obese (median BMI 34.1), 

with higher HbA1c (median 80.2 mmol/mol), eGFR (median 97) and ALT (median 37.0 IU/L) levels 

(sTable 8). Conversely, patients with a predicted HbA1c benefit ≥3 mmol/mol with DPP4i than 

SGLT2i therapy (5.0% of all patients) were older (median age 79), equally male and female (51.5% 

male), slimmer (median BMI 26.5), with lower HbA1c (median 61.0), eGFR (median 59) and ALT 

median (15.0). 50.2% of patients with a predicted HbA1c benefit ≥5 mmol/mol with SGLT2i received 

a SGLT2i, whilst 88.7% of patients with a predicted HbA1c benefit ≥3 mmol/mol with DPP4i received 

a DPP4i.  

 

Development of prototype treatment selection decision aid 

A research-only web tool implementing the algorithm developed for this study is available at: 

diabetes-calculator.uksouth.cloudapp.azure.com/calculator/ 
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Discussion 

This study, using UK clinical data with confirmation of findings in multiple clinical trial datasets, 

demonstrates that routinely measured clinical features of people with type 2 diabetes are associated 

with differential HbA1c responses to SGLT2i and DPP4i therapies. By developing an algorithm 

combining baseline HbA1c, current age, BMI, eGFR and ALT, we identify a large group of people 

(40.8% of UK patients initiating these therapies) with a predicted glycaemic benefit ≥5 mmol/mol 

and greater weight loss on SGLT2i compared with DPP4i, and a similar risk of early discontinuation 

for both agents. We also identify a smaller group of patients (16.5% of UK patients, so around 1 in 6) 

with a 50% lower risk of short-term discontinuation (around 10% lower) on DPP4i compared with 

SGLT2i, and who may have a greater glycaemic reduction with DPP4i therapy but greater weight loss 

with SGLT2i. The remaining patients have a similar glycaemic response and similar risk of treatment 

discontinuation with both therapies, but with greater weight loss on SGLT2i.  

Our analysis provides a demonstration of translational precision medicine in informing the selection 

of add on type 2 diabetes therapies. Validation of findings in randomised clinical trial data and an 

independent sample of routine patient data provides a robust demonstration of the clinical utility of 

using simple clinical features to provide individualised estimates of the risks and benefits of SGLT2i 

and DPP4i treatments. . Although not all differences in effects for individual clinical features 

observed in routine data were replicated in the trials, notably associations between higher current 

age and lower eGFR with lesser DPP4i response, the multivariable algorithm performed well in 

validation. The validation framework applied is analogous to cardiovascular risk prediction models 

such as QRISK which are used routinely in UK current practice,(42) where effectiveness reflects the 

ability of the model to accurately quantify risk at a population level, rather than precisely define the 

time to cardiovascular event for an individual. For deployment, the use of only routinely measured 

patient-level characteristics has large advantages in cost and feasibility compared to approaches 

based on non-routine measurements such as genetic information. Of critical importance, the 

individual-level estimates provided by the algorithm are not intended to be prescriptive, but instead 

to support more informed discussion on the benefits and risk of SGLT2i and DPP4i treatment for an 

individual patient, alongside understanding of average-level class effects, in particular the 

demonstrated cardiovascular benefit of SGLT2i in people with, or at high-risk of, cardiovascular 

disease.  

The combination of clinical features predicting differential glycaemic response most likely relates to 

differences in the underlying mechanism of action of the two therapies, although this needs further 

study. For example, increased urinary glucose excretion offers a likely explanation for the greater 
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response to SGLT2i in patients with higher levels of baseline HbA1c and kidney function, and it is 

biologically plausible that factors associated with insulin resistance (i.e. BMI, ALT levels) would 

reduce response to an agent that acts primarily through potentiating insulin secretion (DPP4i) but 

not SGLT2i which acts though an independent mechanism.(43) 

Whilst the two-step approach of model development and validation in independent datasets used in 

this study is similar to that proposed in the recent Predictive Approaches to Treatment effect 

Heterogeneity (PATH) statement,(15) our design differs in that we used routine clinical data rather 

than clinical trial data for the initial ‘discovery’ analysis and model development. The advantage of 

using routine data for detecting and estimating heterogenous treatment effects was the large 

sample size and greater heterogeneity of patients in clinical practice compared to trial settings. The 

performance of the algorithm developed was then tested in multiple randomised trial datasets 

where systematic participant follow-up is available, and likelihood of confounding is much lower. 

Whilst our study highlights a potential for using routine health data for exploratory studies of 

treatment effect heterogeneity, further research on optimal designs for treatment effect 

heterogeneity studies is needed,(15) and given the known biases of routine data, the second step of 

validation in randomised data will likely always be required to demonstrate clinical utility.  

Our study has several limitations. Notably, we were not able to validate differential treatment 

effects at the individual level. This is because individual level treatment effects are not directly 

observable as patient outcomes can only be observed for the treatment taken, and not the 

counterfactual outcome on other treatment(s) that could have been taken (the fundamental 

problem of causal inference).(44) Randomised crossover-trial designs are the only way to evaluate 

such individual level effects. In the absence of such trials, the demonstration of model utility in 

multiple independent datasets we provide is the next best evidence. We did not evaluate differential 

treatment effects by ethnicity, due to the limited numbers of non-white patients in both the routine 

clinical and trial datasets, an important area for future work. We also did not evaluate longer-term 

patient outcomes, in particular cardiovascular and renal endpoints, for which SGLT2i treatment is 

recommended in high risk groups in European/American guidelines.(1) Trial data provide an 

opportunity to explore the utility of non-routine features for treatment selection, which we did not 

explore as our focus was on developing a model for potential deployment in clinical practice in the 

near future. Evaluation of non-routine features in trial data, and genetic data, will be of particular 

interest for future study of underlying mechanisms of heterogeneous drug action.(45)   

By providing validated patient level estimates of differences in glucose-lowering efficacy for these 

two major type 2 diabetes treatments, as well as assessing weight and discontinuation outcomes, 
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our study has implications for clinical practice. The clinical features required to provide these 

estimates will be routinely measured and available to the majority of health professionals in 

developed countries. Work is ongoing to extend the prototype treatment selection decision aid to 

other type 2 diabetes treatment options; we have previously demonstrated differential treatment 

effects for sulfonylurea, thiazolidinedione, and GLP-1 receptor agonist therapy based on routine 

clinical features.(12, 46, 47)  

 

Conclusion 

Simple clinical features can identify a large group of people with type 2 diabetes with a likely marked 

glycaemic benefit on SGLT2i therapy, and no increased risk of discontinuing treatment with SGLT2i 

compared with DPP4i. A smaller group have perhaps a clinically relevant glycaemic benefit on DPP4i, 

and meaningfully lower discontinuation risk on DPP4i compared with SGLT2i. These findings 

demonstrate the potential for a type 2 diabetes precision medicine approach based on routine 

features to inform clinical decisions concerning the choice of optimal glucose-lowering treatments. 
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Figure legends 

Figure 1: SGLT2-inhibitor versus DPP4-inhibitor treatment selection model evaluation framework. 

In a suitable validation dataset (Step 1), model derived individualised treatment effects can be used 

to assign patients into strata based on model-predicted optimal therapy (Step 2). In its simplest form 

each patient can be assigned one of to two strata: A) DPP4i is the predicted optimal therapy; B) 

SGLT2i is the predicted optimal therapy. Concordant (therapy received = predicted optimal therapy) 

and discordant (therapy received ≠ predicted optimal therapy) subgroups can then be defined based 

on the therapy actually received by each patient (Step 3). Finally, to evaluate treatment selection 

model performance, the magnitude of improvement in outcome in the concordant compared to the 

discordant subgroups can be estimated within each strata (Step 4). More granular strata can be 

defined based on the size of predicted treatment effect (for example, a strata defined by a predicted 

>5 mmol/mol HbA1c benefit on SGLT2i versus DPP4i), and the same concordant-discordant 

framework can be used to evaluate if the within-strata observed difference in outcome is similar to 

the predicted difference. 
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Figure 2: Association between baseline HbA1c and 6 month HbA1c response (outcome HbA1c – 

baseline HbA1c) for SGLT2-inhibitor and DPP4-inhibitor treatment a) CPRD routine clinical data 

(n=26,877); b) CANTATA D/D2 trials (n=1,755); c) BI1245.20 trial (n=630). Histograms show the 

distribution of baseline HbA1c in each dataset.  
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Figure 3: Associations between clinical features and baseline HbA1c adjusted 6 month HbA1c 

response for SGLT2-inhibitor and DPP4-inhibitor treatment. Negative estimates represent an 

association between a greater value of the clinical feature and greater HbA1c improvement, positive 

estimates represent an association between a greater value of the clinical feature and lesser HbA1c 

improvement. Data underlying the plot, including estimates from each individual trial, are reported 

in sTable 2. 

a) CPRD routine clinical data (n=28,677). Estimates are derived from separate models for each 

clinical feature. N’s represent the number of patients included in the model for each clinical 

feature. Each model was adjusted for baseline HbA1c-by-drug interaction, number of 

glucose-lowering drug classes ever prescribed, number of current glucose-lowering 

treatments, and month of HbA1c outcome measurement.   
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b) Clinical trial data meta-analysis (14 trials, n=10,414). Estimates are derived from separate 

models for each clinical feature, with each model adjusted for baseline HbA1c-by-drug 

interaction. 
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Figure 4: Final treatment selection model performance.  

i) Distribution of the predicted individualised treatment effect of SGLT2-inhibitor treatment compared to DPP4-inhibitor treatment in the 

CPRD derivation sample (n=14,069) [left panel]. Negative values reflect a predicted glucose-lowering treatment benefit on SGLT2-inhibitor 

treatment, positive values reflect a predicted treatment benefit on DPP4-inhibitor treatment.  

ii) Calibration between observed and predicted treatment effects, by decile of predicted treatment effect [right panel], in a) CPRD derivation 

sample (n=14,069); b) CPRD validation sample (n=9,276); c) CANTATA D/D2 trials (n=1,755); d) BI1245.20 trial (n=630). In CPRD, estimates are 

adjusted for clinical features in the treatment selection model (to improve precision and control for potential differences in covariate balance 

within subgroups). Trial estimates are unadjusted. 
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Figure 5: Observed treatment effects across subgroups defined by clinical cut-offs of predicted 

treatment benefit. In CPRD, estimates are adjusted for clinical features in the treatment selection 

model, trial estimates are unadjusted. sTable 6 reports the data underlying the plot. sFigure 4 

reports the full distribution of predicted treatment difference estimates. 
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Figure 6: 6 month weight change and risk of treatment discontinuation, across subgroups defined 

by clinical cut-offs of predicted treatment benefit, in CPRD routine clinical data. Data are median 

(interquartile range) for each subgroup. 12 month outcomes are reported in sFigure 4. 

a) Weight change at 6 months (n=15,627). Estimates include all patients with valid baseline 

data for glucose-lowering treatment selection model and with weight outcome recorded 

between 3 and 15 months after drug initiation (closest measure to 6-months used), on 

unchanged glucose-lowering therapy.  
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b) Risk of treatment discontinuation within 6 months (n=28,514). Estimates include all 

patients with valid baseline data for glucose-lowering treatment selection model and with 3 

additional months of follow up to confirm treatment was truly discontinued.  
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