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Abstract 24 
 25 
Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, 26 
several pose a concern due to their epidemiological characteristics and evolutionary potential. 27 
To enable effective responses to these pathogens in the event that they undergo future 28 
emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development 29 
of vaccines for several pathogens prioritized by the World Health Organization. A major 30 
challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak 31 
response. We developed a modeling framework for outbreak response for emerging zoonoses 32 
under three reactive vaccination strategies. Annual vaccine regimen requirements for a 33 
population-wide strategy ranged from >670,000 (95% prediction interval: 0-3,630,000) regimens 34 
for Lassa virus to 1,190,000 (95% PrI: 0-8,480,000) regimens for Rift Valley fever virus, while 35 
the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several 36 
orders of magnitude lower (between 1/25 and 1/700) than those required by a population-wide 37 
strategy. For each pathogen and vaccination strategy, reactive vaccination typically prevented 38 
fewer than 10% of cases, because of their presently low R0 values. Targeting HCWs had a 39 
higher per-regimen impact than population-wide vaccination. Our framework provides a flexible 40 
methodology for estimating vaccine stockpile needs and the geographic distribution of demand 41 
under a range of outbreak response scenarios. 42 
 43 
Introduction 44 

Less than two years ago, SARS-CoV-2 was an unknown virus circulating in a zoonotic reservoir 45 
(Andersen et al. 2020). In the time since, it has caused a pandemic resulting in more than 4.6 46 
million deaths (WHO 2020). Theoretical work (Antia et al. 2003) predicts that frequent small-47 
scale outbreaks in humans may provide opportunities for selection of more transmissible 48 
variants that facilitate emergence from the original reservoir. Indeed, virological studies indicate 49 
that a sequence of mutations acquired in this manner may offer a plausible explanation for the 50 
emergence of SARS-CoV in 2003 (Sheahan et al. 2008). More frequent spillover and more 51 
human-to-human transmission ensuing from those spillovers are expected to increase the 52 
probability that adaptations such as these arise and facilitate more widespread emergence 53 
(Morse et al. 2012). Because of this evolutionary potential, even zoonotic pathogens with limited 54 
human-to-human transmission—as defined by a basic reproduction number, R0, below 1—are 55 
viewed as a concern. The status quo of investing in the development of diagnostics, 56 
therapeutics, and vaccines only in reaction to emerging disease threats has made the world 57 
dangerously vulnerable to pandemics (Røttingen et al. 2017; Excler et al. 2021). 58 

To preempt future public health emergencies arising from emerging zoonotic diseases, the 59 
World Health Organization (WHO) developed a research and development blueprint for action 60 
to prevent epidemics (WHO 2016). This R&D Blueprint prioritizes and regularly updates a list of 61 
pathogens for development of diagnostics, therapeutics, and vaccines 62 
(https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-63 
emergency-contexts). The Coalition for Epidemic Preparedness Innovations (CEPI) was 64 
launched in 2017 to accelerate the development of vaccines against emerging infectious 65 
diseases and to enable equitable access to these vaccines for people during outbreaks 66 
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(Gouglas et al. 2019; Bernasconi et al. 2020; Huneycutt et al. 2020). The first call for proposals 67 
from CEPI was on developing vaccines for Lassa virus (LASV), MERS coronavirus (MERS-68 
CoV), and Nipah virus (NiV). Soon after, it added Rift Valley fever virus (RVFV) and 69 
chikungunya virus (CHIKV) to its portfolio. As of early 2021, CEPI was supporting development 70 
of a total of 19 different vaccine candidates for these five diseases, in addition to other efforts 71 
related to Ebola, COVID-19, and “disease X” (CEPI 2018). 72 

In anticipation of vaccine candidates for these diseases progressing through safety and efficacy 73 
trials and towards implementation, there is a need to understand future potential vaccine 74 
demand (Røttingen et al. 2017). Even though these vaccines are not yet available for public 75 
health use, understanding demand at an early stage is important to inform fundraising and 76 
planning efforts in support of the manufacturing and distribution infrastructure that will be 77 
required for their implementation (Excler et al. 2021). Following the development of a new 78 
vaccine, manufacturing capacities are typically the first limiting factor for vaccine supply, which 79 
raises allocation and prioritization decisions to protect people at higher risk of infection and 80 
clinical disease (Medlock and Galvani 2009; Bubar et al. 2021). Appropriate planning of vaccine 81 
stockpiles to support vaccine demand is important to minimize the extent to which difficult 82 
decisions about vaccine prioritization must be made once a vaccine becomes available for use. 83 
At the same time, overestimating vaccine stockpile needs could result in doses expiring and 84 
resources that could have gone to other needs being wasted. 85 

To improve capabilities to plan vaccine stockpiles for emerging zoonotic pathogens, we 86 
developed a modeling framework to quantify the vaccine stockpile size needed to meet demand 87 
for outbreak response and applied it to LASV, MERS-CoV, NiV, and RVFV (Figure 1). Each of 88 
these pathogens is zoonotic, with the majority of human cases believed to result from spillover 89 
transmission from non-human hosts accompanied by self-limiting, human-to-human 90 
transmission (Linthicum, Britch, and Anyamba 2016; Cauchemez et al. 2016; Siddle et al. 2018; 91 
Nikolay, Salje, Hossain, Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et 92 
al. 2019). Our model is driven by geographically and seasonally realistic patterns of spillover for 93 
each pathogen, with each spillover event having the potential to spark an outbreak that we 94 
simulated stochastically with a branching process model. Outbreak response with reactive 95 
vaccination was triggered in our model whenever a threshold number of cases was exceeded 96 
within a certain space-time window. We quantified the number of vaccine regimens required 97 
(where the number of regimens equals the number of individuals vaccinated) under three 98 
different approaches to reactive vaccination: 1) population-wide within the same geographic 99 
area as the outbreak, 2) targeted on healthcare workers (HCWs) within that area, or 3) targeted 100 
on a ring of contacts around each index case. Using vaccines modeled after target product 101 
profiles for each pathogen (WHO 2017c, 2017b, 2017a, 2019), we also quantified the impact of 102 
reactive vaccination under a range of scenarios about deployment timing, coverage, per-103 
exposure protection (PEP) from vaccination, and several epidemiological parameters. 104 

 105 
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Figure 1. Overview of this study. We considered four emerging zoonoses prioritized by the WHO R&D 107 
Blueprint and CEPI. For each, we modeled spillover, human-to-human transmission, and reactive 108 
vaccination. We quantified the vaccine stockpile necessary to meet demands of reactive vaccination 109 
under three scenarios: vaccinating an entire population within the same geographic area as a detected 110 
outbreak, vaccinating healthcare workers within that geographic area, or vaccinating contacts associated 111 
with each spillover case. Lassa fever is caused by LASV, a virus that circulates in rodents in West Africa 112 
and has resulted in thousands of cases and deaths in recent years (Mylne et al. 2015; Roberts 2018). 113 
Nipah is caused by NiV, a virus that circulates in fruit bats that can be found throughout tropical and 114 
subtropical Asia (Yob et al. 2001; Luby et al. 2009), but documented spillover to humans has been mainly 115 
limited to India, Bangladesh, and Malaysia (Pulliam et al. 2012; Girish Kumar et al. 2019; Nikolay, Salje, 116 
Hossain, Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 2019). MERS is 117 
caused by MERS-CoV, a coronavirus that probably originated in bats (Anthony et al. 2017), and is known 118 
to circulate among domestic camel populations in the Middle East and parts of eastern and northern 119 
Africa, resulting in spillover from camels to humans (Müller et al. 2015; Dudas et al. 2018; Hui et al. 120 
2018). Human-to-human transmission has been reported in nosocomial settings for three of these 121 
pathogens (Fisher-Hoch et al. 1995; Park et al. 2016; Nikolay, Salje, Hossain, Khan, Sazzad, Rahman, 122 
Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 2019), although only MERS was reported in large 123 
hospital outbreaks (Assiri, McGeer, et al. 2013; Park et al. 2016). The evidence for community 124 
transmission of these viruses is more limited (Siddle et al. 2018; Hui et al. 2018; Nikolay, Salje, Hossain, 125 
Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 2019). Rift Valley fever is 126 
caused by RVFV, a mosquito-transmitted virus infecting ruminant livestock species in Africa, the Arabian 127 
Peninsula, and the Indian Ocean islands (Pepin et al. 2010; Bron et al. 2021; Gerken et al. 2021). RVF 128 
outbreaks have been associated with heavy rainfall in eastern and southern Africa (Anyamba et al. 2009, 129 
2010), but transmission can also occur outside of these epizootic events (Linthicum, Britch, and Anyamba 130 
2016). Humans can be infected via direct contact with infected animals or via mosquito bite, but are 131 
believed to be dead-end hosts (Al-Hamdan et al. 2015). 132 
 133 
 134 
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Methods 135 
 136 
Epidemiological data  137 
 138 
For each of the pathogens, we collated epidemiological data through the end of 2020 from 139 
multiple sources, including WHO outbreak reports (e.g., (CSR n.d.)), ProMED reports 140 
(https://promedmail.org), country-level reports (https://www.moh.gov.sa, https://ncdc.gov.ng), 141 
and a literature search. A detailed overview of the source of epidemiological data for each 142 
pathogen can be found in the Supplementary Table S1. 143 
 144 
Spillover simulation 145 

Given extensive spatial heterogeneity of incidence, we collated epidemiological data at the first 146 
administrative level (adm1) in each country—e.g., province or state—within the study region for 147 
each pathogen. The primary epidemiological data used to inform spillover rates was the annual 148 
incidence of reported cases of each pathogen at the adm1 level (Table S1). Where possible, 149 
case data was categorized into cases of documented or suspected human-to-human 150 
transmission, documented or suspected spillover cases, and cases of unknown origin. The 151 
geographic coverage of our analysis for each pathogen was determined by the geographic 152 
distribution of spillover cases in the literature. All countries with at least one documented 153 
spillover case were included in our analysis. We excluded countries with imported cases but no 154 
spillover from a zoonotic source (e.g., South Korea for MERS-CoV). 155 

Spillover rates were estimated using a generalized linear mixed model (GLMM) with a zero-156 
inflated negative binomial distribution to capture overdispersion in the annual distribution of 157 
spillover cases within an adm1. Spillover cases were defined as documented spillover cases, 158 
suspected spillover cases, or cases of unknown origin; thereby excluding any cases of 159 
documented or suspected human-to-human transmission. Year, country, and adm1 were 160 
treated as random effects, with the adm1 variable nested within the country variable. Year was 161 
also included as a random effect for the zero-inflated portion of the model. Model fitting was 162 
conducted using the glmmTMB package in R (Brooks et al. 2017). This default model did not 163 
converge for NiV; therefore, for NiV we used the GLMM model without the random effect by 164 
year in the zero-inflated portion of the model to enable convergence. Then, for each pathogen, 165 
we simulated annual spillover cases for each year and adm1 by taking draws (1,000 replicates) 166 
from a zero-inflated negative binomial distribution using the estimated parameters from the 167 
appropriate GLMM fit. We randomly sampled 1,000 of these simulated spillovers from the last 168 
five years as inputs to the outbreak simulation model so that the simulated spillovers would 169 
reflect recent spillover rates. 170 
 171 
To account for the seasonality of spillover, we fitted a beta distribution to the timing of spillover 172 
cases within a year (daily for MERS, weekly for Lassa fever, monthly for Nipah and RVF) and 173 
simulated the timing of each spillover case as a random draw from that distribution (Table 1). To 174 
account for spatial clustering of cases below the adm1 level, we associated each simulated 175 
case with a catchment area. We did so according to probabilities proportional to catchment area 176 
population. Catchment areas were defined by second administrative level (adm2) or hospitals 177 
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aggregated within 10 km for first administrative (adm1) areas that did not have an adm2 level. 178 
These catchment areas, therefore, represent areas where individuals would be expected to 179 
seek care and have their diagnosis reported, and the aggregation of hospitals within a 10km 180 
area assumes that individuals who seek treatment for the relatively severe symptoms of these 181 
diseases do so at larger hospitals. Hospital location data for sub-Saharan Africa used in the 182 
analysis of LASV was obtained from (Maina et al. 2019), and hospital location data outside of 183 
sub-Saharan Africa was obtained from https://www.healthsites.io (Saameli et al. 2018). The 184 
primary set of findings we reported are based on a set of 1,570 catchment areas for LASV, 767 185 
for MERS-CoV, 5,076 for NiV and 2,126 for RVFV, which differ because of the different 186 
geography of each pathogen. We examined the sensitivity of our results to the definition of a 187 
catchment area by rerunning the analyses with either adm1 catchment areas or all hospitals 188 
within an adm1 as distinct catchment areas. The results of these analyses are presented in the 189 
Supplement (SI Text). 190 
 191 
Outbreak simulation 192 
 193 
To simulate incidence attributable to human-to-human transmission, we considered each 194 
spillover case as a potential index case for an outbreak. A schematic overview of both the 195 
spillover and outbreak simulation models, including outbreak response, is provided in Figure 2. 196 
Human-to-human transmission was simulated stochastically using a branching process model. 197 
For each primary case, a certain number of secondary cases was drawn either from a Poisson 198 
distribution (for Lassa fever and RVF) with λ = R0, or from a negative binomial distribution (for 199 
MERS and Nipah) with μ = R0 and a dispersion parameter, k. A Poisson distribution was used 200 
for Lassa fever and RVF, because both have an estimated R0<0.1 and no available estimate of 201 
overdispersion. We used a negative binomial distribution for MERS and Nipah, because 202 
secondary cases for these diseases are known to be overdispersed, with a majority of human-203 
to-human transmission arising from a small minority of primary cases (Cauchemez et al. 2016; 204 
Nikolay, Salje, Hossain, Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, and 205 
Others 2019). 206 
 207 
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Figure 2. Schematic of the spillover simulation and outbreak simulation models. The spillover 209 
simulation model estimates the magnitude and timing (seasonality) of the spillover rate for each 210 
catchment area from the historical distribution of reported spillovers in the catchment area. These 211 
estimated spillover rates are input into our outbreak model for each catchment area (as identified by the 212 
bolded model input), which used a branching process model to simulate human-to-human transmission. 213 
An outbreak response was triggered within a catchment area if the number of reported cases exceeded a 214 
predetermined number within a 28d time window (outbreak threshold size). Outbreak model inputs with a 215 
superscript S were varied as part of our sensitivity analysis. 216 
 217 
We estimated R0 and variability therein differently for each pathogen. For LASV, we estimated 218 
an R0 for nosocomial transmission by fitting a simple branching process model to observed 219 
outbreak sizes from (Lo Iacono et al. 2015) using the optimize function in R and assuming a 220 
Poisson offspring distribution (Farrington, Kanaan, and Gay 2003). The resulting estimate of R0 221 
for LASV was 0.063 (95% confidence interval [CI]: 0.05 - 0.08) (Table 1). For MERS-CoV, we 222 
compiled estimates of R0 from multiple studies analyzing data from MERS outbreaks 223 
(Cauchemez et al. 2014; Breban, Riou, and Fontanet 2013; Poletto et al. 2014; Chowell et al. 224 
2014; Cauchemez et al. 2016; Kucharski and Althaus 2015) and described variability in those 225 
estimates with a gamma distribution, which resulted in a median R0 of 0.583 (90% CI: 0.31 - 226 
0.99). The dispersion parameter estimate, k=0.26, for MERS-CoV was obtained from (Kucharski 227 
and Althaus 2015). For NiV, we estimated R0 and its variability from detailed epidemiological 228 
investigations of Nipah outbreaks in Bangladesh that estimated person-to-person chains of NiV 229 
transmission (Nikolay 2019). Using data from these studies on the number of secondary 230 
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infections per primary infection and the size of each transmission cluster, we obtained 231 
maximum-likelihood estimates of R0 (0.33, 95% CI: 0.21 - 0.52) and k (0.048, 95% CI: 0.031 - 232 
0.074), which were consistent with a branching process with a negative binomial offspring 233 
distribution. For RVFV, we assumed R0=0, and considered R0=0.01 for sensitivity analysis only, 234 
as no human-to-human transmission has been definitively documented to date (Al-Hamdan et 235 
al. 2015). 236 
The timing of incubation and infectious periods were then simulated subsequently based on 237 
gamma distributions of those periods that we estimated by fitting a model to reconcile variability 238 
in previously published estimates (Table 1). As no human-to-human transmission is known for 239 
RVFV, we assumed for the sensitivity analysis a fixed duration for the infectious period of 7 240 
days that is consistent with the duration of detectable viremia after onset of symptoms (Bird et 241 
al. 2009). For all pathogens, the infection date of secondary cases was simulated as a draw 242 
from a uniform distribution over the infectious period of the primary case. Each secondary case 243 
was assigned to the same catchment area as the associated index case. A detailed overview of 244 
the source for each parameter of each pathogen can be found in the Supplementary Table S1.  245 
 246 
Table 1. Overview of parameter estimates. Incubation period and infectious period are 247 
defined in units of days, and parameters for seasonality refer to week of the year. Numbers in 248 
parentheses for R0 represent the 95% confidence intervals. 249 

Parameter LASV MERS-CoV NiV RVFV 

Seasonality  
- Peak (wk) 
- SD (wk) 

 
31.1 
6.2 

 
23.3 
13.6 

 
27.3 
6.4 

 
23.2 
12.7 

Incubation 
period  
- Mean (d) 
- SD (d) 

 
12.05 
3.62 

 
5.56 
0.77 

 
9.87 
0.84 

 
2.88 
1.95 

Infectious period  
- Mean (d) 
- SD (d) 

 
11.31 
8.29 

 
13.5 
2.61 

 
6.49 
0.26 

 
7 1 
- 

R0  
- Mean 
- Dispersion 

 
0.063 (0.05, 0.08) 

- 

 
0.58 (0.31, 0.99) 

1.42 

 
0.325 (0.21, 0.52) 

0.048 

 
0 (0.01) 

- 
1 Fixed value used for sensitivity analysis only. 250 

 251 
Vaccine campaign simulation 252 
 253 
Three different reactive vaccination strategies were evaluated: 1) vaccinating a portion of the 254 
general population in a given catchment area; 2) specifically targeting the HCWs in that 255 
catchment area; or 3) adopting a ring vaccination strategy where the local population 256 
surrounding each index case are targeted for vaccination. These strategies were chosen as 257 
they represent three of the most frequently deployed outbreak response strategies. For each 258 
strategy, baseline vaccination campaign parameter values (and parameter ranges for the 259 
sensitivity analysis) were based on vaccine target product profiles for each pathogen (WHO 260 
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2017c, 2017b, 2017a, 2019), or chosen in consultation with CEPI and subject-matter experts for 261 
each pathogen (Table 2).  262 
 263 
To estimate the impact of vaccination, we simulated each outbreak response relative to a 264 
counterfactual simulation in which there was no outbreak response. Vaccination impact was 265 
defined as the number of cases averted via vaccination and calculated by taking the difference 266 
between the number of cases in the vaccination and no-vaccination scenarios. In our baseline 267 
scenario, an outbreak response within a single catchment area was triggered once ten cases for 268 
Lassa fever and MERS or three cases for Nipah and RVF were detected within a four-week 269 
window (Table 2). These outbreak response thresholds were chosen through discussion with 270 
CEPI and pathogen experts, and do not necessarily match the different outbreak definitions 271 
currently used by WHO or individual countries. The vaccination start date was calculated by 272 
adding a delay to the outbreak response date. To simplify vaccine uptake in our model, we 273 
assumed that each target population was immunized on a single day. Multi-day vaccination 274 
campaigns would likely reduce the impact of outbreak response relative to our estimates, but 275 
this impact would be less severe than a comparable delay in protection following vaccination 276 
because at least a portion of the population would be protected at the beginning of the 277 
campaign. Therefore, our analysis of the sensitivity of vaccination impact to a delay in protection 278 
following vaccination could be considered an upper bound on the sensitivity to extending the 279 
vaccine administration period for a given round of vaccination. In the case of a 2-dose vaccine, 280 
an additional delay of 28 days was assumed between administration of the first and second 281 
doses.  282 
 283 
For the general population vaccination strategy, HCWs were treated as part of the general 284 
population and were vaccinated with the same probability as the general population. For the 285 
HCW vaccination strategy, non-HCWs were not vaccinated, except for a hybrid strategy tested 286 
as part of our sensitivity analysis, where 20% of the general population was vaccinated versus 287 
80% of HCWs (Table 2). For the ring vaccination strategy, we calculated the number of index 288 
cases that would arise after the reactive vaccination campaign had started and assumed that 90 289 
vaccine regimens would be needed to vaccinate a ring of individuals around each index case 290 
based on estimates from ring vaccination campaigns during recent Ebola and cholera outbreaks 291 
(Ali et al. 2016; Henao-Restrepo et al. 2017). For the ring vaccination strategy, we only 292 
estimated the number of vaccine regimens that would be required and did not attempt to 293 
estimate the impact of vaccination on cases averted, because our model was designed to 294 
simulate a single vaccine campaign and not the periodic deployment as required by a ring 295 
vaccination strategy. 296 
 297 
Once a vaccination campaign was completed and the delay between vaccination and protective 298 
immunity had elapsed, vaccination in the general population removed spillover cases with a 299 
probability equal to vaccination coverage in the general population multiplied by per-exposure 300 
protection (PEP). Vaccination of the general population also removed patient-to-HCW 301 
nosocomial cases with probability equal to vaccination coverage in HCWs multiplied by PEP. 302 
Vaccination of HCWs had no impact on spillover cases, but it removed nosocomial cases with 303 
probability equal to vaccination coverage in HCWs multiplied by PEP. PEP depended on 304 
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whether a sufficient amount of time since vaccination had elapsed and, in the event of a two-305 
dose vaccine, whether an individual had received one dose or two doses at the time of 306 
exposure (Table 2). Cases downstream in a transmission chain from a case averted by 307 
vaccination were also averted.  308 
 309 
Table 2. Overview of simulation scenarios. Parameter values for the baseline reactive 310 
vaccination scenario for each pathogen. Outbreak response threshold cases and threshold 311 
window refer to the number of cases that need to occur within a certain time window to trigger 312 
an outbreak response. Parameter values in parentheses are alternative values used as a part of 313 
the sensitivity analysis.  314 

Parameter LASV, MERS-CoV NiV, RVFV 

Outbreak response 
- Threshold cases 
- Threshold window 
- Delay 

 
10 (5) 
28d 

28d (7, 120) 

 
3 (1, 5) 

28d 
28d (7, 120) 

Vaccination  
- Coverage HCW1 
- Coverage population 
- Delay between dose 
- Regimens per index case (ring 

vaccination only) 

 
70% (80, 50, 90) 
70% (20, 50, 90) 

28d 
90 

Per-exposure protection (PEP) 
- Single dose 
- Two dose 1st 
- Two dose 2nd 
- Delay 

 
70% (50%, 90%) 
35% (25%, 45%) 
70% (50%, 90%) 

7d (14) 
1 Excluded for RVFV as no nosocomial transmission has been documented. 315 
 316 
Vaccine demand calculation 317 
 318 
To quantify the number of regimens required to meet the demands of a given outbreak 319 
response strategy, we estimated the number of healthcare workers and overall population 320 
associated with each catchment area where an outbreak occurred. The overall population per 321 
catchment area was estimated based on WorldPop data from 2015 (Tatem 2017). For 322 
healthcare workers, we took the national-level numbers of healthcare workers and distributed 323 
them proportional to the population associated with each catchment area (Ref (WHO 2021)). 324 
 325 
Graphical user interface 326 
 327 
A generalized implementation of the model is provided as a graphical user interface (GUI) at 328 
http://eidvaccinedemand.crc.nd.edu. In the generalized implementation, a few adjustments were 329 
made to allow for more flexible application of the model and to make computing time more 330 
acceptable for an interactive web tool. First, annual spillovers are drawn from a negative 331 
binomial distribution and then distributed across the catchment areas with a multinomial 332 
distribution proportional to the probability that spillovers occur in these catchment areas. 333 
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Second, the population in the catchment areas were defined by a negative binomial distribution 334 
so that specific geographies did not need to be reproduced. The default parameters for the GUI 335 
of each pathogen were obtained by fitting the corresponding distribution function to the 336 
estimated spillover and population data from this study. The source code for the GUI is provided 337 
at https://github.com/lerch-a/CEPI_VaccineCampaignGUI. 338 
 339 
Results 340 
 341 
Spillover cases and human-to-human transmission 342 
 343 
The median annual number of spillover cases was 6 (95% prediction interval: 0-190) for Nipah, 344 
114 (95% PrI: 48-266) for MERS, 185 (95% PrI: 8-13,134) for RVF, and 417 (95% PrI: 142-345 
1,837) for Lassa fever (Figure 3A). Simulated variability in the annual number of spillover cases 346 
matched the cumulative distribution of observed spillover cases for each pathogen (SI Figures 347 
S1B-S4B). Spillover rates for each pathogen varied both seasonally (SI Figures S1A-S4A) and 348 
geographically (Figure 4A). Spillover cases of Lassa fever were concentrated in Sierra Leone, 349 
Liberia, and Nigeria, although a few spillover cases occurred in other western African countries. 350 
Spillover of RVF to humans was widespread in South Africa, Madagascar, eastern Africa and 351 
the Arabian Peninsula, with frequent spillover cases occurring in several western and northern 352 
Africa countries as well. The majority of MERS spillover cases occurred in Saudi Arabia, and the 353 
majority of Nipah spillover cases occurred in Bangladesh, with additional spillover events in 354 
India and Malaysia.  355 
 356 
The number of cases arising from human-to-human transmission depended on both the 357 
spillover rate and R0 (Figure 3A). Under our default parameter assumptions, there was no 358 
human-to-human RVFV transmission, but in the absence of vaccination the median annual 359 
number of human-to-human cases following spillover was 2 (95% PrI: 0-82) for Nipah, 29 (95% 360 
PrI: 11-143) for Lassa fever, and 161 (95% PrI: 46-407) for MERS (see Figure 5 for an example 361 
of the transmission chains for one catchment area).  362 
 363 
Estimates of vaccine demand 364 
 365 
In our analysis, a median of 0 (95% PrI: 0-8) Nipah reactive vaccination campaigns were 366 
triggered annually, compared to 4 (95% PrI: 0-11) MERS campaigns, 5 (95% PrI: 0-20) RVF 367 
campaigns, and 0 (95% PrI: 0-20) Lassa fever campaigns (Figure 3B). The locations of reactive 368 
vaccination campaigns broadly followed the geographic distribution of spillovers for each 369 
pathogen, although Lassa fever spillovers in Guinea, Benin, Togo, and western Nigeria were 370 
rarely reported frequently enough to trigger a response in our simulations (Figure 4B). The 371 
number of reactive vaccination campaigns that were triggered, and the timing of those 372 
campaigns, was strongly influenced by the seasonal pattern of pathogen spillover (SI Figures 373 
S1-S4). 374 
 375 
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Figure 3. Simulated annual cases and reactive vaccination impacts. (A) Annual number of spillover, 377 
human-to-human (H2H), and total cases for each pathogen across the entire study region (in the absence 378 
of vaccination). (B) Violin plot (including box plot representing the median, IQR, and 95% CI) of the 379 
annual number of vaccine campaigns triggered due to the outbreak threshold being exceeded across 380 
1,000 simulations for each pathogen. (C) Number of vaccine regimens required per year for reactive 381 
vaccination under our baseline scenario under three alternative assumptions about the target of 382 
vaccination campaigns. (D) Violin plot (including box plot representing the median, IQR, and 95% CI) of 383 
annual number of cases averted by reactive vaccination campaigns across 1,000 simulations for each 384 
pathogen. All y-axes are log10 scaled.  385 
 386 
 387 
 388 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.09.21266135doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.09.21266135
http://creativecommons.org/licenses/by-nc/4.0/


13 

Figure 4. Geographic distribution of predicted spillover cases and reactive vaccination 391 
campaigns. (A) Geographic distribution at the 2nd administrative level (adm2) of the expected annual 392 
number of spillover cases for each pathogen. (B) The annual probability that a campaign will be triggered 393 
in each adm2 catchment area based on 1,000 simulations. 394 
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 395 
 396 

397 
Figure 5. Timing of spillover and nosocomial cases in a single realization of one catchment area 398 
from the MERS-CoV outbreak model. (Bottom) Individual cases are visualized as thick horizontal lines, 399 
with observed cases in yellow/orange and averted cases in gray (yellow and light gray indicate incubation 400 
time, orange and dark gray indicate infectious time). Unrelated transmission trees are separated by thin 401 
horizontal gray lines. The dashed vertical line indicates the date the outbreak threshold was reached. 402 
Triangles indicate vaccination date and diamonds indicate protection date. (Top) Number of observed 403 
(orange) and averted (gray) cases per week.  404 
 405 
For all four pathogens, there was a wide range in the number of vaccine regimens required in a 406 
typical year due to the dependence of vaccine demand on the spatiotemporal clustering of 407 
spillover cases required to trigger an outbreak response. The largest annual vaccine demand 408 
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was for RVFV, with a median of 1,191,741 (95% PrI: 0-8,480,275) vaccine regimens required to 409 
target the general population under our baseline outbreak response scenario (Figure 3C). The 410 
median number of vaccine regimens for MERS-CoV was 870,045 (95% PrI: 0-2,843,407). The 411 
median number of vaccine regimens needed for NiV and LASV was zero, implying that an 412 
outbreak response was triggered less than 50% of the time. However, the mean number of 413 
vaccine regimens was 673,167 (95% PrI: 0-3,629,052) for LASV and 1,450,177 (95% PrI: 0-414 
12,240,814) for NiV (Figure 3C). The number of vaccine regimens required to conduct a ring 415 
vaccination strategy or to cover healthcare workers as a part of an outbreak response was 416 
typically several orders of magnitude (between 1/25 and 1/700) lower than the number required 417 
to cover the general population (Figure 3C). The median number of MERS-CoV vaccine 418 
regimens required to cover healthcare workers was 6,786 (95% PrI: 0-22,086). A median of 419 
1,540 (95% PrI: 0-62,320) vaccine regimens were needed among healthcare/veterinary workers 420 
for RVFV outbreak response, 0 (mean: 1,144; 95% PrI: 0-6,485) were required for LASV, and 0 421 
(mean: 2,330; 95% PrI: 0-15,833) for NiV. The median number of vaccine regimens required for 422 
ring vaccination was 4,860 (95% PrI: 0-21,429) for MERS-CoV, 12,150 (95% PrI: 0-1,175,758) 423 
for RVFV, 0 (mean: 13,774; 95% PrI: 0-108,056) for LASV, and 0 (mean: 2,605; 95% PrI: 0-424 
21,641) for NiV. 425 
 426 
Impact of outbreak response 427 
 428 
The estimated impact of reactive vaccination as an outbreak response tool was generally low for 429 
all four pathogens. Vaccinating 70% of the general population in response to an outbreak with a 430 
single-dose vaccine prevented an annual median of 43 (95% PrI: 0-5,853) RVF cases, 6 (95% 431 
PrI: 0-83) MERS cases, 0 (95% PrI: 0-90) Nipah cases, and 0 (95% PrI: 0-357) cases of Lassa 432 
fever (Figure 3D). These vaccine impacts correspond to 0.69 (95% PrI: 0-2.92) cases averted 433 
per 100,000 vaccine regimens administered for MERS, 3.61 (95% PrI: 0-69.02) for RVF, 0 (95% 434 
PrI: 0-9.84) for Lassa fever, and 0 (95% PrI: 0-0.74) for Nipah. Vaccinating only healthcare 435 
workers typically had a smaller total impact than vaccinating the general population at the same 436 
coverage level, because there was no protection against spillover in the general population, but 437 
a larger per-regimen impact due to the lower number of regimens required. Vaccinating 70% of 438 
HCWs prevented an annual median of 4 (95% PrI: 0-77) MERS cases, corresponding to 58.9 439 
(95% PrI: 0-348.6) cases averted per 100,000 vaccine regimens in HCWs. Vaccinating HCWs 440 
averted 0 (95% PrI: 0-46) Lassa fever cases and 0 (95% PrI: 0-48) Nipah cases, corresponding 441 
to 0 (95% PrI: 0-710.4) and (95% PrI: 0-303.5) cases averted per 100,000 HCW vaccine 442 
regimens respectively (we did not explore vaccinating HCWs against RVFV due to the lack of 443 
any documented nosocomial transmission). 444 
 445 
Sensitivity analysis 446 
 447 
The number of total cases increased with higher R0 values for each pathogen, with the largest 448 
sensitivity observed for MERS-CoV, because its higher value of R0 was close to one (Figure 449 
S16). There was also a large increase in the number of vaccine regimens required to vaccinate 450 
either the general population or HCWs for MERS-CoV at the higher R0 value, but the impact of 451 
R0 on the required number of vaccine regimens was minimal for the other pathogens (Figures 452 
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S17-S18). As a result, there were minimal differences in the impact of vaccination under higher 453 
or lower R0 values for LASV, NiV, or RVFV (Figures S19-S22). Vaccination averted both a 454 
greater magnitude and a higher fraction of MERS cases as R0 increased (Figures S19-S20). In 455 
addition, the number of MERS cases averted per vaccine regimen administered to the general 456 
population or to HCWs also increased as R0 increased (Figures S21-S22). 457 
 458 
Lowering the outbreak threshold (from 10 to 5 cases within a 28 day window for MERS-CoV and 459 
LASV, and from 3 to 1 cases for NiV and RVFV) increased both the number of vaccine 460 
regimens needed for outbreak response and the number of cases averted. With the lower 461 
outbreak threshold, the projected demand for MERS-CoV vaccine regimens was 2,351,059 462 
(95% PrI: 492,028-5,872,847), a 170% increase, while the median number of cases averted 463 
was 19 (95% PrI: 0-162), a 217% increase compared to the baseline. The required number of 464 
vaccine regimens for RVFV increased to 4,793,351 (95% PrI: 659,297-14,157,197), a 302% 465 
increase, while the median number of RVF cases averted was 66 (95% PrI: 0-6,066), a 53% 466 
increase. The median number of vaccine regimens for LASV increased from 0 to 756,273 (95% 467 
PrI: 0-6,644,995), and the median number of Lassa fever cases averted increased from 0 to 15 468 
(95% PrI: 0-534). The median number of vaccine regimens for NiV increased from 0 to 469 
3,501,587 (95% PrI: 0-54,814,275), but the median number of cases averted remained 0 (95% 470 
PrI: 0-119). When the outbreak threshold was increased to 5 cases for RVF, the required 471 
number of vaccine regimens decreased by 50% to 594,894 (95% PrI: 0-7,493,183). The number 472 
of RVF cases averted via vaccination decreased to 26 (95% PrI: 0-5,735), which was 41% fewer 473 
cases averted compared with an outbreak threshold of 3 cases. 474 
 475 
Decreasing the time delay between the outbreak threshold being reached and the start of the 476 
vaccination campaign tended to increase the number of cases averted, while increasing the 477 
delay reduced the number of cases averted (Figure 6). For MERS-CoV, reducing the time delay 478 
from 28 to 7 days increased the median number of cases averted from 6 (95% PrI: 0-83) to 14 479 
(95% PrI: 0-112), while increasing the delay to 120 days reduced the number of cases averted 480 
to 0 (95% PrI: 0-38).  481 
 482 
Increasing or decreasing the percentage of the population that was targeted during reactive 483 
vaccination campaigns also led to corresponding increases or decreases in the number of 484 
cases averted (Figure 6). For example, if only 50%, rather than 70%, of the population was 485 
vaccinated for MERS-CoV, the median number of cases averted declined from 6 (95% PrI: 0-486 
83) to 4 (95% PrI: 0-72). In contrast, if vaccination coverage was increased to 90%, then 7 (95% 487 
PrI: 0-93) MERS cases were averted. The number of MERS cases averted per 100,000 vaccine 488 
regimens administered decreased from 0.69 (95% PrI: 0-2.92) at 70% coverage, to 0.64 (95% 489 
PrI: 0-3.55) at 50% coverage, and 0.63 (95% PrI: 0-2.54) at 90% coverage. The sensitivity of 490 
the impact of outbreak response to other campaign parameters considered in our model, 491 
including per-exposure protection, time to protection following vaccination, vaccination coverage 492 
levels in HCWs, and one-dose vs. two-dose vaccines are provided in Figure 6. The sensitivity 493 
analyses for the other pathogens (NiV, LASV, and RVFV) and for different catchment levels are 494 
provided in the Supplement (SI Text). In general, the number of cases averted were highest 495 
when the spatial scale for vaccine response (catchment area) was the first administrative level, 496 
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but the per-regimen vaccination impact was higher for the smaller catchment areas (second 497 
administrative level or hospital-based catchment areas), because fewer vaccine regimens were 498 
required per campaign in those areas (Figures S33-S34).  499 
 500 
 501 
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Figure 6. Vaccine impact sensitivity analysis for MERS-CoV. Sensitivity of vaccination 503 
impact for MERS-CoV to variation in different campaign parameters expressed as (A) fraction of 504 
cases averted, (B) cases averted per 100,000 vaccinated in the general population, and (C) 505 
cases averted per 1,000 health care workers (HCWs) vaccinated. 506 
 507 
Discussion 508 
 509 
Model performance 510 
 511 
Our spillover simulation model estimates closely matched the average annual reported number 512 
of spillover cases for each pathogen, as well as the observed interannual variability in the 513 
number of spillover cases that have occurred in the past few decades. The simulation results 514 
also captured the geographic distribution and seasonality of spillover cases for each pathogen. 515 
The magnitude, spatial distribution, and timing of spillover rates are the main determinants of 516 
how frequently an outbreak response threshold will be triggered and therefore the size of the 517 
vaccine stockpile needed for outbreak response. Although these patterns could shift to some 518 
degree in the future, our model represents what we know about them presently. In addition to 519 
influencing stockpile size, these three factors (the magnitude, spatial distribution, and timing of 520 
spillover rates) are also relevant for logistical considerations such as the geographic location(s) 521 
of the stockpile and the necessary stockpile replenishment rate (Yen et al. 2015). 522 
 523 
Stockpile estimates 524 
 525 
The estimated number of vaccine regimens needed to reach vaccination coverage targets in the 526 
general population varied considerably across the four pathogens examined. For both LASV 527 
and NiV, the median was zero, indicating that reactive vaccination campaigns would not be 528 
triggered more than 50% of the time. In contrast, the median numbers of vaccine regimens 529 
needed for MERS-CoV and RVFV were 870,000 and 1,190,000, respectively. However, the 530 
95% prediction intervals for all four pathogens were wide due to spatial and temporal 531 
heterogeneity in spillover rates and overdispersion in outbreak sizes resulting from human-to-532 
human transmission. For all four pathogens, the vaccine regimens needed to target HCWs were 533 
several orders of magnitude lower than needed to target the general population.  534 
 535 
These results indicate that the size of the vaccine stockpile needed to meet annual reactive 536 
vaccination demands will depend on the pathogen’s epidemiology, the vaccine coverage 537 
strategy, and the specific demands of a sustainable manufacturing strategy. In addition to the 538 
median or mean annual vaccine demand, our estimates also provide an estimate of the inter-539 
annual variability in vaccine demand and the potential magnitude of vaccine demand in low-540 
frequency, but high-demand years. For example, the 75th or 90th percentile of our estimates 541 
correspond to the level of demand experienced once every four or ten years, on average. The 542 
desired size of a vaccine stockpile will likely depend not only on the average annual vaccine 543 
demand, but also on the stockpile capacity needed to adequately handle the unpredictability in 544 
the timing, frequency, geography, and magnitude of outbreaks. These questions will depend on 545 
sustainable vaccine manufacturing capacity, the geographic distribution of both this 546 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.09.21266135doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.09.21266135
http://creativecommons.org/licenses/by-nc/4.0/


19 

manufacturing capacity and the stockpile, and vaccine shelf life. A graphical user interface is 547 
available at http://eidvaccinedemand.crc.nd.edu to facilitate interactive exploration of these 548 
dependencies. 549 
 550 
Our vaccine demand estimates indicate that the biggest determinant of the size of the reactive 551 
vaccine stockpile needs was the vaccination strategy: targeting the general population, only 552 
HCWs, or ring vaccination. For pathogens that primarily cause nosocomial outbreaks (e.g., 553 
LASV), vaccinating HCWs can protect high-risk individuals. In our analysis, this strategy had a 554 
larger impact in terms of cases averted per vaccine regimen than vaccinating the general 555 
population. The impact of vaccinating HCWs will be highest when spillovers are highly spatially 556 
clustered because vaccination campaigns are more likely to be triggered in high-spillover 557 
catchment areas, thereby protecting HCWs against nosocomial transmission in areas where 558 
vaccination has already occurred earlier in the transmission season but where the spillover risk 559 
may remain high. A ring vaccination strategy would also require significantly fewer regimens 560 
than a general vaccination strategy. We estimated that the vaccine demand under a ring 561 
vaccination strategy would be similar to the demand under a HCW-vaccination strategy for 562 
LASV, NiV, and MERS-CoV, and moderately higher than the HCW-vaccination strategy for 563 
RVFV. Another strategy to reduce the number of vaccine regimens needed per reactive 564 
campaign that we did not consider in our analysis would be to target high-risk sub-populations 565 
instead of the whole population of a catchment area. In the case of RVFV, this would be animal 566 
workers like butchers, veterinarians, and farmers who are at highest risk of infection (Wilson et 567 
al. 1994; Nyakarahuka et al. 2018; Msimang et al. 2019). For MERS-CoV, camel workers have 568 
a higher risk of infection than the general population (Dudas et al. 2018). For LASV, rural 569 
populations within a catchment area are assumed to have a higher risk than urban populations 570 
(but see Chika-Igwenyi et al. 2021, where >50% of patients in one outbreak were urban 571 
residents). For NiV, rural populations and people drinking raw date palm sap could be targeted 572 
for vaccination (Rahman et al. 2012; Islam et al. 2016). 573 
 574 
In addition to providing an estimate of vaccine stockpile size, our modeling approach also 575 
provides an estimate of where the stockpile will most frequently need to be deployed. An 576 
understanding of the geographical distribution of vaccine demand is critical for sustainable 577 
manufacturing and timely response to outbreaks (Grais et al. 2008; Azman and Lessler 2015; 578 
Wells et al. 2019). Knowledge of vaccine needs by geographic area is essential so that the 579 
stockpile(s) can be strategically positioned for rapid deployment following the triggering of an 580 
outbreak response. Vaccine demand in a given area will be a function of the probability of an 581 
outbreak response being triggered and the size of the target population. Because we used a 582 
sliding time window for the outbreak threshold, the probability of a reactive vaccination 583 
campaign being triggered will also depend on the seasonality of spillover. Spillover cases that 584 
are highly seasonal will be more likely to trigger a response than spillovers that occur 585 
sporadically throughout the year. Highly seasonal spillover rates also increase the importance of 586 
rapid deployment of reactive vaccination campaigns, because the shorter duration of the 587 
transmission season increases the likelihood that any delays would cause campaigns to occur 588 
only after seasonal spillover transmission has declined. 589 
 590 
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The size of the outbreak-response catchment areas (our baseline catchment area at the 2nd 591 
administrative level vs. 1st administrative units or individual hospitals within each 1st 592 
administrative unit) also had a large impact on the frequency and timing of outbreak response. 593 
First-level administrative catchment areas triggered more outbreak responses and also have 594 
larger population sizes, and would therefore require a larger vaccine stockpile. However, this 595 
result assumes that the outbreak threshold (number of cases needed to trigger a reactive 596 
vaccination campaign) is the same regardless of the size of the catchment area. Adjusting the 597 
threshold size based on the geographic extent or population size of the catchment areas would 598 
alter the stockpile requirements and could be one approach to aligning expected stockpile 599 
demands with manufacturing capacity. The expected number of regimens needed for adm1 600 
catchment areas might also be an overestimate if only certain regions in an adm1 are at risk. 601 
Therefore, another approach that could balance the advantage of expanded adm1 catchment 602 
surveillance areas against the larger stockpile requirements would be to monitor spillover cases 603 
at the adm1 level, but limit reactive vaccination to the adm2 regions within the adm1 catchment 604 
area where spillover cases were observed. 605 
  606 
Vaccination impact 607 
 608 
Our results indicate that reactive vaccination strategies for preventing the transmission of 609 
zoonotic pathogens with R0<1 tend to have limited impacts. For each of the four pathogens we 610 
considered, reactive vaccination of the general population averted fewer than 100 cases per 611 
year on average and required more than 10,000 vaccine regimens per case averted. The 612 
largest impact (as measured by total cases averted or fraction of cases averted) was achieved 613 
for RVFV, which was the only pathogen where >5% of total cases were averted via reactive 614 
vaccination under our default assumptions. On a cases-averted per regimen basis, vaccinating 615 
HCWs was more effective than vaccinating the general population for each of the pathogens 616 
with at least some human-to-human transmission in nosocomial settings (LASV, MERS-CoV, 617 
and NiV), suggesting that targeting this group may be a viable strategy for reducing the spread 618 
of zoonotic pathogens that are capable of nosocomial transmission. 619 
 620 
Under our baseline reactive vaccination scenario, vaccination averted a higher proportion of 621 
RVF cases than cases of the other three diseases, even though we assumed that there was no 622 
human-to-human RVFV transmission. The higher impact of reactive vaccination for RVFV was 623 
the result of two factors. First, our default threshold to trigger an RVFV vaccination campaign 624 
was three cases (compared to 10 cases within a 28-day window for LASV or MERS-CoV), 625 
which led to more RVFV campaigns being triggered than for the other diseases. Second, RVFV 626 
spillovers are highly clustered in space and time, so additional spillover cases were often 627 
concentrated in catchment areas where previous spillovers during the transmission season had 628 
already triggered a reactive vaccination campaign. Although the lower threshold led to more 629 
vaccine regimens being required for RVFV than for the other pathogens, the per regimen impact 630 
of reactive vaccination was still highest for RVFV. These results highlight the importance of 631 
understanding the underlying epidemiology of zoonotic pathogens when assessing the 632 
feasibility of a reactive vaccination strategy. The spatial and temporal heterogeneity in spillover 633 
patterns will be a primary factor determining the potential impact of reactive vaccination for 634 
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pathogens where cases primarily occur via zoonotic spillover rather than human-to-human 635 
transmission. With a sensitive case threshold for triggering a vaccination campaign, and a 636 
relatively quick response time (28 days), our results indicate that ~25% of RVF cases could be 637 
averted. However, if the response time is slower (120 days), fewer than 5% of RVF cases would 638 
be averted via reactive vaccination. This highlights the importance of rapid response and 639 
vaccine deployment to the success of reactive campaigns when spillover is seasonal.  640 
 641 
After RVFV, the impact of vaccination was modestly higher for the pathogen (MERS-CoV) with 642 
the highest R0 (baseline R0=0.58), indicating that rapid deployment of a reactive vaccination 643 
campaign can avert a fraction of cases for pathogens capable of at least some sustained 644 
human-to-human transmission. However, even for MERS-CoV, fewer than 10% of annual cases 645 
were averted by reactive vaccination, even under our most optimistic scenario with a minimal 646 
delay. This was partly because a significant fraction of cases were spillover cases in geographic 647 
areas where no vaccination campaign was triggered, and partially because reactive vaccination 648 
often did not occur rapidly enough to avert a significant proportion of cases resulting from 649 
secondary human-to-human transmission. The one scenario where reactive vaccination had a 650 
large impact on MERS-CoV transmission was with a higher R0 value of 0.99. In this case, 84.0% 651 
(95% PrI: 10.7-97.5%) of MERS cases could be averted under our baseline reactive vaccination 652 
scenario, compared to only 2.1% (95% PrI: 0-18.2%) of cases averted with the default R0=0.58. 653 
This result highlights the increased potential impactof a reactive vaccination strategy as R0 654 
approaches or exceeds one and self-sustaining human-to-human transmission chains that lead 655 
to larger outbreaks become more likely. 656 
 657 
Reactive vs. prophylactic vaccination 658 
 659 
Delays between the triggering of the outbreak threshold and vaccine administration limit the 660 
impact of reactive vaccination. In most simulated outbreaks, the outbreak died out before the 661 
vaccination was administered due to the low R0. In light of this, prophylactic immunization of 662 
HCWs or people at high risk could have a larger impact than reactive vaccination. However, a 663 
potentially important aspect that was not considered in our study was the impact that reactive 664 
vaccination campaigns in one year had for protection in subsequent year(s). Depending on the 665 
duration of vaccine-derived immunity, the number of cases averted in subsequent years could 666 
be substantial, particularly if the geographic clustering of spillovers is fairly consistent from year 667 
to year. For example, in the past few years, some catchment areas in Nigeria have experienced 668 
outbreaks of Lassa fever multiple years in a row (Siddle et al. 2018; Roberts 2018). As an 669 
extension of our work, the number of averted cases in the years following a reactive vaccination 670 
campaign could be estimated based on the spillover rate, the probability of an outbreak, and the 671 
durability of vaccine-derived immunity. 672 
 673 
Limitations 674 
 675 
We have attempted to estimate vaccine stockpile needs and identify the most important 676 
determinants of success for reactive vaccination of zoonotic emerging pathogens by modeling 677 
several vaccination strategies and exploring the sensitivity of our results to different aspects of 678 
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pathogen natural history and vaccine deployment. However, there are some limitations to our 679 
approach that could affect these estimates. We briefly mention the main limitations here and 680 
include an expanded discussion of these limitations in the SI Text. 681 
 682 
First, there is a relatively poor understanding of the epidemiology of most emerging zoonotic 683 
pathogens, and data that could be used to try and elucidate the most important aspects of their 684 
epidemiology is limited (Grange et al. 2021). In this study, we collated epidemiological data and 685 
parameter estimates from a variety of published sources and also consulted pathogen-specific 686 
experts, but, inevitably, our approach was limited by current knowledge. Second, because the 687 
modeling framework is intended to be applicable for a range of emerging zoonotic pathogens, it 688 
cannot incorporate all of the specific epidemiological details that might affect vaccine demand or 689 
impact for a particular pathogen. Our focus was on the key aspects of epidemiology and 690 
outbreak response that influence sustainable manufacturing needs, vaccine stockpile 691 
requirements, and the impact of outbreak response. Third, we only considered reported cases 692 
when estimating pathogen spillover rates, because undiagnosed or unreported infections would 693 
not trigger an outbreak response, which could bias the geographic distribution of vaccine 694 
demand away from areas with limited disease surveillance systems. This decision was made to 695 
ensure that our framework could be implemented with existing data only, and therefore could be 696 
applied to other pathogens in a straightforward manner. 697 
 698 
Fourth, because the extent of community transmission for each of the study pathogens is poorly 699 
understood, we assumed that human-to-human transmission was limited to nosocomial 700 
settings, which could result in an underestimate of vaccine demand. However, our modeling 701 
framework could be used to explicitly represent community transmission dynamics, and for 702 
pathogens with R0 << 1, as was largely the case in this study, the limited size of the modeled 703 
transmission chains would be similar in either a community or hospital setting since we did not 704 
restrict the potential number of contacts per index case. Fifth, we also assumed that all 705 
nosocomial transmission was from patients to HCWs or between HCWs, and that there was no 706 
patient-to-patient or HCW-to-patient transmission. Therefore, our estimates of the impact of 707 
vaccinating HCWs represents an upper-bound on the effectiveness of this strategy, as 708 
instances of patient-to-patient transmission would not be prevented via this strategy. Sixth, 709 
another simplifying assumption of our model is that cases in one catchment area do not lead to 710 
transmission or an outbreak outside of that catchment area. However, our model already 711 
implicitly incorporates the possibility of spread between catchment areas, and although our 712 
model does not predict spillover cases occurring outside of each pathogen’s currently 713 
documented geographic distribution, the reactive vaccination strategies we examined should 714 
also be applicable for responding to imported cases and their associated outbreaks. Finally, we 715 
did not consider any targeted vaccination strategies beyond ring vaccination or targeting 716 
healthcare workers to limit nosocomial outbreaks. 717 
 718 
Conclusion 719 
 720 
To inform the development of sustainable vaccine manufacturing processes for emerging 721 
pathogens, we developed a modeling framework to estimate the necessary reactive vaccine 722 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.09.21266135doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.09.21266135
http://creativecommons.org/licenses/by-nc/4.0/


23 

stockpile size for emerging zoonotic pathogens. Our framework provides a flexible methodology 723 
for estimating vaccine stockpile needs for outbreak response, and for exploring the impact of 724 
epidemiology and vaccination strategies on outcomes that have important logistical implications 725 
for sustainable vaccine manufacturing, such as the geographic distribution of demand or the 726 
required stockpile replenishment rate. However, our model showed that the impact of reactive 727 
vaccination for the four pathogens that we explored was minimal, preventing fewer than 10% of 728 
human cases under most scenarios with their current epidemiology. However, all these 729 
pathogens are closely monitored for their outbreak potential, and control measures are needed. 730 
Targeting populations at higher risk of infection, such as HCWs, had a higher per-regimen 731 
impact than population-wide vaccination in outbreak control situations. Our results highlight the 732 
need for a more thorough epidemiological understanding of these, and other, emerging zoonotic 733 
pathogens. Improved pathogen surveillance and case detection are also essential for improving 734 
the model and our estimates of vaccine demand. Further work exploring additional scenarios, 735 
such as the possibility of targeting certain high-risk populations or the potential uses of vaccines 736 
for outbreak prevention rather than just outbreak response, is also needed to improve the 737 
potential impacts of vaccination.  738 
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Table S1. Overview of data references. 1216 

Parameter LASV MERS-CoV NiV RVFV 

Case reports 1-11 11-15 11,16-22 11,23-43 

Seasonality See case 
reports 

See case 
reports 

See case 
reports 

See case 
reports 

Incubation period  44-47 48-51 52 53-60 

Infectious period  47 48,51,61,62 63 64 

R0  65 49, 66-70 52  

1 (“Nigeria Centre for Disease Control” n.d.), 2 (Carey et al. 1972), 3 (Monath et al. 1973), 4 (Bowen et al. 1217 
1975), 5 (E Keane 1977), 6 (ter Meulen et al. 2001), 7 (Ajayi 2013), 8 (Fisher-Hoch et al. 1995), 9 (Fraser 1218 
et al. 1974), 10 (Hamblion et al. 2018), 11 (ProMED-mail 2020), 12 (“MERS-CoV Cases” n.d.), 13 1219 
(“Ministry of Health - Kingdom of Saudi Arabia” 2020), 14 (Reeves, Samy, and Townsend Peterson 1220 
2015), 15 http://rambaut.github.io/MERS-Tools/cases2.html, 16 (Hsu et al. 2004), 17 (Gurley, 1221 
Montgomery, Hossain, Islam, et al. 2007), 18 (Kumar et al. 2019), 19 (Nikolay, Salje, Hossain, Khan, 1222 
Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 2019), 20 (Tan, Tan, and Goh 1999), 1223 
21  (Parashar et al. 2000), 22 (Chan et al. 2002a), 23 (“Rift Valley Fever in Egypt and Other African 1224 
Countries: Historical Review, Recent Outbreaks and Possibility of Disease Occurrence in Egypt” 2018), 1225 
24 (Laughlin et al. 1979), 25 (“WHO | Rift Valley Fever – Gambia” 2018), 26 (Centers for Disease Control 1226 
and Prevention (CDC) 1998), 27 (Woods et al. 2002), 28 (Centers for Disease Control and Prevention 1227 
(CDC) 2007), 29 (Jouan et al. 1988), 30  (Faye et al. 2007), 21 (Sow et al. 2014), 32 (Bob et al. 2017), 33 1228 
(Sissoko et al. 2009), 34 (Métras et al. 2016), 35 (Youssouf et al. 2020), 36 (Centers for Disease Control 1229 
and Prevention (CDC) 2020), 37 (FAO 2017), 38 (Ahmad 2000), 39 (Sow et al. 2016), 40 (Centers for 1230 
Disease Control and Prevention (CDC) 1998), 41 (Nderitu et al. 2010), 42 (WHO 2018), 43 (Archer et al. 1231 
2013), 44 (Frame et al. 1970), 45 (Monath 1974), 46 (Mylne et al. 2015), 47 (Khan et al. 2008), 48 (Assiri, 1232 
Al-Tawfiq, et al. 2013), 49 (Cauchemez et al. 2014), 50 (Virlogeux et al. 2016), 51 (Sha et al. 2017), 52 1233 
(Nikolay, Salje, Hossain, Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 1234 
2019), 53 (Daubney, Hudson, and Garnham 1931), 54 (Francis and Magill 1935), 55 (Kitchen 1934), 56 1235 
(Findlay 1932), 57 (Sabin and Blumberg 1947), 58 (Smithburn and Mahaffy 1949), 59 (Mundel and Gear 1236 
1951), 60 (Hoogstraal et al. 1979), 61 (Ki 2015), 62 (Park et al. 2016), 63 (Gurley, Montgomery, Hossain, 1237 
Bell, et al. 2007), 64 (Bird et al. 2009), 65 (Lo Iacono et al. 2015), 66 (Breban, Riou, and Fontanet 2013), 1238 
67 (Poletto et al. 2014), 68 (Chowell et al. 2014), 69 (Kucharski and Althaus 2015), 70 (Cauchemez et al. 1239 
2016) 1240 
 1241 
 1242 
 1243 

 1244 
  1245 
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Figure S1. Spillover and reactive vaccination patterns for Lassa fever virus (LASV). (A) 1248 
Observed weekly Lassa fever spillover cases (grey bars) and estimated seasonal spillover rate 1249 
(red line). (B) Annual number of spillovers over the past 5 years (red) and cumulative 1250 
distribution of simulated annual spillovers from 1000 replicates (grey). (C) Median weekly 1251 
simulated spillover and human-to-human Lassa fever cases. (D) Average weekly number of 1252 
reactive campaigns triggered via spillover detection compared to the estimated seasonal 1253 
spillover rate (red line).  1254 
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Figure S2. Spillover and reactive vaccination patterns for Middle Eastern respiratory 1256 
virus (MERS-CoV). (A) Observed weekly MERS spillover cases (grey bars) and estimated 1257 
seasonal spillover rate (red line). (B) Annual number of spillovers over the past 5 years (red) 1258 
and cumulative distribution of simulated annual spillovers from 1000 replicates (grey). (C) 1259 
Median weekly simulated spillover and human-to-human MERS cases. (D) Average weekly 1260 
number of reactive campaigns triggered via spillover detection compared to the estimated 1261 
seasonal spillover rate (red line).  1262 
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Figure S3. Spillover and reactive vaccination patterns for Nipah virus (NiV). (A) Observed 1264 
weekly Nipah spillover cases (grey bars) and estimated seasonal spillover rate (red line). (B) 1265 
Annual number of spillovers over the past 5 years (red) and cumulative distribution of simulated 1266 
annual spillovers from 1000 replicates (grey). (C) Median weekly simulated spillover and 1267 
human-to-human Nipah cases. (D) Average weekly number of reactive campaigns triggered via 1268 
spillover detection compared to the estimated seasonal spillover rate (red line).  1269 
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Figure S4. Spillover and reactive vaccination patterns for Rift Valley fever virus (RVFV). 1271 
(A) Observed monthly RVF spillover cases by region. (B) Annual number of spillovers over the 1272 
past 5 years (red) and cumulative distribution of simulated annual spillovers from 1000 1273 
replicates (grey). (C) Median weekly simulated spillover and human-to-human RVF cases. (D) 1274 
Average weekly number of reactive campaigns triggered via spillover detection. Fitted 1275 
seasonality is not shown for RVFV as it was for the other pathogens because seasonality was fit 1276 
separately for each region.1277 
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SI Text. 1278 
 1279 
1. Sensitivity analysis: Analysis of reactive vaccination scenarios 1280 
 1281 
In addition to our baseline reactive vaccination scenario, we examined the sensitivity of 1282 
vaccination impact to varying different scenario parameters: the threshold number of cases 1283 
needed to trigger a response, vaccination coverage in the general population, vaccination 1284 
coverage of healthcare workers (HCWs), time from the threshold trigger to the start of 1285 
vaccination, vaccine per exposure protection for one or two doses (PEP), and time delay from 1286 
vaccination to protection (see Table 2 for default, low, and high parameter values). In addition, 1287 
we examined the sensitivity of model results to the assumed or estimated value of R0 for each 1288 
pathogen (SI Text section 2), and the impact of defining different catchment areas for 1289 
vaccination (SI Text section 3). The results of the sensitivity analysis for MERS-CoV are 1290 
summarized in the main text (Figure 6). 1291 
 1292 
As expected, lowering the number of cases required to trigger a reactive vaccination campaign 1293 
or increasing the percent of the population targeted for vaccination increased the number of 1294 
vaccine regimens required for each pathogen (Figures S5-S8). These parameter values had a 1295 
similar impact on the number of vaccine regimens needed to vaccinate HCWs (Figures S9-1296 
S12). Higher R0 values also increased the required number of vaccine regimens needed as 1297 
higher human-to-human transmission increased the likelihood of the case threshold being 1298 
exceeded. However, this impact was fairly small for LASV and RVFV due to their low R0 values 1299 
(Figures S5,S8).  1300 
 1301 
When vaccination impact was measured as the fraction of cases averted, the largest impact for 1302 
each pathogen was achieved by lowering the threshold number of cases needed to trigger a 1303 
reactive vaccination campaign (Figures 4A, S13A-15A). The second largest impact on the 1304 
fraction of cases averted for each pathogen besides RVFV was achieved by decreasing the 1305 
delay between a campaign being triggered and the start of vaccination (Figures 4A, S13A-1306 
S14A). For RVFV, the 2nd largest fraction of cases could be averted by increasing vaccination 1307 
coverage in the general population or increasing vaccine PEP for a single dose vaccine (Figure 1308 
S15A). Although lowering the response threshold maximized the fraction of cases averted for 1309 
each pathogen, it did not maximize the number of cases averted per vaccine regimen 1310 
administered, because lowering the threshold increased the number of vaccine campaigns and 1311 
the required number of vaccine regimens (Figures S5-S8, 4B, S13B-S15B). For LASV, the 1312 
largest per regimen impact was achieved by minimizing the delay prior to vaccination (Figure 1313 
S13B). For NiV and RVFV, the largest per regimen impact was achieved by raising the 1314 
response threshold (Figures S14B-S15B). 1315 
 1316 
For each pathogen (besides RVFV, which is not associated with nosocomial transmission) 1317 
vaccinating HCWs had a larger per regimen impact than vaccinating the general population 1318 
(Figures 4C, S13C-S14C). Reducing the delay prior to vaccination and increasing vaccine PEP 1319 
had the largest impact on the number of cases averted per HCW vaccinated (Figures 4C, S13C-1320 
S14C). The number of cases averted was slightly lower under our high-coverage of HCWs 1321 
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scenario because the high coverage of vaccination among HCWs was paired with low coverage 1322 
among the general population (Figures 4A, S13A-S15A). However, this scenario would have 1323 
achieved the highest number of cases averted per total number of vaccine regimens 1324 
administered for LASV, MERS-CoV, and NiV. 1325 
 1326 
2. Sensitivity analysis: Impact of R0 1327 
 1328 
All R0 values and uncertainty ranges used in our analysis were either drawn from the literature 1329 
or estimated from data (see Table 1 for parameter values and data sources). However, R0 1330 
estimates vary between studies and can also vary in space or time due to different 1331 
environmental conditions or differences in human contact networks. Therefore, we also tested 1332 
the sensitivity of our model results to lower and higher R0 values for each pathogen (for RVFV, 1333 
the default R0=0, so only sensitivity to a higher value was examined). The number of total cases 1334 
increased with R0 for each pathogen, with the largest sensitivity observed for MERS-CoV 1335 
because the high estimate of R0 was close to 1 (Figure S16). There was also a large increase in 1336 
the number of vaccine regimens required to vaccinate either the general population or HCWs for 1337 
MERS-CoV at the higher R0 value, but the impact of R0 on the required number of vaccine 1338 
regimens was minimal for the other pathogens (Figures S17-S18). As a result, there were 1339 
minimal differences in the impact of vaccination under higher or lower R0 values for LASV, NiV, 1340 
or RVFV (Figures S19-S22). Vaccination averted both a greater magnitude and a higher fraction 1341 
of MERS cases as R0 increased (Figures S19-S20). In addition, the number of MERS cases 1342 
averted per vaccine regimen administered to the general population or to HCWs also increased 1343 
as R0 increased (Figures S21-S22). These results highlight the increasing potential 1344 
effectiveness for reactive vaccination as a control strategy as R0 approaches 1 and larger 1345 
outbreaks become more likely. 1346 
 1347 
3. Model limitations 1348 
 1349 
The goal of our analysis was to estimate vaccine stockpile needs and identify the most 1350 
important determinants of success for reactive vaccination of zoonotic emerging pathogens. We 1351 
modeled several different reactive vaccination strategies that are applicable to any zoonotic 1352 
emerging pathogen, and tested this framework for four pathogens with differing epidemiologies. 1353 
In addition, we explored the sensitivity of our results to different aspects of reactive vaccine 1354 
deployment, such as the coverage level, deployment delays, and vaccine per exposure 1355 
protection. However, there are some limitations to our approach that could affect these 1356 
estimates.  1357 
 1358 
First, we have a relatively poor understanding of the epidemiology of most emerging zoonotic 1359 
pathogens, and data that could be used to try and elucidate the most important aspects of their 1360 
epidemiologies is limited. Here we examined the impact of reactive vaccination for four 1361 
pathogens with differing epidemiologies to try and capture how a range of epidemiological 1362 
parameters (e.g., spillover rates, R0, etc.) affect vaccine stockpile requirements and the likely 1363 
impact of vaccination. But there are still uncertainties surrounding the epidemiology of these 1364 
pathogens that could affect the results of our analysis, such as the frequency of human-to-1365 
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human transmission of MERS-CoV in community settings (Group and The WHO MERS-CoV 1366 
Research Group 2013), or the route of NiV spillover to humans during recent outbreaks in India 1367 
(Arunkumar et al. 2019). In addition, because no vaccines have been licensed for these 1368 
pathogens yet, we had to make assumptions about key vaccine parameters (e.g., number of 1369 
doses, time between vaccination and protection, and per exposure protection), based on the 1370 
current vaccine target product profiles (TPPs) for each pathogen. We also had to make 1371 
assumptions about the baseline reactive vaccination campaign parameter estimates such as 1372 
campaign response time and duration (and best-case and worst-case scenarios for our 1373 
sensitivity analysis). Assessing vaccine stockpile needs for newly emerged pathogens will 1374 
involve even more uncertainty as epidemiological knowledge is critically limited immediately 1375 
following emergence, as was demonstrated following the 2019 emergence of SARS-CoV-2 (Lee 1376 
et al. 2020; Tindale et al. 2020). Our modeling approach can be applied to newly emerged 1377 
zoonotic pathogens, but there will likely be a large amount of uncertainty regarding vaccine 1378 
stockpile needs and where vaccination campaigns are most likely to occur.  1379 
 1380 
A second, related, limitation, is that the modeling framework is intended to be applicable for a 1381 
range of emerging zoonotic pathogens, and therefore cannot incorporate all of the specific 1382 
epidemiological details that might affect vaccine demand or impact for a particular pathogen.  1383 
 1384 
Third, we only considered reported cases when estimating pathogen spillover rates and human-1385 
to-human transmission because undiagnosed or unreported infections would not trigger an 1386 
outbreak response. For several of the pathogens considered, however, the majority of 1387 
infections--and even symptomatic cases--go unreported. A frequently cited study estimated that 1388 
LASV infects 100,000-300,000 and kills 5,000 people annually (McCormick et al. 1987), and 1389 
seroprevalence studies in several endemic areas indicate that spillover occurs much more 1390 
frequently than reported (Kernéis et al. 2009; O’Hearn et al. 2016; Gibb et al. 2017). 1391 
Seroprevalence surveys for RVFV and MERS-CoV also indicate that these pathogens cause 1392 
many unreported infections in at least some subpopulations (Müller et al. 2015; Munyua et al. 1393 
2021; Bron et al. 2021). Therefore, our estimate of reactive vaccination impact does not take 1394 
into account the potential reduction in unobserved cases that would occur if at-risk populations 1395 
were vaccinated. Improved surveillance could address this issue and would likely increase the 1396 
frequency of reactive vaccination campaigns. This detection issue could also be partially 1397 
addressed by adjusting the case threshold for outbreak response to account for the case 1398 
detection probability, and then also adjusting vaccination impact to account for undetected 1399 
infections. 1400 
 1401 
Next, because the extent of community transmission for each of the study pathogens is poorly 1402 
understood, we assumed that human-to-human transmission was limited to nosocomial 1403 
settings. Although this could result in an underestimate of vaccine demand, our model 1404 
simulations are consistent with epidemiological patterns observed to date (Figures S1-S4). We 1405 
also assumed that all nosocomial transmission involved transmission from patient to HCWs or 1406 
between HCWs and that there was no patient-to-patient or HCW-to-patient transmission. 1407 
Therefore our estimates of the impact of vaccinating HCWs represents the upper-bound on the 1408 
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effectiveness of this strategy as instances of patient-to-patient transmission would not be 1409 
prevented via this strategy. 1410 
 1411 
Another simplifying assumption of our model is that cases in one catchment area do not lead to 1412 
transmission or an outbreak outside of that catchment area. However, imported cases of these 1413 
pathogens have been reported. A MERS-CoV outbreak in South Korea derived from a spillover 1414 
event in the Middle East (Park et al. 2016), a NiV outbreak in Singapore derived from a spillover 1415 
event in Malaysia (Chan et al. 2002b), and cases of Lassa fever have been imported to Europe 1416 
(Overbosch et al. 2020). These types of events have been rare, and none of these documented 1417 
events resulted in an outbreak larger than the range of those that we simulated. Furthermore, 1418 
documented outbreaks involving pathogen spread to neighbouring catchment areas are 1419 
included in our datasets, and as such are to some extent captured in the current analysis. For 1420 
example, our datasets include Lassa fever cases in Benin derived from an outbreak in the 1421 
neighbouring adm2 located in Nigeria and RVFV outbreaks within multiple catchment areas of 1422 
Tanzania that likely resulted from the movement of livestock (ProMED-mail 2020; Bron et al. 1423 
2021). Therefore, our model already implicitly incorporates the possibility of spread between-1424 
catchment areas, and although our model does not predict spillover cases occurring outside of 1425 
each pathogen’s currently documented geographic distribution, the reactive vaccination 1426 
strategies we examined should also be applicable for responding to imported cases and their 1427 
associated outbreaks.  1428 
 1429 
Another limitation is that we had to make several simplifying assumptions regarding the 1430 
implementation of the reactive vaccination campaigns. One such simplification was assuming 1431 
that all vaccine doses (per regimen) were administered on the same day. This is likely an 1432 
unrealistic assumption for mass vaccination campaigns, particularly those that cover large 1433 
geographic areas. Relaxing this assumption would reduce the public health impact of reactive 1434 
vaccination in the same manner that delays in the start of the vaccination campaign did in our 1435 
analysis. Another simplification is that we did not consider any targeted vaccination strategies 1436 
besides targeting healthcare workers to limit nosocomial outbreaks or ring vaccination around 1437 
index cases. For the ring vaccination we calculated the number of index cases that would trigger 1438 
a ring vaccination response, but we did not model the impact of this response. Besides these 1439 
two strategies, there might be other targeted vaccination approaches that would require a 1440 
smaller vaccine stockpile than targeting the general population while still producing a substantial 1441 
public health impact. For example, in the case of RVFV, a potential vaccination strategy might 1442 
include targeting high-risk groups such as veterinarians, butchers, and livestock holders. One 1443 
reason we did not consider this strategy is because of the coarseness or absence of the data 1444 
available on these professions. While veterinarians only constitute a small proportion of the at-1445 
risk population, their higher risk of acquiring infections could increase the impact of a campaign 1446 
that targeted them for vaccination. This could also increase the safety of those that are often at 1447 
the frontline of an outbreak response. Similar targeted strategies might be envisioned for camel 1448 
workers in areas where MERS-CoV is endemic in livestock, or individuals who collect or 1449 
consume date palm sap in India and Bangladesh (Dudas et al. 2018; Islam et al. 2016). 1450 
  1451 
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Finally, spillover cases were distributed over catchment areas representing 2nd administrative 1452 
districts (or hospitals within the 1st administrative units in our sensitivity analysis), irrespective of 1453 
the urban/rural nature of the catchment area. This may result in an overestimation of the 1454 
population at risk and thus the number of regimens needed. Simulating the spillover rates per 1455 
2nd administrative unit, instead of at the 1st administrative level, could improve the estimation of 1456 
reactive vaccine demand. However, the adm2 location of spillover cases were not available 1457 
most of the time.  1458 
 1459 
 1460 
  1461 
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Figure S5. Vaccine regimens required for Lassa fever virus (LASV). The impact of varying 1463 
several model parameters on the number of vaccine regimens required to meet reactive 1464 
vaccination campaign targets. Base refers to the default scenario used in our main analysis. 1465 
See Table 2 for specific parameter values. 1466 
 1467 
  1468 
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Figure S6. Vaccine regimens required for Middle Eastern respiratory virus (MERS-CoV). 1470 
The impact of varying several model parameters on the number of vaccine regimens required to 1471 
meet reactive vaccination campaign targets. Base refers to the default scenario used in our 1472 
main analysis. See Table 2 for specific parameter values.  1473 
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 1474 

Figure S7. Vaccine regimens required for Nipah virus (NiV). The impact of varying several 1476 
model parameters on the number of vaccine regimens required to meet reactive vaccination 1477 
campaign targets. Base refers to the default scenario used in our main analysis. See Table 2 for 1478 
specific parameter values.  1479 
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Figure S8. Vaccine regimens required for Rift Valley fever virus (RVFV). The impact of 1481 
varying several model parameters on the number of vaccine regimens required to meet reactive 1482 
vaccination campaign targets. Base refers to the default scenario used in our main analysis. 1483 
See Table 2 for specific parameter values.  1484 
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Figure S9. Vaccine regimens required to vaccinate healthcare workers for Lassa fever 1486 
virus (LASV). The impact of varying several model parameters on the number of vaccine 1487 
regimens required to meet reactive vaccination campaign targets among healthcare workers 1488 
(HCWs). Base refers to the default scenario used in our main analysis. See Table 2 for specific 1489 
parameter values.  1490 
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Figure S10. Vaccine regimens required to vaccinate healthcare workers for Middle 1492 
Eastern respiratory virus (MERS-CoV). The impact of varying several model parameters on 1493 
the number of vaccine regimens required to meet reactive vaccination campaign targets among 1494 
healthcare workers (HCWs). Base refers to the default scenario used in our main analysis. See 1495 
Table 2 for specific parameter values.  1496 
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Figure S11. Vaccine regimens required to vaccinate healthcare workers for Nipah virus 1498 
(NiV). The impact of varying several model parameters on the number of vaccine regimens 1499 
required to meet reactive vaccination campaign targets among healthcare workers (HCWs). 1500 
Base refers to the default scenario used in our main analysis. See Table 2 for specific 1501 
parameter values.  1502 
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Figure S12. Vaccine regimens required to vaccinate veterinarians for Rift Valley fever 1504 
virus (RVFV). The impact of varying several model parameters on the number of vaccine 1505 
regimens required to meet reactive vaccination campaign targets among veterinarians (HCWs). 1506 
Base refers to the default scenario used in our main analysis. See Table 2 for specific 1507 
parameter values.  1508 
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Figure S13. Vaccination impact sensitivity analysis for LASV. Sensitivity of vaccination 1510 
impact for LASV to variation in different campaign parameters expressed as (A) fraction of 1511 
cases averted, (B) cases averted per 100,000 vaccinated in the general population, and (C) 1512 
cases averted per 1,000 health care workers (HCWs) vaccinated.  1513 
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Figure S14. Vaccination impact sensitivity analysis for NiV. Sensitivity of vaccination impact 1515 
for NiV to variation in different campaign parameters expressed as (A) fraction of cases averted, 1516 
(B) cases averted per 100,000 vaccinated in the general population, and (C) cases averted per 1517 
1,000 health care workers (HCWs) vaccinated.  1518 
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Figure S15. Vaccination impact sensitivity analysis for RVFV. Sensitivity of vaccination 1520 
impact for RVFV to variation in different campaign parameters expressed as (A) fraction of 1521 
cases averted, (B) cases averted per 100,000 vaccinated in the general population, and (C) 1522 
cases averted per 1,000 health care workers (HCWs) vaccinated.  1523 
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Figure S16. Number of cases under different R0 assumptions.   1525 
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Figure S17. Number of vaccine regimens required under different R0 assumptions.   1527 
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Figure S18. Number of vaccine regimens required for healthcare workers (HCWs) under 1529 
different R0 assumptions.   1530 
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Figure S19. Number of cases averted by vaccinating the general population under 1532 
different R0 assumptions.  1533 
  1534 
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Figure S20. Fraction of cases averted by vaccinating the general population under 1536 
different R0 assumptions.  1537 
  1538 
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Figure S21. Number of cases averted per vaccine regimen administered to  the general 1540 
population under different R0 assumptions.  1541 
  1542 
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Figure S22. Number of cases averted per vaccine regimen administered to healthcare 1544 
workers (HCWs) under different R0 assumptions.   1545 
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3. Analysis of different spillover and vaccination catchment areas 1546 
 1547 
In our analysis we estimated spillover rates for each pathogen at the 1st administrative level 1548 
(adm1). We then accounted for spatial clustering of cases below the adm1 level by associating 1549 
each simulated case with a catchment area. In the main analysis, catchment areas were defined 1550 
as the 2nd administrative units (adm2) within each adm1. For countries with no 2nd 1551 
administrative level, hospitals within an adm1 were treated as catchment areas (hospitals within 1552 
10 km were combined into a single catchment area). This catchment area definition produced 1553 
1570 catchment areas for LASV, 767 for MERS-CoV, 5076 for NiV and 2126 for RVFV. Here we 1554 
consider two alternative catchment area definitions: (1) treating all adm1 units as unique 1555 
catchment areas, and (2) treating all hospitals within adm1 units as unique catchment areas 1556 
(with hospitals <10km apart combined into a single catchment area). The adm1 catchment area 1557 
definition resulted in 214 catchment areas for LASV, 82 for MERS-CoV, 375 for NiV and 343 for 1558 
RVFV. The adm1 hospitals catchment area definition produced 1749 catchment areas for 1559 
LASV, 3138 for MERS-CoV, 10799 for NiV and 4722 for RVFV. Therefore the adm1 catchment 1560 
areas are larger than the adm2 catchment areas, while the adm1 hospitals catchment areas are 1561 
generally smaller than the adm2 catchment areas. Because spillover rates were estimated at 1562 
the adm1 level, spillovers within an adm1 unit were allocated via a multinomial distribution to all 1563 
hospital catchment areas within that adm1 unit, with a probability of 1/(# of catchment areas 1564 
within adm1). 1565 
 1566 
The number of spillover cases remained the same under the different catchment area 1567 
definitions, but the frequency, timing, and location of reactive vaccination campaigns were 1568 
shifted. Reactive vaccination campaigns tended to be triggered sooner during the transmission 1569 
season for adm1 catchment areas because these catchment areas covered a broader area and 1570 
larger population (Figures S23-S26). There were only minor differences in the timing of 1571 
vaccination campaigns between the adm2 and adm1 hospitals catchment areas (Figures S1-S4, 1572 
S27-S30). The geographic distribution of spillovers was less clustered for the larger adm1 1573 
catchment areas, but more finely distributed and clustered for the adm1 hospital catchment 1574 
areas, particularly in countries like South Africa and Madagascar with large 1st-level 1575 
administrative regions (Figures 2A, S31A-S32A). A similar geographic pattern was observed for 1576 
the location of reactive vaccination campaigns (Figures 2B, S31B-S32B). 1577 
 1578 
The total number of human-to-human cases did not differ by catchment area definition for any of 1579 
the pathogens (Figures 1A, S33A-S34A). The median number of reactive vaccination 1580 
campaigns was lower using adm1 catchment areas than adm2 catchment areas for MERS-CoV 1581 
(3; 95% PrI: 1-6 vs. 4; 95% PrI: 0-11) and RVFV (3; 95% PrI:0-6 vs. 5; 95% PrI: 0-20) (Figures 1582 
1B, S33B). In contrast, the median number of reactive vaccination campaigns were higher using 1583 
adm1 catchment areas for LASV (3; 95% PrI: 1-6 vs. 0; 95% PrI: 0-20) and NiV (1; 95% PrI: 0-3 1584 
vs. 0; 95% PrI: 0-8). The frequency of years with no reactive vaccination campaigns was lower 1585 
using adm1 catchment areas compared to adm2 or adm1 hospital catchment areas for all four 1586 
pathogens. Both the median number of reactive vaccination campaigns and the frequency of 1587 
years with no campaigns were similar using adm1 hospital catchment areas compared to the 1588 
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baseline adm2 catchment areas, although the frequency of years with no campaigns was 1589 
slightly higher for the adm1 hospital catchment areas for all four pathogens (Figures 1B, 34B). 1590 
 1591 
The number of vaccine regimens required to cover the general population were significantly 1592 
higher using adm1 catchment areas versus adm2 or adm1 hospital catchment areas for 1593 
(Figures 1C, S33C-34C). For MERS-CoV, the median required number of regimens increased 1594 
from 286,259 (95% PrI: 0-855,099) for adm1 hospital catchment areas, to 1,242,922 (95% PrI: 1595 
0-4,062,010) for adm2 catchment areas, and 14,303,325 (95% PrI: 1,416,969) for adm1 1596 
catchment areas. For LASV, the median required number of regimens increased from 0 (95% 1597 
PrI: 0-4,452,966) for adm1 hospital catchment areas and 0 (95% PrI: 0-5,184,360) for adm2 1598 
catchment areas, to 11,603,802 (95% PrI: 2,953,628-25,277,594) for adm1 catchment areas. 1599 
The number of vaccine regimens needed to vaccinate healthcare workers (HCWs) was also 1600 
lowest for adm1 hospital catchment areas and highest for adm1 catchment areas (Figures 1C, 1601 
S33C-S34C). 1602 
 1603 
The total number of cases averted via vaccination for each pathogen was also lowest using 1604 
adm1 hospital catchment areas and highest using adm1 catchment areas (Figures 1D, S33D-1605 
S34D).  For MERS, the median number of cases averted increased from 2 (95% PrI: 0-60) for 1606 
adm1 hospital catchment areas, to 6 (95% PrI: 0-83) for adm2 catchment areas, and 77 (95% 1607 
PrI: 0-342) for adm1 catchment areas. For Lassa fever, the median number of cases averted 1608 
increased from 0 (95% PrI: 0-306) for adm1 hospital catchment areas and 0 (95% PrI: 0-357) for 1609 
adm2 catchment areas, to 101 (95% PrI: 3-771) for adm1 catchment areas. For RVF, the 1610 
median number of cases averted increased from 29 (95% PrI: 0-3,525) for adm1 hospital 1611 
catchment areas, to 43 (95% PrI: 0-5,826) for adm2 catchment areas, and 66 (95% PrI: 0-1612 
2,451) for adm1 catchment areas. For Nipah, the median number of cases averted was 0 for 1613 
each catchment area definition, but the mean was highest for adm1 catchment areas. The total 1614 
number of cases averted via vaccination of HCWs was also lowest using adm1 hospital 1615 
catchment areas and highest using adm1 catchment areas (Figures 1D, S33D-S34D). For 1616 
example, for MERS, the median number of nosocomial cases averted increased from 1 (95% 1617 
PrI: 0-60) for adm1 hospital catchment areas, to 4 (95% PrI: 0-77) for adm2 catchment areas, 1618 
and 55 (95% PrI: 0-259) for adm1 catchment areas. 1619 
 1620 
Although the number of cases averted via reactive vaccination was highest using adm1 1621 
catchment areas, the number of cases averted per vaccine regimen administered was not 1622 
necessarily the highest under this scenario because the number of regimens required was also 1623 
higher using adm1 catchment areas. For MERS, the highest per regimen impact was achieved 1624 
using adm1 hospital catchment areas where a median of 0.75 (95% PrI: 0-18.10) cases were 1625 
averted per 100,000 vaccine regimens administered. In comparison, a median of 0.58 (95% PrI: 1626 
0.02-2.58) cases were averted per 100,000 vaccine regimens administered in adm1 hospital 1627 
catchment areas, and 0.49 (95% PrI: 0-5.21) cases were averted per 100,000 vaccine regimens 1628 
administered in adm2 catchment areas. The highest per regimen impact for RVF was also 1629 
achieved using adm1 hospital catchment areas, with a median of 3.18 cases averted per 1630 
100,000 vaccine regimens administered versus 2.86 (95% PrI: 0-349.78) using adm2 catchment 1631 
areas or 1.69 (95% PrI: 0-68.42) using adm1 catchment areas. For Lassa fever the per regimen 1632 
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impact was relatively consistent across different catchment areas, and for Nipah the median 1633 
impact per 100,000 vaccine regimens administered was 0 for adm2 or adm1 hospital catchment 1634 
areas and 0.01 (95% PrI: 0-11.17) for adm1 catchment areas. For MERS and Lassa fever, the 1635 
largest impact of vaccinating HCWs as measured on a per-regimen-administered basis, was 1636 
also achieved using adm1 hospital catchment areas. The per-regimen impact of vaccinating 1637 
HCWs was minimal for Nipah, just as it was for vaccinating the general population (although the 1638 
estimated per-regimen impact of vaccinating HCWs was higher than the impact of vaccinating 1639 
the general population). 1640 
  1641 
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Figure S23. Spillover and reactive vaccination patterns for Lassa fever virus (LASV) 1643 
within adm1 catchment areas. (A) Observed weekly Lassa fever spillover cases (grey bars) 1644 
and estimated seasonal spillover rate (red line). (B) Annual number of spillovers over the past 5 1645 
years (red) and cumulative distribution of simulated annual spillovers from 1000 replicates 1646 
(grey). (C) Median weekly simulated spillover and human-to-human Lassa fever cases. (D) 1647 
Average weekly number of reactive campaigns triggered via spillover detection compared to the 1648 
estimated seasonal spillover rate (red line). 1649 
 1650 
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Figure S24. Spillover and reactive vaccination patterns for Middle Eastern respiratory 1652 
virus (MERS-CoV) within adm1 catchment areas. (A) Observed weekly MERS spillover 1653 
cases (grey bars) and estimated seasonal spillover rate (red line). (B) Annual number of 1654 
spillovers over the past 5 years (red) and cumulative distribution of simulated annual spillovers 1655 
from 1000 replicates (grey). (C) Median weekly simulated spillover and human-to-human MERS 1656 
cases. (D) Average weekly number of reactive campaigns triggered via spillover detection 1657 
compared to the estimated seasonal spillover rate (red line). 1658 
 1659 
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Figure S25. Spillover and reactive vaccination patterns for Nipah virus (NiV) within adm1 1661 
catchment areas. (A) Observed weekly Nipah spillover cases (grey bars) and estimated 1662 
seasonal spillover rate (red line). (B) Annual number of spillovers over the past 5 years (red) 1663 
and cumulative distribution of simulated annual spillovers from 1000 replicates (grey). (C) 1664 
Median weekly simulated spillover and human-to-human Nipah cases. (D) Average weekly 1665 
number of reactive campaigns triggered via spillover detection compared to the estimated 1666 
seasonal spillover rate (red line). 1667 
 1668 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.09.21266135doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.09.21266135
http://creativecommons.org/licenses/by-nc/4.0/


69 

Figure S26. Spillover and reactive vaccination patterns for Rift Valley fever virus (RVFV) 1670 
within adm1 catchment areas. (A) Observed monthly RVF spillover cases by region. (B) 1671 
Annual number of spillovers over the past 5 years (red) and cumulative distribution of simulated 1672 
annual spillovers from 1000 replicates (grey). (C) Median weekly simulated spillover and 1673 
human-to-human RVF cases. (D) Average weekly number of reactive campaigns triggered via 1674 
spillover detection compared to the estimated seasonal spillover rate (red line). 1675 
 1676 
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Figure S27. Spillover and reactive vaccination patterns for Lassa fever virus (LASV) 1678 
within adm1 hospital catchment areas. (A) Observed weekly Lassa fever spillover cases 1679 
(grey bars) and estimated seasonal spillover rate (red line). (B) Annual number of spillovers 1680 
over the past 5 years (red) and cumulative distribution of simulated annual spillovers from 1000 1681 
replicates (grey). (C) Median weekly simulated spillover and human-to-human Lassa fever 1682 
cases. (D) Average weekly number of reactive campaigns triggered via spillover detection 1683 
compared to the estimated seasonal spillover rate (red line). 1684 
 1685 
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Figure S28. Spillover and reactive vaccination patterns for Middle Eastern respiratory 1687 
virus (MERS-CoV) within adm1 hospital catchment areas. (A) Observed weekly MERS 1688 
spillover cases (grey bars) and estimated seasonal spillover rate (red line). (B) Annual number 1689 
of spillovers over the past 5 years (red) and cumulative distribution of simulated annual 1690 
spillovers from 1000 replicates (grey). (C) Median weekly simulated spillover and human-to-1691 
human MERS cases. (D) Average weekly number of reactive campaigns triggered via spillover 1692 
detection compared to the estimated seasonal spillover rate (red line). 1693 
 1694 
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Figure S29. Spillover and reactive vaccination patterns for Nipah virus (NiV) within adm1 1696 
hospital catchment areas. (A) Observed weekly Nipah spillover cases (grey bars) and 1697 
estimated seasonal spillover rate (red line). (B) Annual number of spillovers over the past 5 1698 
years (red) and cumulative distribution of simulated annual spillovers from 1000 replicates 1699 
(grey). (C) Median weekly simulated spillover and human-to-human Nipah cases. (D) Average 1700 
weekly number of reactive campaigns triggered via spillover detection compared to the 1701 
estimated seasonal spillover rate (red line). 1702 
 1703 
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Figure S30. Spillover and reactive vaccination patterns for Rift Valley fever virus (RVFV) 1705 
within adm1 hospital catchment areas. (A) Observed monthly RVF spillover cases by region. 1706 
(B) Annual number of spillovers over the past 5 years (red) and cumulative distribution of 1707 
simulated annual spillovers from 1000 replicates (grey). (C) Median weekly simulated spillover 1708 
and human-to-human RVF cases. (D) Average weekly number of reactive campaigns triggered 1709 
via spillover detection compared to the estimated seasonal spillover rate (red line). 1710 
 1711 
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Figure S31. Geographic distribution of spillover cases and reactive vaccination 1714 
campaigns for adm1 catchment areas. (A) Geographic distribution of the expected annual 1715 
number of spillover cases for each pathogen. (B) Probability that a campaign will be triggered. 1716 
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Figure S32. Geographic distribution of spillover cases and reactive vaccination 1719 
campaigns for adm1 hospital catchment areas. (A) Geographic distribution of the expected 1720 
annual number of spillover cases for each pathogen. (B) Proportion of time a campaign will be 1721 
triggered.  1722 
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Figure S33. Annual cases and reactive vaccination impacts for adm1 catchment areas. 1724 
(A) Annual number of spillover, human-to-human (H2H), and total cases for each pathogen 1725 
across the entire study region. (B) Annual number of vaccine campaigns that will be triggered 1726 
due to the outbreak threshold. (C) Number of vaccine regimens required per year for outbreak 1727 
response when either the general population or healthcare workers (HCWs) only are targeted. 1728 
(D) Annual number of cases averted via vaccination.  1729 
 1730 
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Figure S34. Annual cases and reactive vaccination impacts for adm1 hospital-based 1732 
catchment areas. (A) Annual number of spillover, human-to-human (H2H), and total cases for 1733 
each pathogen across the entire study region. (B) Annual number of vaccine campaigns that will 1734 
be triggered due to the outbreak threshold. (C) Number of vaccine regimens required per year 1735 
for outbreak response when either the general population or healthcare workers (HCWs) only 1736 
are targeted. (D) Annual number of cases averted via vaccination. 1737 
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