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Abstract
Escherichia coli is an important cause of bloodstream infections (BSI), which is of concern
given its high mortality and increasing worldwide prevalence. Finding bacterial genetic
variants that might contribute to patient death is of interest to better understand its
mechanism and implement diagnostic methods that specifically look for those factors. E. coli
samples isolated from patients with BSI are an ideal dataset to systematically search for
those variants, as long as the influence of host factors such as comorbidities are taken into
account. Here we performed a genome-wide association study (GWAS) using data from 910
patients with E. coli BSI from hospitals in Paris, France; we looked for associations between
bacterial genetic variants and three patient outcomes (death at 28 days, septic shock and
admission to intensive care unit), as well as two portals of entry (urinary and digestive tract),
using various clinical variables from each patient to account for host factors. We did not find
any associations between genetic variants and patient outcomes, potentially confirming the
strong influence of host factors in influencing the course of BSI; we however found a strong
association between the papGII/papGIII operon and entrance of E. coli through the urinary
tract, which demonstrates the power of bacterial GWAS even when applied to actual clinical
data. Despite the lack of associations between E. coli genetic variants and patient outcomes,
we estimate that increasing the sample size by one order of magnitude could lead to the
discovery of some putative causal variants. The adoption of bacterial genome sequencing of
clinical isolates might eventually lead to the elucidation of the mechanisms behind BSI
progression and the development of sequence-based diagnostics.
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Introduction

Escherichia coli bloodstream infections (BSI) represent an increasing public health burden as
(i) they exhibit high mortality (between 10 and 30%)1,2, (ii) its worldwide prevalence is
increasing since the 2000s3 and (iii) antimicrobial resistance is rising in E. coli3, which could
impact patients’ management and infection outcome. Molecular epidemiology of BSI has
been refined in the last few years thanks to whole genome sequencing. E. coli has a clonal
population structure4 with the delineation of at least eight phylogroups (A, B1, B2, C, D, E, F
and G)5. Strains responsible for BSI belong mainly to a few clonal lineages including
sequence type (ST) 131, ST73 and ST95, all of the B2 phylogroup, ST69 (D phylogroup) and
ST10 (A phylogroup)5. Until now, classical multivariate analyses have identified host factors
and portal of entry as the major determinants of a patient’s death, while bacterial genetic
traits have been associated with a smaller effect size to mortality or only in a subset of
studies1,2,6–10.

Bacterial genome wide association studies (GWAS) are now common thanks to an increase
in sequencing capacity and specific computational tools11; in E. coli they have allowed the
identification of genetic traits linked to pathogenicity in avian strains12, invasiveness in urinary
tract infection (UTI) strains13 and isolation source14. However, they failed to identify genetic
markers of disease severity in Shigellosis15. This could have multiple explanations: disease
severity (e.g. patient death) is a trait that is not under selection as it doesn’t provide a
reproductive advantage, and is therefore less likely to evolve independently across multiple
lineages, which in turn makes it less likely to be found through bacterial GWAS16.
Furthermore, as opposed to antimicrobial resistance which is often caused by a handful of
genetic variants, disease severity might involve multiple genetic loci, each with small effects,
which are harder to discover. Lastly, small sample sizes can lead to insufficient power to find
causal variants.

Identifying microbial genetic elements that contribute to the outcome of BSI is of interest to i)
better understand the molecular mechanisms of microbial infection, and ii) improve patient
care and prediction of clinically-relevant bacterial traits based on microbial genomics data,
which is increasingly becoming available with very low turnaround time17. In this context, we
performed GWAS on data from two large clinical observational prospective multicentric
studies from the Paris area (Septicoli10 and Colibafi8) involving a total of 910 adult patients
with E. coli BSI. We used the clinical information from each patient, such as age,
comorbidities and treatment as covariates to reduce the influence of host factors in the
association analysis18. We found no association between microbial genetic elements and
infection outcomes, which seems to indicate that host and clinical factors have a more
predominant role. On the other hand, we found a clear signal between several genes such as
the pap operon with the urinary and digestive portals of entry. Lastly, we ran a statistical
power analysis using a set of simulated genomes, which indicated how a 10-fold increase in
sample size may lead to the discovery of further bacterial factors associated with the
establishment of BSI and with its outcomes.

Results

A combined dataset of 910 BSI patients with matching clinical data and bacterial
isolates whole genomes
In this study we combined data from two similar clinical studies (Colibafi8 and Septicoli10),
conducted across 11 teaching hospitals, belonging to the same institution, the “Assistance
Publique-Hôpitaux de Paris” (AP-HP), across and around Paris, France. The earlier study
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(Colibafi, 2005) originally included 1,051 patients across the whole of France, with
information about bacterial genetic determinants obtained through PCR molecular assays; in
this study we kept only those 365 samples originating from 8 hospitals from the Paris area to
avoid geographical biases. From the later study (Septicoli, 2016-7) we kept all the 545
samples from 7 hospitals in the Paris area. Bacterial genomes of these samples from both
studies, generated by Illumina technology, were available19. We focused on three outcomes
for the patients represented in the combined dataset, namely death at 28th days, presence of
a septic shock and admission to an intensive care unit (ICU); we note that these outcomes
are not mutually exclusive. We found that the prevalence of these outcomes in the two
studies was 10.7%, 24% and 14.5%, for death, septic shock and admission to ICU,
respectively (Figure 1a). We found that the prevalence of death and admission to ICU was
very similar between the two studies, with 12.3% and 9.5% of deaths in the Colibafi and
Septicoli studies, respectively, and admission to the ICU reported for 12.3% and 16% of
patients. Conversely, we found a much higher incidence of patients experiencing septic
shock in the Septicoli cohort: 32.5% of patients versus 11.2% in Colibafi (Figure 1b). These
variations may be due to the different hospitals contributing the clinical data between the two
studies: indeed, even though both studies are exclusively focused on the AP-HP teaching
hospitals in Paris, only 4 out of 11 hospitals are included in both studies19. We additionally
focused on the reported portal of entry of the BSI, which has been previously found to be
predictive of patient outcome; urinary and digestive tract portals of entry were the most
prevalent in the combined dataset - 58.2% and 35.7% of patients, respectively. The other
reported portals of entry all had a prevalence below 5% (Figure 1a), and we therefore chose
to only use the urinary and digestive tract portals of entry for all subsequent analyses. We
found that entry through the digestive tract was reported for 41.8% patients in the Septicoli
study, compared to 26.6% in the Colibafi study, which again may be due to differences in the
hospitals providing the data for both studies (Figure 1b). The age distribution between the
two studies is comparable, with median age of the patients being 67 and 69 years in the
Colibafi and Septicoli studies, respectively (Figure 1c). To reduce the influence of these
differences between the two studies on our analyses, we introduced the study provenance as
a covariant in the combined dataset (Supplementary Table 1).
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Figure 1. Clinical variables of the combined dataset (910 BSI samples). a) Proportion of
the three patient outcomes after BSI and their portals of entry. b) Scatterplot of the proportion
of all binary clinical variables in the two studies, highlighting the major differences. c) Violin
plot showing the patients' age distribution between the two studies.

The pathogen portal of entry is associated with BSI outcomes
We found that several clinical variables are associated with the three patient outcomes,
consistent with earlier analyses on the two studies alone8,10 (Table 1). Among other variables,
we found that entry through the pulmonary and digestive tract were associated with the death
of the patient (odds ratio 2.88 and 1.51 and p-values 8E-5 and 0.006, respectively), while
entry through the urinary tract was found to be protective (odds ratio 0.51, p-value 2E-5). We
found that entry through the pulmonary tract was also associated with patients experiencing
a septic shock (odds ratio 2.12, p-value 4E-3), while we found that entry through the digestive
tract was associated with patients being admitted to the ICU, among other variables (odds
ratio 1.53, p-value 1E-3). When combining all clinical variables with association p-value < 0.1
into a multivariate analysis (Table 2, see Methods) we found that portal of entry was again
the dominant variable associated with patient outcomes, together with study provenance. In
particular we found that entry through the pulmonary tract was significantly associated with a
patient’s death (odds ratio 2.40, p-value 0.003), while entry through the urinary tract was
negatively associated (odds ratio 0.64, p-value 0.008). We found that entry through the
pulmonary tract was also significantly associated with a patient experiencing a septic shock
(odds ratio 2.10, p-value 0.005), while entry through the digestive tract was associated with a
patient being admitted to the ICU (odds ratio 1.57, p-value 0.002). This analysis underscores
the influence of the E. coli portal of entry on BSI outcomes, which in turn could have an
association with specific bacterial genetic elements.
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Patient outcome Clinical variable Odds-ratio [95% CI] P-value

death urinary tract 0.51 [0.38-0.69] 2E-5

pulmonary tract 2.88 [1.70-4.87] 8E-5

malignant tumor 1.75 [1.30-2.35] 2E-4

digestive tract 1.51 [1.12-2.04] 0.006

chronic alcoholism 1.74 [1.16-2.60] 0.007

immunosuppression 1.50 [1.11-2.02] 0.007

active smoking 1.56 [1.11-2.19] 0.009

septic shock pulmonary tract 2.12 [1.27-3.55] 0.003

admission to ICU cirrhosis 1.99 [1.37-2.89] 2E-4

digestive tract 1.53 [1.18-1.99] 0.001

active smoking 1.59 [1.17-2.16] 0.003

Table 1. Univariate analysis on the combined dataset. Only clinical variables significantly
associated with BSI outcomes are shown. CI, confidence interval.

Patient outcome Clinical variable Odds-ratio [95% CI] P-value

death study: septicoli 0.59 [0.41-0.83] 0.003

pulmonary tract 2.40 [1.33-4.20] 0.003

urinary tract 0.64 [0.45-0.89] 0.008

septic shock study: septicoli 2.54 [1.96-3.33] 5E-12

pulmonary tract 2.10 [1.25-3.51] 0.005

admission to ICU digestive tract 1.57 [1.19-2.08] 0.002

Table 2. Multivariate analysis on the combined dataset. Only clinical variables with
p-value < 0.01 are reported for each patient outcome, with the exception of the intercept. CI,
confidence interval.

We found that no E. coli phylogroup was associated with patient death (p-value > 0.01),
consistent with earlier analyses from the two separate studies8,10, in contrast to what we
previously observed in a mouse model of BSI, in which we found that the B2 phylogroup was
associated with the death of the animal20. This difference suggests that host and clinical
factors may have a larger influence on patient outcomes than the genetic background of the
bacterial isolate, at least in this dataset. We also observed no association between an
isolate’s phylogroup and a septic shock or admission to the ICU. The absence of these
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genetic background effects does not imply that there are no “locus effects”, meaning that
individual genetic variants may still be found to be associated with patients' outcomes. We
found a strong association between the isolates’ phylogroup and the urinary and digestive
tract portals of entry; phylogroups A, B1 and B2 were associated with both phenotypes
(p-value < 0.01, Supplementary Table 2). Such similarity between the two phenotypes is not
surprising given the low prevalence of the other portals of entry, leading to two almost
mutually exclusive traits (Figure 2).

Figure 2. Core genome phylogenetic tree of the 910 E. coli isolates used in this study.
Each ring reports the main bacterial and clinical variables of this study. The light color in the
rings related to patient outcomes and portals of entry indicates the absence of the
phenotype.

Bacterial genetic factors can explain a significant fraction of the variation of the route
of infection
We used narrow-sense heritability - the fraction of phenotypic variance that is explained by
additive genetic effects21 - to estimate whether we could expect to find bacterial genetic
variants in association with either patient outcome or the two main portals of entry. Since we
found that clinical variables and the pathogen’s phylogroup are associated with our target
variables, we measured heritability in three ways: using the phylogroup alone as a genetic
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effect16, and using a kinship matrix generated from the core genome phylogeny, alone or
conditioning the analysis with the clinical variables in order to account for confounding factors
(Figure 3). We found that phylogroups could explain 9% and 10% of the variation for the
urinary and digestive tract infections, respectively (95% CI 0.5% - 46.6% and 0.6% - 46.7%,
respectively), but none for any of the three patient outcomes. Variation in core genome SNPs
could however explain 19% (95% CI 3.2% - 69.8%) of the variation in admission to the ICU,
which we found to be negligibly reduced to 18% (95% CI 0% - 70.4%) when considering
clinical covariates. While this may seem to indicate that the pathogen genetic variation might
influence whether a patient will eventually need intensive care, we noted that this relatively
high heritability was present in the Septicoli cohort alone (Figure 3b and 3c). We didn’t
however find such a discrepancy between the two studies when we estimated the heritability
for the portals of entry using either core SNPs alone or after conditioning; this indicates that
there may be confounding factors that contribute to the decision to change a patient’s
treatment which vary between the two studies. This is unsurprising, as the decision to admit
a patient to the ICU can depend on the subjective assessment of a physician considering a
patient’s comorbidities, as well as other subtle differences in care protocols. Conversely, the
estimated heritability due to genetic effects for the portals of entry varies in magnitude
between the combined dataset and the two cohorts alone, but we nonetheless found it to be
> 0 in the three datasets. In particular, we found that genetic effects could explain 23% of the
variance of both urinary and digestive tract portals of entry (95% CI 3.8% - 71.3% and 3.9% -
71.4%, respectively), which is more than double the variance explained by the isolates’
phylogroup (Figure 3a); this suggests that a genome-wide association analysis is likely to
discover genetic variants associated with the portal of entry for BSI. This relatively high
fraction of the phenotypic variability explained by genetic effects is however reduced when
conditioning it on other clinical variables (10% and 11% for the urinary and digestive tract
portal of entry, respectively, 95% CI 0% - 68.2% for both traits), which again underscores the
influence of host characteristics in determining the establishment of bloodstream infections.

Figure 3. Narrow-sense heritability (h2) estimation for the target variables on the
combined dataset. a) Heritability estimates in the two studies combined, using a covariance
matrix generated from the isolates’ phylogroup (phylogroup), a kinship matrix generated from
the core genome phylogeny (variants), and the same kinship matrix conditioned with the
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clinical variables (variants + covariates). b) Heritability estimates in the Colibafi and c)
Septicoli cohorts alone.

The papGII/papGIII operon is associated with the pathogen portal of entry
In order to account for both core and accessory genome genetic variability, which is one of
the main differences between GWAS studies in human and bacterial datasets, we associated
unitigs generated from a de Bruijn graph of all the bacterial isolates against the target
variables22,23; namely the three patient outcomes and the two major portal of entry for BSI.
We used a linear mixed model for the association, which has been shown to better correct for
the influence of bacterial population structure in the association24. In order to account for the
host and clinical factors on target variables, we conducted the association with the clinical
variables as covariates25. Since our earlier analysis indicated that the portal of entry can
influence patient outcome, we added this information as covariates when looking for bacterial
genetic factors associated with the three patient outcomes.

Consistent with the heritability estimates, we found few or no unitigs associated after multiple
testing correction with either the death of the patient (none for both the naïve and conditioned
association), the presence of septic shock (2 for the naïve association and none for the
conditioned association) and admission to ICU (1 for both the naïve and conditioned
association). Conversely, we found a large number of unitigs to be associated with either
portal of entry; 975 and 1,061 for the urinary and digestive tract infections, respectively, when
running a naïve association, and a slightly lower number when adding clinical covariates,
with 593 and 498 unitigs passing the significance threshold for the urinary and digestive tract,
respectively (Figure 4a, Supplementary Table 3). Finding an association between individual
unitigs and a phenotype of interest may be due to chance, even after multiple testing
correction and the inclusion of covariates26; to reduce the influence of these factors on the
results of the associations, we conducted a stringent analysis when mapping the unitigs back
to each bacterial isolate; briefly, we took steps to exclude those unitigs that are mapped to
multiple genes across all strains or that are found in a low number of strains (see Methods).
After this stringent mapping step, we found no genes with associated unitigs mapped to them
for the three patient outcomes, and 32 and 49 genes for the urinary and digestive tract portal
of entry, respectively and independently on whether we used the clinical covariates in the
unitig association step (Figure 4b, Supplementary Table 4 and Supplementary Material 1).
The absence of any associated gene with the three patients’ outcomes is in agreement with
the heritability estimates, and with our argument that the relatively high heritability for the
admission to the ICU may be the result of confounders.
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Figure 4. Genome-wide association analysis results on the combined dataset. a)
Number of unitigs passing the multiple testing correction p-value threshold for each target
phenotype. b) Number of genes with significantly associated unitigs mapped to them for each
target phenotype. c) Average odds-ratio and association p-value for each gene in the two
portals of entry.

We found a large overlap in associated genes for the urinary and digestive tract portals of
entry, with 25 genes shared between them. Furthermore, we observed similar effect sizes
reported for those genes in the two phenotypes (Pearson’s r for the average odds-ratio 0.75),
but with opposite signs, which is likely the result of the two phenotypes being almost exactly
mutually exclusive (Figure 4c). Among these 25 genes, we found that 10 belonged to the pap
operon or in its immediate vicinity; the genes in this operon encode for a type P pilus, which
has been shown to interact with glycolipids present on uroepithelial cells and is therefore
believed to be one of the main defining loci for severe UTI. We found that the papGII and
papGIII variants of the papG gene encoding for the adhesin part of the tip were associated
with both portals of entry (Supplementary Figure 1). The PapGII adhesin is mainly found in
acute pyelonephritis and binds preferentially to Gb4 (GalNAcβ1-3Galα1-4Galβ1-4GlcCer),
which is abundant in the upper urinary tract of humans. P-pili presenting PapGIII are
common in human cystitis, but rare in pyelonephritic isolates; they bind Gb5
(GalNAcα1-3-GalNAc3Galα1-4Galβ1-4GlcCer)27. We found another 4 genes associated with
both portals of entry and encoded in the vicinity of the pap operon, all with high sequence
similarity (blastp sequence identity > 95%) to genes annotated as phosphoethanolamine
transferases, or opgE. This gene is involved in the biosynthesis of osmoregulated
periplasmic glucans (OPGs), which in turn regulate motility and secretion of
exopolysaccharides and are considered virulence factors for Gram-negative species28–31. We
found these putative opgE genes encoded in the vicinity of phage-derived integrase genes,
which are also associated with the portals of entry (annotated as intA and intS). We found
that the putative opgE gene was encoded in the near vicinity of the pap operon (distance <
15kbp) in 118 strains, and an even shorter distance (< 10kbp) between the pap operon and
the edge of its contig for those strains (213) in which the pap operon and the putative opgE
gene were encoded in separate contigs (Supplementary Figure 1). We therefore concluded
that both the putative opgE gene and the integrase genes are part of the same genetic island
that may have been acquired through horizontal gene transfer across E. coli strains13.
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A larger sample size could reveal additional bacterial factors involved in bacteremia
Our heritability estimates and association results are in good agreement both with previous
results about the difficulty of finding bacterial genetic elements associated with virulence from
clinical cohorts16 and with the importance of the pap operon in enabling severe UTI13. We
next asked whether it would theoretically be possible to find even more associations from
cohorts measuring E. coli BSI; would an increase in sample size lead to the discovery of
more bacterial genetic factors able to affect the establishment and the outcome of BSI? To
answer this question, we generated a dataset of 10,000 simulated genomes - one order of
magnitude higher than the dataset presented in this study - with mutation and recombination
rates similar to those of E. coli, and two phenotypes with either “high” or “low” heritability (0.2
and 0.05, respectively)26. For each phenotype we selected 28 causal variants with a range of
effect sizes. We then ran a GWAS on the full dataset and in two smaller samples, in order to
determine the empirical statistical power (Figure 5). We found that in this simulated dataset
an increase in sample size by an order of magnitude would be needed to discover most of
the causal variants (mean recall 57%) for the phenotype with high heritability, which is a large
increase from the sample size most similar to this study (1,000 samples, mean recall 5%).
Conversely, we found that for the low heritability scenario only a relatively low statistical
power (mean recall 10%) could be achieved with a large sample size of 10,000 samples, and
no power when using 1,000 samples (mean recall 0). While this simulation cannot be directly
compared with the genetics of complex bacterial phenotypes such as BSI caused by E. coli,
it points to the theoretical possibility of further refining these results if a larger set of samples
could be assembled. This could prove particularly fruitful if patient outcomes are indeed
influenced at least partially by bacterial genetic factors.

Figure 5. Power simulations. The proportion of causal variants passing the significance
threshold is reported for each sample size and heritability for the simulated phenotypes.

Discussion

In this study we leveraged the clinical and genetic data of two very similar BSI clinical cohorts
in order to test whether E. coli’s genetic variation has an influence on the course of severe
bloodstream infections. As opposed to our previous analysis using a well-controlled mouse
model of sepsis where GWAS identified iron capture systems as main drivers of virulence20,
we did not find a clear locus effect for the three patient outcomes tested here. This is in
agreement with a previous work in which we used 60 E. coli strains derived from bacteraemic
patients and tested their virulence in the mouse model, looking for genetic determinants for
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the clinical severity of infection. Indeed, virulence based on an animal model was correlated
with bacterial virulence determinants but not with pejorative clinical outcome of BSI32. In fact
the animal model is a controlled environment, as the individual tested are healthy and
homogeneous (same sex, age, weight and diet); furthermore the standardized inoculation
uniformizes the portal of entry, thus allowing for an unbiased evaluation of the intrinsic
virulence of each strain33. The data presented here once more seems to point to either a
negligible influence of bacterial genetic variation on infection outcomes when compared to
host and clinical factors, a complex trait influenced by multiple loci, or to a lack of statistical
power due to a relatively low sample size.

The results from the heritability analysis from this dataset of combined cohorts is mixed in
this regard, as we found that the variance in a patient’s death or septic shock is not explained
by bacterial genetics, while we found that locus effects may explain up to 19% of the
variance in admission to ICU. When we broke down this analysis in the two cohorts alone,
we observed that this relatively high heritability is only observed in the Septicoli cohort; as the
decision to change the care of a patient is a complex decision dependent on the subjective
assessment of clinicians and other hospital-specific policies, we believe that this high
estimate may be the result of confounders. A more objective measure of disease burden may
therefore be needed in order to properly test for the influence of bacterial genetics on BSI
outcomes, together with an increase in sample size, as suggested by our simulations.

On the other hand, we found a clear association between the pap operon and surrounding
genes and the route of entry for BSI. This agrees with an earlier study with a similar sample
size that looked specifically at invasive UTI13. We can point to a common theme in the
genome-wide association studies so far conducted in E. coli infection models: the main
associated genetic elements come from fairly frequent (~50% of the population)
pathogenicity islands that have been previously described, sometimes decades before the
ubiquity of genomic data made GWAS studies feasible34–39. One can then wonder whether
these approaches are likely to ever lead to the discovery of previously undescribed genetic
variants able to modulate the establishment of disease and its outcomes. We argue that as
genomic sequencing of pathogens is becoming a routine part of clinical or epidemiological
practice40–42, we will likely eventually reach very large sample sizes, similar to what is
currently available for human GWAS studies43, and possibly larger, as has been recently
shown for Sars-Cov-2 genomic epidemiology efforts44,45. Apart from increasing the power to
discover genetic variants associated with a phenotype, a large sample size would allow for
the discovery of rare or ultra-rare variants, which in turn may have a relatively large influence
on the phenotype of interest, alone or collectively23, as has recently been appreciated in the
study of human traits and disease46. In the context of bacterial infection, in which we and
others have shown how host factors contribute to a large extent, a further help will likely
come from including the host genetic variation into the association; a joint human/bacterial
association analysis may however require an even larger sample size in order to account for
potential interactions between host and bacterial genetic elements16. Taken together, the
assumed inevitability of clinical genome sequencing together with careful recording of host
and clinical data may eventually lead to comprehensively cataloging the fraction of E. coli
genetic variants that influence bloodstream infections.

Materials and methods

Dataset
The Colibafi and Septicoli studies were prospective observational cohort studies conducted
in tertiary-care teaching hospitals in the Paris area. Adult patients with E. coli BSI were
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included. Only patients previously included in the study for a previous BSI episode, and
patients receiving vasopressors before the onset of BSI were excluded. E. coli BSI was
defined as the isolation of E. coli from at least 1 blood culture bottle. Data were prospectively
collected by clinicians in each centre on two separate visits: Visit 1 corresponded to the time
of BSI (the day the blood culture was drawn; data were collected retrospectively 24-48h
hours later, once the blood culture had grown) and Visit 2 corresponded to the day of
discharge or in-hospital death (or day 28 if the patient was still hospitalized). For each
episode, the first E. coli strain collected in the blood culture was identified. The primary
endpoint was vital status at discharge or Day-28 (i.e. Visit 2). In each centre, an infectious
diseases clinician and a microbiologist were in charge of including patients and completing
the case report form (see Colibafi and Septicoli groups in the Acknowledgments section). A
steering committee was in charge of implementation and a scientific committee responsible
for scientific overview.

From the combined dataset we removed those variables with more than 15% of missing
values (whether the patient had received a transplant, neutropenia, pregnancy status, body
mass index, patient discharge route), and we added a binary variable to record the study
provenance of each sample. We imputed the remaining missing values using the MICE
package, v3.12.0, using 15 iterations47. The raw and imputed combined datasets’ summary
statistics are available as Supplementary Table 1.

Univariate and multivariate analysis
We tested the association between clinical variables and patient outcome in a similar way as
it was done in the original studies8,10; briefly, we first applied a min-max scaler to the age
variable to bring it in the [0-1] range. For each patient outcome we then tested each clinical
variable using a logistic regression as implemented in the statsmodels package, v0.11.1,
using the study provenance as a covariate. We used those variables with association p-value
< 0.1 to run a multivariate logistic regression, using a backward stepwise selection method to
construct the final model, using the MASS package v7.3_51.348.

Whole genome sequencing and annotation
Bacterial genomes were sequenced using Illumina NextSeq technology as previously
described19. The genomes from the Colibafi and Septicoli collections are available (Bioproject
PRJEB39260 and PRJEB35745, respectively). All genomes were assembled with shovill
version 1.0.4 using SPAdes v3.13.149 and standard parameters, and then annotated with
Prokka 1.14.550. A phylogenetic tree was computed from a core genome multiple sequence
alignment, as computed by Roary v3.1251, using IQ-TREE v1.6.1252, under the GTR+F+I+G4
model. The tree was visualized using the iTOL web interface53. We collapsed all genes
encoded in the sequenced genomes into gene families using panaroo v1.2.454 with default
parameters.

Heritability estimates
We estimated narrow-sense heritability for the five target variables, using 2 different
covariance matrices; one built from the phylogroup membership of each strain and another
using a kinship matrix built from the core genome phylogeny, in which the distance from the
most recent common ancestor is used for each pair of samples. For the latter covariance
matrix we also used the same clinical covariates as in the GWAS analysis (see below). We
used Limix v3.0455, assuming normal errors for the point estimate and we computed the 95%
confidence intervals using the ALBI package (commit 90d819e)56.

Association analyses
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We derived unitigs by constructing a compressed de Bruijn graph from the input genomes,
using unitig-counter v1.1.022,23. We computed the distance between each pair of samples by
using mash 2.2.257 with a sketch size of 10,000; we used the resulting distance square matrix
to compute associations between phylogroups and each target variable, using pyseer
v1.3.658. We tested for locus effects using the unitigs presence/absence vector with the
FastLMM59 linear mixed-model and a kinship matrix derived from the core genome
phylogeny, using pyseer v1.3.658. We run two associations; a “naïve” one that accounted for
population structure only, and one additionally conditioning on the clinical variables (“with
covariates”). For the three patient outcomes we used all available variables as covariates
with the exception of “death”, “septic shock” and “admission to ICU”, but including the portals
of entry, which were excluded when those were the target variables. All the clinical variables
used as covariates are described in Supplementary Table 1. We determined a significance
threshold by counting the number of unique unitigs presence/absence patterns tested, which
reduces the risk of excessively deflating association p-values. We mapped the unitigs
passing the significance threshold back to all input genomes and their genes using bwa
v0.7.17-r118860 and bedtools v2.30.061,62, using the output of panaroo to assign each unitig to
a gene cluster. The unitigs were further filtered to reduce the number of spurious
associations: unitigs were excluded if they were shorter than 30bp, if they were mapped to
multiple locations in each genome, if they mapped to less than 9 samples (~1% of the total
sample size) and if they were mapped to more than 10 different genes across all samples.
We further annotated the gene families with mapped unitigs by taking a representative
protein sequence from all genomes encoding each gene and using it as an input for
eggnog-mapper v2.1.363.

We tested for the association of rare variants (minimum allele frequency < 1%) by performing
a burden test, that is, we performed associations between deleterious rare variants in each
gene separately and the five target phenotypes. We derived short variants from each sample
against the complete genome of Escherichia coli IAI39 - which belongs to phylogroup B2 -
using snippy v4.6.0 and annotated them using SnpEff v5.064. We then merged the individual
VCF files and filtered for rare variants using bcftools v1.1365. We further filtered the resulting
variants according to their annotation: variants annotated as “disruptive”, “frameshift”, “start
codon loss”, “stop codon gain”, and “stop codon loss”; for missense variants we assessed the
likelihood that they were deleterious to protein function using the SIFT algorithm, as
implemented in the SIFT4G package v2.0.066, using the uniref50 subset of the Uniprot
database67 (downloaded on June 16, 2021) to construct the multiple sequence alignments.
We considered a missense variant to be deleterious if the protein residue had a median
information content below 3.25 and score < 0.05. The association was run in a similar way as
the one with common unitigs (linear mixed model and clinical covariates) using pyseer
v1.3.658. No significant hit was found with this association method.

Power simulations
We performed a statistical power analysis to test whether an increase in sample size could
lead to the discovery of additional variants associated with a binary phenotype with
heritability similar to that estimated in this study. We used the BacGWASim package v2.1.126

to generate both simulated variants and phenotypes. We simulated 10,000 bacterial
genomes each 1,000,000 bp long, using a mutation rate of 0.06 and recombination rate of
0.01. We then simulated two binary phenotypes: one with a “high” (0.2) and one with a “low”
(0.05) heritability; for both phenotypes we assumed a prevalence of 50% and generated 10
sets of 28 causal variants with minimum allele frequency of 10%. For each batch of simulated
phenotypes we ran an association with pyseer v1.3.658 using logistic regression and
population structure correction using the first four components of the multidimensional
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scaling obtained from the samples pairwise distance matrix computed using mash v2.2.257.
Statistical power was computed as the proportion of causal variants that passed the
significance threshold, computed by counting the number of unique presence/absence
patterns for all tested variants.

Code availability
Apart from the software packages mentioned in the previous sections, the following were
used to run the analysis and generate the visualizations presented in this work: pandas
v1.2.268, numpy v1.20.069, scipy v1.6.070, matplotlib v3.3.471, seaborn v0.11.172, biopython
v1.7973, reportlab v3.5.6874, gffutils v0.10.1, jupyterlab v3.0.775. Most of the analysis were
incorporated in a reproducible pipeline using snakemake v6.5.076 and conda v4.10.377,78,
which is available as a code repository on GitHub
(https://github.com/microbial-pangenomes-lab/2021_ecoli_pathogenicity) under a permissive
license (MIT).
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Supplementary figures

Supplementary Figure 1. Structure of the pap operon island and relative position of
the putative opgE gene. a) Position and relative orientation of the pap operon and the
putative opgE gene is shown for one sample strain belonging to each major E. coli
phylogroup. Genes colored in blue have at least one associated unitig mapped to it (using
the entry through the urinary tract as target variable), grey otherwise. b) Distance between
the putative opgE gene and the pap operon in those strains in which the two genetic
elements are encoded in the same contig, and c) Distance between the pap operon and the
edge of the contig in those strains in which the putative opgE gene is encoded in a different
contig.

Supplementary materials
● Supplementary Table 1: clinical variables for both cohorts, in its original form and after

imputation of missing values
● Supplementary Table 2: lineage associations
● Supplementary Table 3: associated unitigs
● Supplementary Table 4: genes to which associated unitigs map to (see Methods for

mapping and filtering)
● Supplementary Material 1: aminoacid sequence for each associated gene, sampled

randomly for each gene cluster
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