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Abstract 24 
 25 
Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, 26 
several pose a concern due to their epidemiological characteristics and evolutionary potential. 27 
To enable effective responses to these pathogens in the event that they undergo future 28 
emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development 29 
of vaccines for several pathogens prioritized by the World Health Organization. A major 30 
challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak 31 
response. We developed a modeling framework for outbreak response for emerging zoonoses 32 
under three reactive vaccination strategies. Annual vaccine regimen requirements for a 33 
population-wide strategy ranged from >670,000 (95% prediction interval: 0-3,630,000) for Lassa 34 
virus to 1,190,000 (95% PrI: 0-8,480,000) for Rift Valley fever virus, while the regimens required 35 
for ring vaccination or targeting healthcare workers (HCWs) were several orders of magnitude 36 
lower. For each pathogen and vaccination strategy, reactive vaccination typically prevented 37 
fewer than 10% of cases, because of their presently low R0 values. Targeting HCWs had a 38 
higher per-regimen impact than population-wide vaccination. Our framework provides a flexible 39 
methodology for estimating vaccine stockpile needs and the geographic distribution of demand 40 
under a range of outbreak response scenarios. 41 
 42 
Introduction 43 

Less than two years ago, SARS-CoV-2 was an unknown virus circulating in a zoonotic reservoir 44 
(Andersen et al. 2020). In the time since, it has caused a pandemic resulting in more than 4.6 45 
million deaths (WHO 2020). Theoretical work (Antia et al. 2003) predicts that frequent small-46 
scale outbreaks in humans may provide opportunities for selection of more transmissible 47 
variants that facilitate emergence from the original reservoir. Indeed, virological studies indicate 48 
that a sequence of mutations acquired in this manner may offer a plausible explanation for the 49 
emergence of SARS-CoV in 2003 (Sheahan et al. 2008). More frequent spillover and more 50 
human-to-human transmission ensuing from those spillovers are expected to increase the 51 
probability that adaptations such as these arise and facilitate more widespread emergence 52 
(Morse et al. 2012). Because of this evolutionary potential, even zoonotic pathogens with limited 53 
human-to-human transmission—as defined by a basic reproduction number, R0, below 1—are 54 
viewed as a concern. The status quo of investing in the development of diagnostics, 55 
therapeutics, and vaccines only in reaction to emerging disease threats has made the world 56 
dangerously vulnerable to pandemics (Røttingen et al. 2017; Excler et al. 2021). 57 

To preempt future public health emergencies arising from emerging zoonotic diseases, the 58 
World Health Organization (WHO) developed a research and development blueprint for action 59 
to prevent epidemics (WHO 2016). This R&D Blueprint prioritizes and regularly updates a list of 60 
pathogens for development of diagnostics, therapeutics, and vaccines 61 
(https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-62 
emergency-contexts). The Coalition for Epidemic Preparedness Innovations (CEPI) was 63 
launched in 2017 to accelerate the development of vaccines against emerging infectious 64 
diseases and to enable equitable access to these vaccines for people during outbreaks 65 
(Gouglas et al. 2019; Bernasconi et al. 2020; Huneycutt et al. 2020). The first call for proposals 66 
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from CEPI was on developing vaccines for Lassa virus (LASV), MERS coronavirus (MERS-67 
CoV), and Nipah virus (NiV). Soon after, it added Rift Valley fever virus (RVFV) and 68 
chikungunya virus (CHIKV) to its portfolio. As of early 2021, CEPI was supporting development 69 
of a total of 19 different vaccine candidates for these five diseases, in addition to other efforts 70 
related to Ebola, COVID-19, and “disease X” (CEPI 2018). 71 

In anticipation of vaccine candidates for these diseases progressing through safety and efficacy 72 
trials and towards implementation, there is a need to understand future potential vaccine 73 
demand (Røttingen et al. 2017). Even though these vaccines are not yet available for public 74 
health use, understanding demand at an early stage is important to inform fundraising and 75 
planning efforts in support of the manufacturing and distribution infrastructure that will be 76 
required for their implementation (Excler et al. 2021). Following the development of a new 77 
vaccine, manufacturing capacities are typically the first limiting factor for vaccine supply, which 78 
raises allocation and prioritization decisions to protect people at higher risk of infection and 79 
clinical disease (Medlock and Galvani 2009; Bubar et al. 2021). Appropriate planning of vaccine 80 
stockpiles to support vaccine demand is important to minimize the extent to which difficult 81 
decisions about vaccine prioritization must be made once a vaccine becomes available for use. 82 
At the same time, overestimating vaccine stockpile needs could result in doses expiring and 83 
resources that could have gone to other needs being wasted. 84 

To improve capabilities to plan vaccine stockpiles for emerging zoonotic pathogens, we 85 
developed a modeling framework to quantify the vaccine stockpile size needed to meet demand 86 
for outbreak response and applied it to LASV, MERS-CoV, NiV, and RVFV (Figure 1). Each of 87 
these pathogens is zoonotic, with the majority of human cases believed to result from spillover 88 
transmission from non-human hosts accompanied by self-limiting, human-to-human 89 
transmission (Linthicum, Britch, and Anyamba 2016; Cauchemez et al. 2016; Siddle et al. 2018; 90 
Nikolay, Salje, Hossain, Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et 91 
al. 2019). Our model is driven by geographically and seasonally realistic patterns of spillover for 92 
each pathogen, with each spillover event having the potential to spark an outbreak that we 93 
simulated stochastically with a branching process model. Outbreak response with reactive 94 
vaccination was triggered in our model whenever a threshold number of cases was exceeded 95 
within a certain space-time window. We quantified the number of vaccine regimens required 96 
(where the number of regimens equals the number of individuals vaccinated) under three 97 
different approaches to reactive vaccination: 1) population-wide within the same geographic 98 
area as the outbreak, 2) targeted on healthcare workers (HCWs) within that area, or 3) targeted 99 
on a ring of contacts around each index case. Using vaccines modeled after target product 100 
profiles for each pathogen (WHO 2017c, 2017b, 2017a, 2019), we also quantified the impact of 101 
reactive vaccination under a range of scenarios about deployment timing, coverage, per 102 
exposure protection (PEP) from vaccination, and several epidemiological parameters. 103 

 104 
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Figure 1. Overview of this study. We considered four emerging zoonoses prioritized by the WHO R&D 106 
Blueprint and CEPI. For each, we modeled spillover, human-to-human transmission, and reactive 107 
vaccination. We quantified the vaccine stockpile necessary to meet demands of reactive vaccination 108 
under three scenarios: vaccinating an entire population within the same geographic area as a detected 109 
outbreak, vaccinating healthcare workers within that geographic area, or vaccinating contacts associated 110 
with each spillover case. Lassa fever is caused by LASV, a virus that circulates in rodents in West Africa 111 
and has resulted in thousands of cases and deaths in recent years (Mylne et al. 2015; Roberts 2018). 112 
Nipah is caused by NiV, a virus that circulates in fruit bats that can be found throughout tropical and 113 
subtropical Asia (Yob et al. 2001; Luby et al. 2009), but documented spillover to humans has been mainly 114 
limited to India, Bangladesh, and Malaysia (Pulliam et al. 2012; Girish Kumar et al. 2019; Nikolay, Salje, 115 
Hossain, Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 2019). MERS is 116 
caused by MERS-CoV, a coronavirus that probably originated in bats (Anthony et al. 2017), and is known 117 
to circulate among domestic camel populations in the Middle East and parts of eastern and northern 118 
Africa, resulting in spillover from camels to humans (Müller et al. 2015; Dudas et al. 2018; Hui et al. 119 
2018). Human-to-human transmission has been reported in nosocomial settings for three of these 120 
pathogens (Fisher-Hoch et al. 1995; Park et al. 2016; Nikolay, Salje, Hossain, Khan, Sazzad, Rahman, 121 
Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 2019), although only MERS was reported in large 122 
hospital outbreaks (Assiri, McGeer, et al. 2013; Park et al. 2016). The evidence for community 123 
transmission of these viruses is more limited (Siddle et al. 2018; Hui et al. 2018; Nikolay, Salje, Hossain, 124 
Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 2019). Rift Valley fever is 125 
caused by RVFV, a mosquito-transmitted virus infecting ruminant livestock species in Africa, the Arabian 126 
Peninsula, and the Indian Ocean islands (Pepin et al. 2010; Bron et al. 2021; Gerken et al. 2021). RVF 127 
outbreaks have been associated with heavy rainfall in eastern and southern Africa (Anyamba et al. 2009, 128 
2010), but transmission can also occur outside of these epizootic events (Linthicum, Britch, and Anyamba 129 
2016). Humans can be infected via direct contact with infected animals or via mosquito bite, but are 130 
believed to be dead-end hosts (Al-Hamdan et al. 2015). 131 
 132 
 133 
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Methods 134 
 135 
Epidemiological data  136 
 137 
For each of the pathogens, we collated epidemiological data through the end of 2020 from 138 
multiple sources, including WHO outbreak reports (e.g., (CSR n.d.)), ProMED reports 139 
(https://promedmail.org), country-level reports (https://www.moh.gov.sa, https://ncdc.gov.ng), 140 
and a literature search. A detailed overview of the source of epidemiological data for each 141 
pathogen can be found in the Supplementary Table S1. 142 
 143 
Spillover simulation 144 

Given extensive spatial heterogeneity of incidence, we collated epidemiological data at the first 145 
administrative level (adm1) in each country—e.g., province or state—within the study region for 146 
each pathogen. The primary epidemiological data used to inform spillover rates was the annual 147 
incidence of reported cases of each pathogen at the adm1 level (Table S1). Where possible, 148 
case data was categorized into cases of documented or suspected human-to-human 149 
transmission, documented or suspected spillover cases, and cases of unknown origin. The 150 
geographic coverage of our analysis for each pathogen was determined by the geographic 151 
distribution of spillover cases in the literature. All countries with at least one documented 152 
spillover case were included in our analysis. We excluded countries with imported cases but no 153 
spillover from a zoonotic source (e.g., South Korea for MERS-CoV). 154 

Spillover rates were estimated using a generalized linear mixed model (GLMM) with a zero-155 
inflated negative binomial distribution to capture overdispersion in the annual distribution of 156 
spillover cases within an adm1. Spillover cases were defined as documented spillover cases, 157 
suspected spillover cases, or cases of unknown origin; thereby excluding any cases of 158 
documented or suspected human-to-human transmission. Year, country, and adm1 were 159 
treated as random effects, with the adm1 variable nested within the country variable. Year was 160 
also included as a random effect for the zero-inflated portion of the model. Model fitting was 161 
conducted using the glmmTMB package in R (Brooks et al. 2017). This default model did not 162 
converge for NiV; therefore, for NiV we used the GLMM model without the random effect by 163 
year in the zero-inflated portion of the model to enable convergence. Then, for each pathogen, 164 
we simulated annual spillover cases for each year and adm1 by taking draws (1,000 replicates) 165 
from a zero-inflated negative binomial distribution using the estimated parameters from the 166 
appropriate GLMM fit. We randomly sampled 1,000 of these simulated spillovers from the last 167 
five years as inputs to the outbreak simulation model. 168 
 169 
To account for the seasonality of spillover, we fitted a beta distribution to the timing of spillover 170 
cases within a year (daily for MERS, weekly for Lassa fever, monthly for Nipah and RVF) and 171 
simulated the timing of each spillover case as a random draw from that distribution (Table 1). To 172 
account for spatial clustering of cases below the adm1 level, we associated each simulated 173 
case with a catchment area. We did so according to probabilities proportional to catchment area 174 
population. Catchment areas were defined by second administrative level (adm2) or hospitals 175 
aggregated within 10 km, which would be consistent with an assumption that cases that seek 176 
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treatment for the relatively severe symptoms of these diseases do so at larger hospitals. 177 
Hospital location data for sub-Saharan Africa used in the analysis of LASV was obtained from 178 
(Maina et al. 2019), and hospital location data outside of sub-Saharan Africa was obtained from 179 
https://www.healthsites.io (Saameli et al. 2018). The primary set of findings we reported are 180 
based on a set of 1,570 catchment areas for LASV, 767 for MERS-CoV, 5,076 for NiV and 181 
2,126 for RVFV, which differ because of the different geography of each pathogen. We 182 
examined the sensitivity of our results to the definition of a catchment area by rerunning the 183 
analyses with either adm1 catchment areas or all hospitals within an adm1 as distinct catchment 184 
areas. The results of these analyses are presented in the Supplement (SI Text). 185 
 186 
Outbreak simulation 187 
 188 
To simulate incidence attributable to human-to-human transmission, we considered each 189 
spillover case as a potential index case for an outbreak. A schematic overview of both the 190 
spillover and outbreak simulation models, including outbreak response, is provided in Figure 2. 191 
Human-to-human transmission was simulated stochastically using a branching process model. 192 
For each primary case, a certain number of secondary cases was drawn either from a Poisson 193 
distribution (for Lassa fever and RVF) with λ = R0, or from a negative binomial distribution (for 194 
MERS and Nipah) with μ = R0 and a dispersion parameter, k. A Poisson distribution was used 195 
for Lassa fever and RVF, because both have an estimated R0<0.1 and no available estimate of 196 
overdispersion. We used a negative binomial distribution for MERS and Nipah, because 197 
secondary cases for these diseases are known to be overdispersed, with a majority of human-198 
to-human transmission arising from a small minority of primary cases (Cauchemez et al. 2016; 199 
Nikolay, Salje, Hossain, Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, and 200 
Others 2019). 201 
 202 
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Figure 2. Schematic of the spillover simulation and outbreak simulation models. The spillover 204 
simulation model estimates the magnitude and timing (seasonality) of the spillover rate for each 205 
catchment area from the historical distribution of reported spillovers in the catchment area. These 206 
estimated spillover rates are input into our outbreak model for each catchment area (as identified by the 207 
bolded model input), which used a branching process model to simulate human-to-human transmission. 208 
An outbreak response was triggered within a catchment area if the number of reported cases exceeded a 209 
predetermined number within a 28d time window (outbreak threshold size). Outbreak model inputs with a 210 
superscript S were varied as part of our sensitivity analysis. 211 
 212 
We estimated R0 and variability therein differently for each pathogen. For LASV, we estimated 213 
an R0 for nosocomial transmission by fitting a simple branching process model to observed 214 
outbreak sizes from (Lo Iacono et al. 2015) using the optimize function in R and assuming a 215 
Poisson offspring distribution (Farrington, Kanaan, and Gay 2003). The resulting estimate of R0 216 
for LASV was 0.063 (95% confidence interval [CI]: 0.04 - 0.08) (Table 1). For MERS-CoV, we 217 
compiled estimates of R0 from multiple studies analyzing data from MERS outbreaks 218 
(Cauchemez et al. 2014; Breban, Riou, and Fontanet 2013; Poletto et al. 2014; Chowell et al. 219 
2014; Cauchemez et al. 2016; Kucharski and Althaus 2015) and described variability in those 220 
estimates with a gamma distribution, which resulted in a median R0 of 0.583 (90% CI: 0.305 - 221 
0.993). The dispersion parameter estimate, k=0.26, for MERS-CoV was obtained from 222 
(Kucharski and Althaus 2015). For NiV, we estimated R0 and its variability from detailed 223 
epidemiological investigations of Nipah outbreaks in Bangladesh that estimated person-to-224 
person chains of NiV transmission (Nikolay 2019). Using data from these studies on the number 225 
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of secondary infections per primary infection and the size of each transmission cluster, we 226 
obtained maximum-likelihood estimates of R0 (0.33, 95% CI: 0.21 - 0.52) and k (0.048, 95% CI: 227 
0.031 - 0.074), which were consistent with a branching process with a negative binomial 228 
offspring distribution. For RVFV, we assumed R0=0, and considered R0=0.01 for sensitivity 229 
analysis only, as no human-to-human transmission has been definitively documented to date 230 
(Al-Hamdan et al. 2015). 231 
The timing of incubation and infectious periods were then simulated subsequently based on 232 
gamma distributions of those periods that we estimated by fitting a model to reconcile variability 233 
in previously published estimates (Table 1). As no human-to-human transmission is known for 234 
RVFV, we assumed for the sensitivity analysis a fixed duration for the infectious period of 7 235 
days that is consistent with the duration of detectable viremia after onset of symptoms (Bird et 236 
al. 2009). For all pathogens, the infection date of secondary cases was simulated as a draw 237 
from a uniform distribution over the infectious period of the primary case. Each secondary case 238 
was assigned to the same catchment area as the associated index case. A detailed overview of 239 
the source for each parameter of each pathogen can be found in the Supplementary Table S1.  240 
 241 
Table 1. Overview of parameter estimates. Incubation period and infectious period are 242 
defined in units of days, and parameters for seasonality refer to week of the year. 243 

Parameter LASV MERS-CoV NiV RVFV 

Seasonality  
- Peak (wk) 
- SD (wk) 

 
31.1 
6.2 

 
23.3 
13.6 

 
27.3 
6.4 

 
23.2 
12.7 

Incubation 
period  
- Mean (d) 
- SD (d) 

 
12.05 
3.62 

 
5.56 
0.77 

 
9.87 
0.84 

 
2.88 
1.95 

Infectious period  
- Mean (d) 
- SD (d) 

 
11.31 
8.29 

 
13.5 
2.61 

 
6.49 
0.26 

 
7 1 
- 

R0  
- Mean 
- Dispersion 

 
0.063 (0.05, 0.08) 

- 

 
0.58 (0.31, 0.99) 

1.42 

 
0.325 (0.21, 0.52) 

0.048 

 
0 (0.01) 

- 
1 Fixed value used for sensitivity analysis only. 244 

 245 
Vaccine campaign simulation 246 
 247 
Three different reactive vaccination strategies were evaluated: 1) vaccinating a portion of the 248 
general population in a given catchment area; 2) specifically targeting the HCWs in that 249 
catchment area; or 3) adopting a ring vaccination strategy where the local population 250 
surrounding each index case are targeted for vaccination. These strategies were chosen as 251 
they represent three of the most frequently deployed outbreak response strategies. For each 252 
strategy, baseline vaccination campaign parameter values (and parameter ranges for the 253 
sensitivity analysis) were based on vaccine target product profiles for each pathogen (WHO 254 
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2017c, 2017b, 2017a, 2019), or chosen in consultation with CEPI and subject-matter experts for 255 
each pathogen (Table 2).  256 
 257 
To estimate the impact of vaccination, we simulated each outbreak response relative to a 258 
counterfactual simulation in which there was no outbreak response. Vaccination impact was 259 
defined as the number of cases averted via vaccination and calculated by taking the difference 260 
between the number of cases in the vaccination and no-vaccination scenarios. In our baseline 261 
scenario, an outbreak response within a single catchment area was triggered once ten cases for 262 
Lassa fever and MERS or three cases for Nipah and RVF were detected within a four-week 263 
window (Table 2). These outbreak response thresholds were chosen through discussion with 264 
CEPI and pathogen experts, and do not necessarily match the different outbreak definitions 265 
currently used by WHO or individual countries. The vaccination start date was calculated by 266 
adding a delay to the outbreak response date. To simplify vaccine uptake in our model, we 267 
assumed that each target population was immunized on a single day. Multi-day vaccination 268 
campaigns would likely reduce the impact of outbreak response relative to our estimates, but 269 
this impact would be less severe than a comparable delay in protection following vaccination 270 
because at least a portion of the population would be protected at the beginning of the 271 
campaign. Therefore, our analysis of the sensitivity of vaccination impact to a delay in protection 272 
following vaccination could be considered an upper bound on the sensitivity to extending the 273 
vaccine administration period for a given round of vaccination. In the case of a 2-dose vaccine, 274 
an additional delay of 28 days was assumed between administration of the first and second 275 
doses.  276 
 277 
For the general population vaccination strategy, HCWs were treated as part of the general 278 
population and were vaccinated with the same probability as the general population. For the 279 
HCW vaccination strategy, non-HCWs were not vaccinated, except for a hybrid strategy tested 280 
as part of our sensitivity analysis, where 20% of the general population was vaccinated versus 281 
80% of HCWs (Table 2). For the ring vaccination strategy, we calculated the number of index 282 
cases that would arise after the reactive vaccination campaign had started and assumed that 90 283 
vaccine regimens would be needed to vaccinate a ring of individuals around each index case 284 
based on estimates from ring vaccination campaigns during recent Ebola and cholera outbreaks 285 
(Ali et al. 2016; Henao-Restrepo et al. 2017). For the ring vaccination strategy we only 286 
estimated the number of vaccine regimens that would be required and did not attempt to 287 
estimate the impact of vaccination, because our model was designed to simulate a single 288 
vaccine campaign and not the periodic deployment as required by a ring vaccination strategy. 289 
 290 
Once a vaccination campaign was completed and the delay between vaccination and protective 291 
immunity had elapsed, vaccination in the general population removed spillover cases with a 292 
probability equal to vaccination coverage in the general population multiplied by per exposure 293 
protection (PEP). Vaccination of the general population also removed patient-to-HCW 294 
nosocomial cases with probability equal to vaccination coverage in HCWs multiplied by PEP. 295 
Vaccination of HCWs had no impact on spillover cases, but it removed nosocomial cases with 296 
probability equal to vaccination coverage in HCWs multiplied by PEP. PEP depended on 297 
whether a sufficient amount of time since vaccination had elapsed and, in the event of a two-298 
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dose vaccine, whether an individual had received one dose or two doses at the time of 299 
exposure (Table 2). Cases downstream in a transmission chain from a case averted by 300 
vaccination were also averted.  301 
 302 
Table 2. Overview of simulation scenarios. Parameter values for the baseline reactive 303 
vaccination scenario for each pathogen. Outbreak response threshold cases and threshold 304 
window refer to the number of cases that need to occur within a certain time window to trigger 305 
an outbreak response. Parameter values in parentheses are alternative values used as a part of 306 
the sensitivity analysis.  307 

Parameter LASV, MERS-CoV NiV, RVFV 

Outbreak response 
- Threshold cases 
- Threshold window 
- Delay 

 
10 (5) 
28d 

28d (7, 120) 

 
3 (1, 5) 

28d 
28d (7, 120) 

Vaccination  
- Coverage HCW1 
- Coverage population 
- Delay between dose 
- Regimens per index case (ring 

vaccination only) 

 
70% (80, 50, 90) 
70% (20, 50, 90) 

28d 
90 

Protection 
- Single dose 
- Two dose 1st 
- Two dose 2nd 
- Delay 

 
70% (50%, 90%) 
35% (25%, 45%) 
70% (50%, 90%) 

7d (14) 
1 Excluded for RVFV as no nosocomial transmission has been documented. 308 
 309 
Vaccine demand calculation 310 
 311 
To quantify the number of regimens required to meet the demands of a given outbreak 312 
response strategy, we estimated the number of healthcare workers and overall population 313 
associated with each catchment area where an outbreak occurred. The overall population per 314 
catchment area was estimated based on WorldPop data from 2015 (Tatem 2017). For 315 
healthcare workers, we took the national-level numbers of healthcare workers and distributed 316 
them proportional to the population associated with each catchment area (Ref (WHO n.d.)). 317 
 318 
Graphical user interface 319 
 320 
A generalized implementation of the model is provided as a graphical user interface (GUI) at 321 
http://eidvaccinedemand.crc.nd.edu. In the generalized implementation, a few adjustments were 322 
made to allow for more flexible application of the model and to make computing time more 323 
acceptable for an interactive web tool. First, annual spillovers are drawn from a negative 324 
binomial distribution and then distributed across the catchment areas with a multinomial 325 
distribution proportional to the probability that spillovers occur in these catchment areas. 326 
Second, the population in the catchment areas were defined by a negative binomial distribution 327 
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so that specific geographies did not need to be reproduced. The default parameters for the GUI 328 
of each pathogen were obtained by fitting the corresponding distribution function to the 329 
estimated spillover and population data from this study. The source code for the GUI is provided 330 
at https://github.com/lerch-a/CEPI_VaccineCampaignGUI. 331 
 332 
Results 333 
 334 
Spillover cases and human-to-human transmission 335 
 336 
The median annual number of spillover cases was 6 (95% prediction interval: 0-190) for Nipah, 337 
114 (95% PrI: 48-266) for MERS, 185 (95% PrI: 8-13,134) for RVF, and 417 (95% PrI: 142-338 
1,837) for Lassa fever (Figure 3A). Simulated variability in the annual number of spillover cases 339 
matched the cumulative distribution of observed spillover cases for each pathogen (SI Figures 340 
S1B-S4B). Spillover rates for each pathogen varied both seasonally (SI Figures S1A-S4A) and 341 
geographically (Figure 4A). Spillover cases of Lassa fever were concentrated in Sierra Leone, 342 
Liberia, and Nigeria, although a few spillover cases occurred in other western African countries. 343 
Spillover of RVF to humans was widespread in South Africa, Madagascar, eastern Africa and 344 
the Arabian Peninsula, with frequent spillover cases occurring in several western and northern 345 
Africa countries as well. The majority of MERS spillover cases occurred in Saudi Arabia, and the 346 
majority of Nipah spillover cases occurred in Bangladesh, with additional spillover events in 347 
India and Malaysia.  348 
 349 
The number of cases arising from human-to-human transmission depended on both the 350 
spillover rate and R0 (Figure 3A). Under our default parameter assumptions, there was no 351 
human-to-human RVFV transmission, but in the absence of vaccination the median annual 352 
number of human-to-human cases following spillover was 2 (95% PrI: 0-82) for Nipah, 29 (95% 353 
PrI: 11-143) for Lassa fever, and 161 (95% PrI: 46-407) for MERS (see Figure 5 for an example 354 
of the transmission chains for one catchment area).  355 
 356 
Estimates of vaccine demand 357 
 358 
In our analysis, a median of 0 (95% PrI: 0-8) Nipah reactive vaccination campaigns were 359 
triggered annually, compared to 4 (95% PrI: 0-11) MERS campaigns, 5 (95% PrI: 0-20) RVF 360 
campaigns, and 0 (95% PrI: 0-20) Lassa fever campaigns (Figure 3B). The locations of reactive 361 
vaccination campaigns broadly followed the geographic distribution of spillovers for each 362 
pathogen, although Lassa fever spillovers in Guinea, Benin, Togo, and western Nigeria were 363 
rarely reported frequently enough to trigger a response in our simulations (Figure 4B). The 364 
number of reactive vaccination campaigns that were triggered, and the timing of those 365 
campaigns, was strongly influenced by the seasonal pattern of pathogen spillover (SI Figures 366 
S1-S4). 367 
 368 
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Figure 3. Simulated annual cases and reactive vaccination impacts. (A) Annual number of spillover, 370 
human-to-human (H2H), and total cases for each pathogen across the entire study region (in the absence 371 
of vaccination). (B) Violin plot (including box plot representing the median, IQR, and 95% CI) of the 372 
annual number of vaccine campaigns triggered due to the outbreak threshold being exceeded across 373 
1,000 simulations for each pathogen. (C) Number of vaccine regimens required per year for reactive 374 
vaccination under our baseline scenario under three alternative assumptions about the target of 375 
vaccination campaigns. (D) Violin plot (including box plot representing the median, IQR, and 95% CI) of 376 
annual number of cases averted by reactive vaccination campaigns across 1,000 simulations for each 377 
pathogen. All y-axes are log10 scaled.  378 
 379 
 380 
 381 
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Figure 4. Geographic distribution of predicted spillover cases and reactive vaccination 384 
campaigns. (A) Geographic distribution of the expected annual number of spillover cases for each 385 
pathogen. (B) The annual probability that a campaign will be triggered in each catchment area based on 386 
1,000 simulations (probability is represented by size of the circle in each catchment area). 387 
 388 
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 389 

390 
Figure 5. Timing of spillover and nosocomial cases in a single realization. (Bottom) Individual cases 391 
are visualized as thick horizontal lines, with observed cases in yellow/orange and averted cases in gray 392 
(yellow and light gray indicate incubation time, orange and dark gray indicate infectious time). Unrelated 393 
transmission trees are separated by thin horizontal gray lines. The dashed vertical line indicates the date 394 
the outbreak threshold was reached. Triangles indicate vaccination date and diamonds indicate protection 395 
date. (Top) Number of observed (orange) and averted (gray) cases per week.  396 
 397 
For all four pathogens, there was a wide range in the number of vaccine regimens required in a 398 
typical year due to the dependence of vaccine demand on the spatiotemporal clustering of 399 
spillover cases required to trigger an outbreak response. The largest annual vaccine demand 400 
was for RVFV, with a median of 1,191,741 (95% PrI: 0-8,480,275) vaccine regimens required to 401 
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target the general population under our baseline outbreak response scenario (Figure 3C). The 402 
median number of vaccine regimens for MERS-CoV was 870,045 (95% PrI: 0-2,843,407). The 403 
median number of vaccine regimens needed for NiV and LASV was zero, implying that an 404 
outbreak response was triggered less than 50% of the time. However, the mean number of 405 
vaccine regimens was 673,167 (95% PrI: 0-3,629,052) for LASV and 1,450,177 (95% PrI: 0-406 
12,240,814) for NiV (Figure 3C). The number of vaccine regimens required to conduct a ring 407 
vaccination strategy or to cover healthcare workers as a part of an outbreak response was 408 
typically several orders of magnitude lower than the number required to cover the general 409 
population (Figure 3C). The median number of MERS-CoV vaccine regimens required to cover 410 
healthcare workers was 6,786 (95% PrI: 0-22,086). A median of 1,540 (95% PrI: 0-62,320) 411 
vaccine regimens were needed among healthcare/veterinary workers for RVFV outbreak 412 
response, 0 (mean: 1,144; 95% PrI: 0-6,485) were required for LASV, and 0 (mean: 2,330; 95% 413 
PrI: 0-15,833) for NiV. The median number of vaccine regimens required for ring vaccination 414 
was 4,860 (95% PrI: 0-21,429) for MERS-CoV, 12,150 (95% PrI: 0-1,175,758) for RVFV, 0 415 
(mean: 13,774; 95% PrI: 0-108,056) for LASV, and 0 (mean: 2,605; 95% PrI: 0-21,641) for NiV. 416 
 417 
Impact of outbreak response 418 
 419 
The estimated impact of reactive vaccination as an outbreak response tool was generally low for 420 
all four pathogens. Vaccinating 70% of the general population in response to an outbreak with a 421 
single-dose vaccine prevented an annual median of 43 (95% PrI: 0-5,853) RVF cases, 6 (95% 422 
PrI: 0-83) MERS cases, 0 (95% PrI: 0-90) Nipah cases, and 0 (95% PrI: 0-357) cases of Lassa 423 
fever (Figure 3D). These vaccine impacts correspond to 0.69 (95% PrI: 0-2.92) cases averted 424 
per 100,000 vaccine regimens administered for MERS, 3.61 (95% PrI: 0-69.02) for RVF, 0 (95% 425 
PrI: 0-9.84) for Lassa fever, and 0 (95% PrI: 0-0.74) for Nipah. Vaccinating only healthcare 426 
workers typically had a smaller total impact than vaccinating the general population at the same 427 
coverage level, because there was no protection against spillover in the general population, but 428 
a larger per-regimen impact due to the lower number of regimens required. Vaccinating 70% of 429 
HCWs prevented an annual median of 4 (95% PrI: 0-77) MERS cases, corresponding to 58.9 430 
(95% PrI: 0-348.6) cases averted per 100,000 vaccine regimens in HCWs. Vaccinating HCWs 431 
averted 0 (95% PrI: 0-46) Lassa fever cases and 0 (95% PrI: 0-48) Nipah cases, corresponding 432 
to 0 (95% PrI: 0-710.4) and (95% PrI: 0-303.5) cases averted per 100,000 HCW vaccine 433 
regimens respectively (we did not explore vaccinating HCWs against RVFV due to the lack of 434 
any documented nosocomial transmission). 435 
 436 
Sensitivity analysis 437 
 438 
The number of total cases increased with higher R0 values for each pathogen, with the largest 439 
sensitivity observed for MERS-CoV, because its higher value of R0 was close to one (Figure 440 
S16). There was also a large increase in the number of vaccine regimens required to vaccinate 441 
either the general population or HCWs for MERS-CoV at the higher R0 value, but the impact of 442 
R0 on the required number of vaccine regimens was minimal for the other pathogens (Figures 443 
S17-S18). As a result, there were minimal differences in the impact of vaccination under higher 444 
or lower R0 values for LASV, NiV, or RVFV (Figures S19-S22). Vaccination averted both a 445 
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greater magnitude and a higher fraction of MERS cases as R0 increased (Figures S19-S20). In 446 
addition, the number of MERS cases averted per vaccine regimen administered to the general 447 
population or to HCWs also increased as R0 increased (Figures S21-S22). 448 
 449 
Lowering the outbreak threshold (from 10 to 5 cases within a 28 day window for MERS-CoV and 450 
LASV, and from 3 to 1 cases for NiV and RVFV) increased both the number of vaccine 451 
regimens needed for outbreak response and the number of cases averted. With the lower 452 
outbreak threshold, the projected demand for MERS-CoV vaccine regimens was 2,351,059 453 
(95% PrI: 492,028-5,872,847), a 170% increase, while the median number of cases averted 454 
was 19 (95% PrI: 0-162), a 217% increase compared to the baseline. The required number of 455 
vaccine regimens for RVFV increased to 4,793,351 (95% PrI: 659,297-14,157,197), a 302% 456 
increase, while the median number of RVF cases averted was 66 (95% PrI: 0-6,066), a 53% 457 
increase. The median number of vaccine regimens for LASV increased from 0 to 756,273 (95% 458 
PrI: 0-6,644,995), and the median number of Lassa fever cases averted increased from 0 to 15 459 
(95% PrI: 0-534). The median number of vaccine regimens for NiV increased from 0 to 460 
3,501,587 (95% PrI: 0-54,814,275), but the median number of cases averted remained 0 (95% 461 
PrI: 0-119). When the outbreak threshold was increased to 5 cases for RVF, the required 462 
number of vaccine regimens decreased by 50% to 594,894 (95% PrI: 0-7,493,183). The number 463 
of RVF cases averted via vaccination decreased to 26 (95% PrI: 0-5,735), which was 41% fewer 464 
cases averted compared with an outbreak threshold of 3 cases. 465 
 466 
Decreasing the time delay between the outbreak threshold being reached and the start of the 467 
vaccination campaign tended to increase the number of cases averted, while increasing the 468 
delay reduced the number of cases averted (Figure 6). For MERS-CoV, reducing the time delay 469 
from 28 to 7 days increased the median number of cases averted from 6 (95% PrI: 0-83) to 14 470 
(95% PrI: 0-112), while increasing the delay to 120 days reduced the number of cases averted 471 
to 0 (95% PrI: 0-38).  472 
 473 
Increasing or decreasing the percentage of the population that was targeted during reactive 474 
vaccination campaigns also led to corresponding increases or decreases in the number of 475 
cases averted (Figure 6). For example, if only 50%, rather than 70%, of the population was 476 
vaccinated for MERS-CoV, the median number of cases averted declined from 6 (95% PrI: 0-477 
83) to 4 (95% PrI: 0-72). In contrast, if vaccination coverage was increased to 90%, then 7 (95% 478 
PrI: 0-93) MERS cases were averted. The number of MERS cases averted per 100,000 vaccine 479 
regimens administered decreased from 0.69 (95% PrI: 0-2.92) at 70% coverage, to 0.64 (95% 480 
PrI: 0-3.55) at 50% coverage, and 0.63 (95% PrI: 0-2.54) at 90% coverage. The sensitivity of 481 
the impact of outbreak response to other campaign parameters considered in our model, 482 
including per-exposure protection, time to protection following vaccination, vaccination coverage 483 
levels in HCWs, and one-dose vs. two-dose vaccines are provided in Figure 6. The sensitivity 484 
analyses for the other pathogens (NiV, LASV, and RVFV) and for different catchment levels are 485 
provided in the Supplement (SI Text). In general, the number of cases averted were highest 486 
when the spatial scale for vaccine response (catchment area) was the first administrative level, 487 
but the per-regimen vaccination impact was higher for the smaller catchment areas (second 488 
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administrative level or hospital-based catchment areas), because fewer vaccine regimens were 489 
required per campaign in those areas (Figures S33-S34).  490 
 491 
 492 
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Figure 6. Vaccine impact sensitivity analysis for MERS-CoV. Sensitivity of vaccination 494 
impact for MERS-CoV to variation in different campaign parameters expressed as (A) fraction of 495 
cases averted, (B) cases averted per 100,000 vaccinated in the general population, and (C) 496 
cases averted per 1,000 health care workers (HCWs) vaccinated. 497 
 498 
Discussion 499 
 500 
Model performance 501 
 502 
Our spillover simulation model estimates closely matched the average annual reported number 503 
of spillover cases for each pathogen, as well as the observed interannual variability in the 504 
number of spillover cases that have occurred in the past few decades. The simulation results 505 
also captured the geographic distribution and seasonality of spillover cases for each pathogen. 506 
The magnitude, spatial distribution, and timing of spillover rates are the main determinants of 507 
how frequently an outbreak response threshold will be triggered and therefore the size of the 508 
vaccine stockpile needed for outbreak response. Although these patterns could shift to some 509 
degree in the future, our model represents what we know about them presently. In addition to 510 
influencing stockpile size, these three factors are also relevant for logistical considerations such 511 
as the geographic location(s) of the stockpile and the necessary stockpile replenishment rate 512 
(Yen et al. 2015). 513 
 514 
Stockpile estimates 515 
 516 
The estimated number of vaccine regimens needed to reach vaccination coverage targets in the 517 
general population varied considerably across the four pathogens examined. For both LASV 518 
and NiV, the median was zero, indicating that reactive vaccination campaigns would not be 519 
triggered more than 50% of the time. In contrast, the median numbers of vaccine regimens 520 
needed for MERS-CoV and RVFV were 870,000 and 1,190,000, respectively. However, the 521 
95% prediction intervals for all four pathogens were wide due to spatial and temporal 522 
heterogeneity in spillover rates and overdispersion in outbreak sizes resulting from human-to-523 
human transmission. For all four pathogens, the vaccine regimens needed to target HCWs were 524 
several orders of magnitude lower than needed to target the general population.  525 
 526 
These results indicate that the size of the vaccine stockpile needed to meet annual reactive 527 
vaccination demands will depend on the pathogen’s epidemiology, the vaccine coverage 528 
strategy, and the specific demands of a sustainable manufacturing strategy. In addition to the 529 
median or mean annual vaccine demand, our estimates also provide an estimate of the inter-530 
annual variability in vaccine demand and the potential magnitude of vaccine demand in low-531 
frequency, but high-demand years. For example, the 75th or 90th percentile of our estimates 532 
correspond to the level of demand experienced once every four or ten years, on average. The 533 
desired size of a vaccine stockpile will likely depend not only on the average annual vaccine 534 
demand, but also on the stockpile capacity needed to adequately handle the unpredictability in 535 
the timing, frequency, geography, and magnitude of outbreaks. These questions will depend on 536 
sustainable vaccine manufacturing capacity, the geographic distribution of both this 537 
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manufacturing capacity and the stockpile, and vaccine shelf life. A graphical user interface is 538 
available at http://eidvaccinedemand.crc.nd.edu to facilitate interactive exploration of these 539 
dependencies. 540 
 541 
Our vaccine demand estimates indicate that the biggest determinant of the size of the reactive 542 
vaccine stockpile needs was the vaccination strategy: targeting the general population, only 543 
HCWs, or ring vaccination. For pathogens that primarily cause nosocomial outbreaks (e.g., 544 
LASV), vaccinating HCWs can protect high-risk individuals. In our analysis, this strategy had a 545 
larger impact in terms of cases averted per vaccine regimen than vaccinating the general 546 
population. The impact of vaccinating HCWs will be highest when spillovers are highly spatially 547 
clustered because vaccination campaigns are more likely to be triggered in high-spillover 548 
catchment areas, thereby protecting HCWs against nosocomial transmission in areas where 549 
vaccination has already occurred earlier in the transmission season but where the spillover risk 550 
may remain high. A ring vaccination strategy would also require significantly fewer regimens 551 
than a general vaccination strategy. We estimated that the vaccine demand under a ring 552 
vaccination strategy would be similar to the demand under a HCW-vaccination strategy for 553 
LASV, NiV, and MERS-CoV, and moderately higher than the HCW-vaccination strategy for 554 
RVFV. Another strategy to reduce the number of vaccine regimens needed per reactive 555 
campaign that we did not consider in our analysis would be to target high-risk sub-populations 556 
instead of the whole population of a catchment area. In the case of RVFV, this would be animal 557 
workers like butchers, veterinarians, and farmers who are at highest risk of infection (Wilson et 558 
al. 1994; Nyakarahuka et al. 2018; Msimang et al. 2019). For MERS-CoV, camel workers have 559 
a higher risk of infection than the general population (Dudas et al. 2018). For LASV, rural 560 
populations within a catchment area are assumed to have a higher risk than urban populations 561 
(but see Chika-Igwenyi et al. 2021, where >50% of patients in one outbreak were urban 562 
residents). For NiV, rural populations and people drinking raw date palm sap could be targeted 563 
for vaccination (Rahman et al. 2012; Islam et al. 2016). 564 
 565 
In addition to providing an estimate of vaccine stockpile size, our modeling approach also 566 
provides an estimate of where the stockpile will most frequently need to be deployed. An 567 
understanding of the geographical distribution of vaccine demand is critical for sustainable 568 
manufacturing and timely response to outbreaks (Grais et al. 2008; Azman and Lessler 2015; 569 
Wells et al. 2019). Knowledge of vaccine needs by geographic area is essential so that the 570 
stockpile(s) can be strategically positioned for rapid deployment following the triggering of an 571 
outbreak response. Vaccine demand in a given area will be a function of the probability of an 572 
outbreak response being triggered and the size of the target population. Because we used a 573 
sliding time window for the outbreak threshold, the probability of a reactive vaccination 574 
campaign being triggered will also depend on the seasonality of spillover. Spillover cases that 575 
are highly seasonal will be more likely to trigger a response than spillovers that occur 576 
sporadically throughout the year. Highly seasonal spillover rates also increase the importance of 577 
rapid deployment of reactive vaccination campaigns, because the shorter duration of the 578 
transmission season increases the likelihood that any delays would cause campaigns to occur 579 
only after seasonal spillover transmission has declined. 580 
 581 
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The size of the outbreak-response catchment areas (our baseline catchment area at the 2nd 582 
administrative level vs. 1st administrative units or individual hospitals within each 1st 583 
administrative unit) also had a large impact on the frequency and timing of outbreak response. 584 
First-level administrative catchment areas triggered more outbreak responses and also have 585 
larger population sizes, and would therefore require a larger vaccine stockpile. However, this 586 
result assumes that the outbreak threshold (number of cases needed to trigger a reactive 587 
vaccination campaign) is the same regardless of the size of the catchment area. Adjusting the 588 
threshold size based on the geographic extent or population size of the catchment areas would 589 
alter the stockpile requirements and could be one approach to aligning expected stockpile 590 
demands with manufacturing capacity. The expected number of regimens needed for adm1 591 
catchment areas might also be an overestimate if only certain regions in an adm1 are at risk. 592 
Therefore, another approach that could balance the advantage of expanded adm1 catchment 593 
surveillance areas against the larger stockpile requirements would be to monitor spillover cases 594 
at the adm1 level, but limit reactive vaccination to the adm2 regions within the adm1 catchment 595 
area where spillover cases were observed. 596 
  597 
Vaccination impact 598 
 599 
Our results indicate that reactive vaccination strategies for preventing the transmission of 600 
zoonotic pathogens with R0<1 tend to have limited impacts. For each of the four pathogens we 601 
considered, reactive vaccination of the general population averted fewer than 100 cases per 602 
year on average and required more than 10,000 vaccine regimens per case averted. The 603 
largest impact (as measured by total cases averted or fraction of cases averted) was achieved 604 
for RVFV, which was the only pathogen where >5% of total cases were averted via reactive 605 
vaccination under our default assumptions. On a cases-averted per regimen basis, vaccinating 606 
HCWs was more effective than vaccinating the general population for each of the pathogens 607 
with at least some human-to-human transmission in nosocomial settings (LASV, MERS-CoV, 608 
and NiV), suggesting that targeting this group may be a viable strategy for reducing the spread 609 
of zoonotic pathogens that are capable of nosocomial transmission. 610 
 611 
Under our baseline reactive vaccination scenario, vaccination averted a higher proportion of 612 
RVF cases than cases of the other three diseases, even though we assumed that there was no 613 
human-to-human RVFV transmission. The higher impact of reactive vaccination for RVFV was 614 
the result of two factors. First, our default threshold to trigger an RVFV vaccination campaign 615 
was three cases (compared to 10 cases within a 28-day window for LASV or MERS-CoV), 616 
which led to more RVFV campaigns being triggered than for the other diseases. Second, RVFV 617 
spillovers are highly clustered in space and time, so additional spillover cases were often 618 
concentrated in catchment areas where previous spillovers during the transmission season had 619 
already triggered a reactive vaccination campaign. Although the lower threshold led to more 620 
vaccine regimens being required for RVFV than for the other pathogens, the per regimen impact 621 
of reactive vaccination was still highest for RVFV. These results highlight the importance of 622 
understanding the underlying epidemiology of zoonotic pathogens when assessing the 623 
feasibility of a reactive vaccination strategy. The spatial and temporal heterogeneity in spillover 624 
patterns will be a primary factor determining the potential impact of reactive vaccination for 625 
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pathogens where cases primarily occur via zoonotic spillover rather than human-to-human 626 
transmission. With a sensitive case threshold for triggering a vaccination campaign, and a 627 
relatively quick response time (28 days), our results indicate that ~25% of RVF cases could be 628 
averted. However, if the response time is slower (120 days), fewer than 5% of RVF cases would 629 
be averted via reactive vaccination. This highlights the importance of rapid response and 630 
vaccine deployment to the success of reactive campaigns when spillover is seasonal.  631 
 632 
After RVFV, the impact of vaccination was modestly higher for the pathogen (MERS-CoV) with 633 
the highest R0 (baseline R0=0.58), indicating that rapid deployment of a reactive vaccination 634 
campaign can avert a fraction of cases for pathogens capable of at least some sustained 635 
human-to-human transmission. However, even for MERS-CoV, fewer than 10% of annual cases 636 
were averted by reactive vaccination, even under our most optimistic scenario with a minimal 637 
delay. This was partly because a significant fraction of cases were spillover cases in geographic 638 
areas where no vaccination campaign was triggered, and partially because reactive vaccination 639 
often did not occur rapidly enough to avert a significant proportion of cases resulting from 640 
secondary human-to-human transmission. The one scenario where reactive vaccination had a 641 
large impact on MERS-CoV transmission was with a higher R0 value of 0.99. In this case, 84.0% 642 
(95% PrI: 10.7-97.5%) of MERS cases could be averted under our baseline reactive vaccination 643 
scenario, compared to only 2.1% (95% PrI: 0-18.2%) of cases averted with the default R0=0.58. 644 
This result highlights the increased potential impactof a reactive vaccination strategy as R0 645 
approaches or exceeds one and self-sustaining human-to-human transmission chains that lead 646 
to larger outbreaks become more likely. 647 
 648 
Reactive vs. prophylactic vaccination 649 
 650 
Delays between the triggering of the outbreak threshold and vaccine administration limit the 651 
impact of reactive vaccination. In most simulated outbreaks, the outbreak died out before the 652 
vaccination was administered due to the low R0. In light of this, prophylactic immunization of 653 
HCWs or people at high risk could have a larger impact than reactive vaccination. However, a 654 
potentially important aspect that was not considered in our study was the impact that reactive 655 
vaccination campaigns in one year had for protection in subsequent year(s). Depending on the 656 
duration of vaccine-derived immunity, the number of cases averted in subsequent years could 657 
be substantial, particularly if the geographic clustering of spillovers is fairly consistent from year 658 
to year. For example, in the past few years, some catchment areas in Nigeria have experienced 659 
outbreaks of Lassa fever multiple years in a row (Siddle et al. 2018; Roberts 2018). As an 660 
extension of our work, the number of averted cases in the years following a reactive vaccination 661 
campaign could be estimated based on the spillover rate, the probability of an outbreak, and the 662 
durability of vaccine-derived immunity. 663 
 664 
Limitations 665 
 666 
We have attempted to estimate vaccine stockpile needs and identify the most important 667 
determinants of success for reactive vaccination of zoonotic emerging pathogens by modeling 668 
several vaccination strategies and exploring the sensitivity of our results to different aspects of 669 
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pathogen natural history and vaccine deployment. However, there are some limitations to our 670 
approach that could affect these estimates. We briefly mention the main limitations here and 671 
include an expanded discussion of these limitations in the SI Text. 672 
 673 
First, there is a relatively poor understanding of the epidemiology of most emerging zoonotic 674 
pathogens, and data that could be used to try and elucidate the most important aspects of their 675 
epidemiology is limited (Grange et al. 2021). In this study, we collated epidemiological data and 676 
parameter estimates from a variety of published sources and also consulted pathogen-specific 677 
experts, but, inevitably, our approach was limited by current knowledge. Second, because the 678 
modeling framework is intended to be applicable for a range of emerging zoonotic pathogens, it 679 
cannot incorporate all of the specific epidemiological details that might affect vaccine demand or 680 
impact for a particular pathogen. Our focus was on the key aspects of epidemiology and 681 
outbreak response that influence sustainable manufacturing needs, vaccine stockpile 682 
requirements, and the impact of outbreak response. Third, we only considered reported cases 683 
when estimating pathogen spillover rates, because undiagnosed or unreported infections would 684 
not trigger an outbreak response, which could bias the geographic distribution of vaccine 685 
demand away from areas with limited disease surveillance systems. This decision was made to 686 
ensure that our framework could be implemented with existing data only, and therefore could be 687 
applied to other pathogens in a straightforward manner. 688 
 689 
Fourth, because the extent of community transmission for each of the study pathogens is poorly 690 
understood, we assumed that human-to-human transmission was limited to nosocomial 691 
settings, which could result in an underestimate of vaccine demand. However, our modeling 692 
framework could be used to explicitly represent community transmission dynamics, and for 693 
pathogens with R0 << 1, as was largely the case in this study, the limited size of the modeled 694 
transmission chains would be similar in either a community or hospital setting since we did not 695 
restrict the potential number of contacts per index case. Fifth, we also assumed that all 696 
nosocomial transmission was from patients to HCWs or between HCWs, and that there was no 697 
patient-to-patient or HCW-to-patient transmission. Therefore, our estimates of the impact of 698 
vaccinating HCWs represents an upper-bound on the effectiveness of this strategy, as 699 
instances of patient-to-patient transmission would not be prevented via this strategy. Sixth, 700 
another simplifying assumption of our model is that cases in one catchment area do not lead to 701 
transmission or an outbreak outside of that catchment area. However, our model already 702 
implicitly incorporates the possibility of spread between catchment areas, and although our 703 
model does not predict spillover cases occurring outside of each pathogen’s currently 704 
documented geographic distribution, the reactive vaccination strategies we examined should 705 
also be applicable for responding to imported cases and their associated outbreaks. Finally, we 706 
did not consider any targeted vaccination strategies beyond ring vaccination or targeting 707 
healthcare workers to limit nosocomial outbreaks. 708 
 709 
Conclusion 710 
 711 
To inform the development of sustainable vaccine manufacturing processes for emerging 712 
pathogens, we developed a modeling framework to estimate the necessary reactive vaccine 713 
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stockpile size for emerging zoonotic pathogens. Our framework provides a flexible methodology 714 
for estimating vaccine stockpile needs for outbreak response, and for exploring the impact of 715 
epidemiology and vaccination strategies on outcomes that have important logistical implications 716 
for sustainable vaccine manufacturing, such as the geographic distribution of demand or the 717 
required stockpile replenishment rate. However, our model showed that the impact of reactive 718 
vaccination for the four pathogens that we explored was minimal, preventing fewer than 10% of 719 
human cases under most scenarios with their current epidemiology. However, all these 720 
pathogens are closely monitored for their outbreak potential, and control measures are needed. 721 
Targeting populations at higher risk of infection, such as HCWs, had a higher per-regimen 722 
impact than population-wide vaccination in outbreak control situations. Our results highlight the 723 
need for a more thorough epidemiological understanding of these, and other, emerging zoonotic 724 
pathogens. Improved pathogen surveillance and case detection are also essential for improving 725 
the model and our estimates of vaccine demand. Further work exploring additional scenarios, 726 
such as the possibility of targeting certain high-risk populations or the potential uses of vaccines 727 
for outbreak prevention rather than just outbreak response, is also needed to improve the 728 
potential impacts of vaccination.  729 
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Table S1. Overview of data references. 1208 

Parameter LASV MERS-CoV NiV RVFV 

Case reports 1-11 11-15 11,16-22 11,23-43 

Seasonality See case 
reports 

See case 
reports 

See case 
reports 

See case 
reports 

Incubation period  44-47 48-51 52 53-60 

Infectious period  47 48,51,61,62 63 64 

R0  65 49, 66-70 52  

1 (“Nigeria Centre for Disease Control” n.d.), 2 (Carey et al. 1972), 3 (Monath et al. 1973), 4 (Bowen et al. 1209 
1975), 5 (E Keane 1977), 6 (ter Meulen et al. 2001), 7 (Ajayi 2013), 8 (Fisher-Hoch et al. 1995), 9 (Fraser 1210 
et al. 1974), 10 (Hamblion et al. 2018), 11 (“ProMED-Mail” n.d.), 12 (“MERS-CoV Cases” n.d.), 13 1211 
(“Ministry of Health - Kingdom of Saudi Arabia” 2020), 14 (Reeves, Samy, and Townsend Peterson 1212 
2015), 15 http://rambaut.github.io/MERS-Tools/cases2.html, 16 (Hsu et al. 2004), 17 (Gurley, 1213 
Montgomery, Hossain, Islam, et al. 2007), 18 (Kumar et al. 2019), 19 (Nikolay, Salje, Hossain, Khan, 1214 
Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 2019), 20 (Tan, Tan, and Goh 1999), 1215 
21  (Parashar et al. 2000), 22 (Chan et al. 2002a), 23 (“Rift Valley Fever in Egypt and Other African 1216 
Countries: Historical Review, Recent Outbreaks and Possibility of Disease Occurrence in Egypt” 2018), 1217 
24 (Laughlin et al. 1979), 25 (“WHO | Rift Valley Fever – Gambia” 2018), 26 (Centers for Disease Control 1218 
and Prevention (CDC) 1998), 27 (Woods et al. 2002), 28 (Centers for Disease Control and Prevention 1219 
(CDC) 2007), 29 (Jouan et al. 1988), 30  (Faye et al. 2007), 21 (Sow et al. 2014), 32 (Bob et al. 2017), 33 1220 
(Sissoko et al. 2009), 34 (Métras et al. 2016), 35 (Youssouf et al. 2020), 36 (Centers for Disease Control 1221 
and Prevention (CDC) 2020), 37 (FAO 2017), 38 (Ahmad 2000), 39 (Sow et al. 2016), 40 (Centers for 1222 
Disease Control and Prevention (CDC) 1998), 41 (Nderitu et al. 2010), 42 (WHO 2018), 43 (Archer et al. 1223 
2013), 44 (Frame et al. 1970), 45 (Monath 1974), 46 (Mylne et al. 2015), 47 (Khan et al. 2008), 48 (Assiri, 1224 
Al-Tawfiq, et al. 2013), 49 (Cauchemez et al. 2014), 50 (Virlogeux et al. 2016), 51 (Sha et al. 2017), 52 1225 
(Nikolay, Salje, Hossain, Khan, Sazzad, Rahman, Daszak, Ströher, Pulliam, Kilpatrick, Nichol, et al. 1226 
2019), 53 (Daubney, Hudson, and Garnham 1931), 54 (Francis and Magill 1935), 55 (Kitchen 1934), 56 1227 
(Findlay 1932), 57 (Sabin and Blumberg 1947), 58 (Smithburn and Mahaffy 1949), 59 (Mundel and Gear 1228 
1951), 60 (Hoogstraal et al. 1979), 61 (Ki 2015), 62 (Park et al. 2016), 63 (Gurley, Montgomery, Hossain, 1229 
Bell, et al. 2007), 64 (Bird et al. 2009), 65 (Lo Iacono et al. 2015), 66 (Breban, Riou, and Fontanet 2013), 1230 
67 (Poletto et al. 2014), 68 (Chowell et al. 2014), 69 (Kucharski and Althaus 2015), 70 (Cauchemez et al. 1231 
2016) 1232 
 1233 
 1234 
 1235 

 1236 
  1237 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.09.21266135doi: medRxiv preprint 

http://rambaut.github.io/MERS-Tools/cases2.html
https://doi.org/10.1101/2021.11.09.21266135
http://creativecommons.org/licenses/by-nc/4.0/


36 

Figure S1. Spillover and reactive vaccination patterns for Lassa fever virus (LASV). (A) 1240 
Observed weekly Lassa fever spillover cases (grey bars) and estimated seasonal spillover rate 1241 
(red line). (B) Annual number of spillovers over the past 5 years (red) and cumulative 1242 
distribution of simulated annual spillovers from 1000 replicates (grey). (C) Median weekly 1243 
simulated spillover and human-to-human Lassa fever cases. (D) Average weekly number of 1244 
reactive campaigns triggered via spillover detection compared to the estimated seasonal 1245 
spillover rate (red line).  1246 
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Figure S2. Spillover and reactive vaccination patterns for Middle Eastern respiratory 1248 
virus (MERS-CoV). (A) Observed weekly MERS spillover cases (grey bars) and estimated 1249 
seasonal spillover rate (red line). (B) Annual number of spillovers over the past 5 years (red) 1250 
and cumulative distribution of simulated annual spillovers from 1000 replicates (grey). (C) 1251 
Median weekly simulated spillover and human-to-human MERS cases. (D) Average weekly 1252 
number of reactive campaigns triggered via spillover detection compared to the estimated 1253 
seasonal spillover rate (red line).  1254 
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Figure S3. Spillover and reactive vaccination patterns for Nipah virus (NiV). (A) Observed 1256 
weekly Nipah spillover cases (grey bars) and estimated seasonal spillover rate (red line). (B) 1257 
Annual number of spillovers over the past 5 years (red) and cumulative distribution of simulated 1258 
annual spillovers from 1000 replicates (grey). (C) Median weekly simulated spillover and 1259 
human-to-human Nipah cases. (D) Average weekly number of reactive campaigns triggered via 1260 
spillover detection compared to the estimated seasonal spillover rate (red line).  1261 
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Figure S4. Spillover and reactive vaccination patterns for Rift Valley fever virus (RVFV). 1263 
(A) Observed monthly RVF spillover cases by region. (B) Annual number of spillovers over the 1264 
past 5 years (red) and cumulative distribution of simulated annual spillovers from 1000 1265 
replicates (grey). (C) Median weekly simulated spillover and human-to-human RVF cases. (D) 1266 
Average weekly number of reactive campaigns triggered via spillover detection. Fitted 1267 
seasonality is not shown for RVFV as it was for the other pathogens because seasonality was fit 1268 
separately for each region.1269 
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SI Text. 1270 
 1271 
1. Sensitivity analysis: Analysis of reactive vaccination scenarios 1272 
 1273 
In addition to our baseline reactive vaccination scenario, we examined the sensitivity of 1274 
vaccination impact to varying different scenario parameters: the threshold number of cases 1275 
needed to trigger a response, vaccination coverage in the general population, vaccination 1276 
coverage of healthcare workers (HCWs), time from the threshold trigger to the start of 1277 
vaccination, vaccine per exposure protection for one or two doses (PEP), and time delay from 1278 
vaccination to protection (see Table 2 for default, low, and high parameter values). In addition, 1279 
we examined the sensitivity of model results to the assumed or estimated value of R0 for each 1280 
pathogen (SI Text section 2), and the impact of defining different catchment areas for 1281 
vaccination (SI Text section 3). The results of the sensitivity analysis for MERS-CoV are 1282 
summarized in the main text (Figure 6). 1283 
 1284 
As expected, lowering the number of cases required to trigger a reactive vaccination campaign 1285 
or increasing the percent of the population targeted for vaccination increased the number of 1286 
vaccine regimens required for each pathogen (Figures S5-S8). These parameter values had a 1287 
similar impact on the number of vaccine regimens needed to vaccinate HCWs (Figures S9-1288 
S12). Higher R0 values also increased the required number of vaccine regimens needed as 1289 
higher human-to-human transmission increased the likelihood of the case threshold being 1290 
exceeded. However, this impact was fairly small for LASV and RVFV due to their low R0 values 1291 
(Figures S5,S8).  1292 
 1293 
When vaccination impact was measured as the fraction of cases averted, the largest impact for 1294 
each pathogen was achieved by lowering the threshold number of cases needed to trigger a 1295 
reactive vaccination campaign (Figures 4A, S13A-15A). The second largest impact on the 1296 
fraction of cases averted for each pathogen besides RVFV was achieved by decreasing the 1297 
delay between a campaign being triggered and the start of vaccination (Figures 4A, S13A-1298 
S14A). For RVFV, the 2nd largest fraction of cases could be averted by increasing vaccination 1299 
coverage in the general population or increasing vaccine PEP for a single dose vaccine (Figure 1300 
S15A). Although lowering the response threshold maximized the fraction of cases averted for 1301 
each pathogen, it did not maximize the number of cases averted per vaccine regimen 1302 
administered, because lowering the threshold increased the number of vaccine campaigns and 1303 
the required number of vaccine regimens (Figures S5-S8, 4B, S13B-S15B). For LASV, the 1304 
largest per regimen impact was achieved by minimizing the delay prior to vaccination (Figure 1305 
S13B). For NiV and RVFV, the largest per regimen impact was achieved by raising the 1306 
response threshold (Figures S14B-S15B). 1307 
 1308 
For each pathogen (besides RVFV, which is not associated with nosocomial transmission) 1309 
vaccinating HCWs had a larger per regimen impact than vaccinating the general population 1310 
(Figures 4C, S13C-S14C). Reducing the delay prior to vaccination and increasing vaccine PEP 1311 
had the largest impact on the number of cases averted per HCW vaccinated (Figures 4C, S13C-1312 
S14C). The number of cases averted was slightly lower under our high-coverage of HCWs 1313 
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scenario because the high coverage of vaccination among HCWs was paired with low coverage 1314 
among the general population (Figures 4A, S13A-S15A). However, this scenario would have 1315 
achieved the highest number of cases averted per total number of vaccine regimens 1316 
administered for LASV, MERS-CoV, and NiV. 1317 
 1318 
2. Sensitivity analysis: Impact of R0 1319 
 1320 
All R0 values and uncertainty ranges used in our analysis were either drawn from the literature 1321 
or estimated from data (see Table 1 for parameter values and data sources). However, R0 1322 
estimates vary between studies and can also vary in space or time due to different 1323 
environmental conditions or differences in human contact networks. Therefore, we also tested 1324 
the sensitivity of our model results to lower and higher R0 values for each pathogen (for RVFV, 1325 
the default R0=0, so only sensitivity to a higher value was examined). The number of total cases 1326 
increased with R0 for each pathogen, with the largest sensitivity observed for MERS-CoV 1327 
because the high estimate of R0 was close to 1 (Figure S16). There was also a large increase in 1328 
the number of vaccine regimens required to vaccinate either the general population or HCWs for 1329 
MERS-CoV at the higher R0 value, but the impact of R0 on the required number of vaccine 1330 
regimens was minimal for the other pathogens (Figures S17-S18). As a result, there were 1331 
minimal differences in the impact of vaccination under higher or lower R0 values for LASV, NiV, 1332 
or RVFV (Figures S19-S22). Vaccination averted both a greater magnitude and a higher fraction 1333 
of MERS cases as R0 increased (Figures S19-S20). In addition, the number of MERS cases 1334 
averted per vaccine regimen administered to the general population or to HCWs also increased 1335 
as R0 increased (Figures S21-S22). These results highlight the increasing potential 1336 
effectiveness for reactive vaccination as a control strategy as R0 approaches 1 and larger 1337 
outbreaks become more likely. 1338 
 1339 
3. Model limitations 1340 
 1341 
The goal of our analysis was to estimate vaccine stockpile needs and identify the most 1342 
important determinants of success for reactive vaccination of zoonotic emerging pathogens. We 1343 
modeled several different reactive vaccination strategies that are applicable to any zoonotic 1344 
emerging pathogen, and tested this framework for four pathogens with differing epidemiologies. 1345 
In addition, we explored the sensitivity of our results to different aspects of reactive vaccine 1346 
deployment, such as the coverage level, deployment delays, and vaccine per exposure 1347 
protection. However, there are some limitations to our approach that could affect these 1348 
estimates.  1349 
 1350 
First, we have a relatively poor understanding of the epidemiology of most emerging zoonotic 1351 
pathogens, and data that could be used to try and elucidate the most important aspects of their 1352 
epidemiologies is limited. Here we examined the impact of reactive vaccination for four 1353 
pathogens with differing epidemiologies to try and capture how a range of epidemiological 1354 
parameters (e.g., spillover rates, R0, etc.) affect vaccine stockpile requirements and the likely 1355 
impact of vaccination. But there are still uncertainties surrounding the epidemiology of these 1356 
pathogens that could affect the results of our analysis, such as the frequency of human-to-1357 
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human transmission of MERS-CoV in community settings (Group and The WHO MERS-CoV 1358 
Research Group 2013), or the route of NiV spillover to humans during recent outbreaks in India 1359 
(Arunkumar et al. 2019). In addition, because no vaccines have been licensed for these 1360 
pathogens yet, we had to make assumptions about key vaccine parameters (e.g., number of 1361 
doses, time between vaccination and protection, and per exposure protection), based on the 1362 
current vaccine target product profiles (TPPs) for each pathogen. We also had to make 1363 
assumptions about the baseline reactive vaccination campaign parameter estimates such as 1364 
campaign response time and duration (and best-case and worst-case scenarios for our 1365 
sensitivity analysis). Assessing vaccine stockpile needs for newly emerged pathogens will 1366 
involve even more uncertainty as epidemiological knowledge is critically limited immediately 1367 
following emergence, as was demonstrated following the 2019 emergence of SARS-CoV-2 (Lee 1368 
et al. 2020; Tindale et al. 2020). Our modeling approach can be applied to newly emerged 1369 
zoonotic pathogens, but there will likely be a large amount of uncertainty regarding vaccine 1370 
stockpile needs and where vaccination campaigns are most likely to occur.  1371 
 1372 
A second, related, limitation, is that the modeling framework is intended to be applicable for a 1373 
range of emerging zoonotic pathogens, and therefore cannot incorporate all of the specific 1374 
epidemiological details that might affect vaccine demand or impact for a particular pathogen.  1375 
 1376 
Third, we only considered reported cases when estimating pathogen spillover rates and human-1377 
to-human transmission because undiagnosed or unreported infections would not trigger an 1378 
outbreak response. For several of the pathogens considered, however, the majority of 1379 
infections--and even symptomatic cases--go unreported. A frequently cited study estimated that 1380 
LASV infects 100,000-300,000 and kills 5,000 people annually (McCormick et al. 1987), and 1381 
seroprevalence studies in several endemic areas indicate that spillover occurs much more 1382 
frequently than reported (Kernéis et al. 2009; O’Hearn et al. 2016; Gibb et al. 2017). 1383 
Seroprevalence surveys for RVFV and MERS-CoV also indicate that these pathogens cause 1384 
many unreported infections in at least some subpopulations (Müller et al. 2015; Munyua et al. 1385 
2021; Bron et al. 2021). Therefore, our estimate of reactive vaccination impact does not take 1386 
into account the potential reduction in unobserved cases that would occur if at-risk populations 1387 
were vaccinated. Improved surveillance could address this issue and would likely increase the 1388 
frequency of reactive vaccination campaigns. This detection issue could also be partially 1389 
addressed by adjusting the case threshold for outbreak response to account for the case 1390 
detection probability, and then also adjusting vaccination impact to account for undetected 1391 
infections. 1392 
 1393 
Next, because the extent of community transmission for each of the study pathogens is poorly 1394 
understood, we assumed that human-to-human transmission was limited to nosocomial 1395 
settings. Although this could result in an underestimate of vaccine demand, our model 1396 
simulations are consistent with epidemiological patterns observed to date (Figures S1-S4). We 1397 
also assumed that all nosocomial transmission involved transmission from patient to HCWs or 1398 
between HCWs and that there was no patient-to-patient or HCW-to-patient transmission. 1399 
Therefore our estimates of the impact of vaccinating HCWs represents the upper-bound on the 1400 
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effectiveness of this strategy as instances of patient-to-patient transmission would not be 1401 
prevented via this strategy. 1402 
 1403 
Another simplifying assumption of our model is that cases in one catchment area do not lead to 1404 
transmission or an outbreak outside of that catchment area. However, imported cases of these 1405 
pathogens have been reported. A MERS-CoV outbreak in South Korea derived from a spillover 1406 
event in the Middle East (Park et al. 2016), a NiV outbreak in Singapore derived from a spillover 1407 
event in Malaysia (Chan et al. 2002b), and cases of Lassa fever have been imported to Europe 1408 
(Overbosch et al. 2020). These types of events have been rare, and none of these documented 1409 
events resulted in an outbreak larger than the range of those that we simulated. Furthermore, 1410 
documented outbreaks involving pathogen spread to neighbouring catchment areas are 1411 
included in our datasets, and as such are to some extent captured in the current analysis. For 1412 
example, our datasets include Lassa fever cases in Benin derived from an outbreak in the 1413 
neighbouring adm2 located in Nigeria and RVFV outbreaks within multiple catchment areas of 1414 
Tanzania that likely resulted from the movement of livestock (“ProMED-Mail” n.d.; Bron et al. 1415 
2021). Therefore, our model already implicitly incorporates the possibility of spread between-1416 
catchment areas, and although our model does not predict spillover cases occurring outside of 1417 
each pathogen’s currently documented geographic distribution, the reactive vaccination 1418 
strategies we examined should also be applicable for responding to imported cases and their 1419 
associated outbreaks.  1420 
 1421 
Another limitation is that we had to make several simplifying assumptions regarding the 1422 
implementation of the reactive vaccination campaigns. One such simplification was assuming 1423 
that all vaccine doses (per regimen) were administered on the same day. This is likely an 1424 
unrealistic assumption for mass vaccination campaigns, particularly those that cover large 1425 
geographic areas. Relaxing this assumption would reduce the public health impact of reactive 1426 
vaccination in the same manner that delays in the start of the vaccination campaign did in our 1427 
analysis. Another simplification is that we did not consider any targeted vaccination strategies 1428 
besides targeting healthcare workers to limit nosocomial outbreaks or ring vaccination around 1429 
index cases. For the ring vaccination we calculated the number of index cases that would trigger 1430 
a ring vaccination response, but we did not model the impact of this response. Besides these 1431 
two strategies, there might be other targeted vaccination approaches that would require a 1432 
smaller vaccine stockpile than targeting the general population while still producing a substantial 1433 
public health impact. For example, in the case of RVFV, a potential vaccination strategy might 1434 
include targeting high-risk groups such as veterinarians, butchers, and livestock holders. One 1435 
reason we did not consider this strategy is because of the coarseness or absence of the data 1436 
available on these professions. While veterinarians only constitute a small proportion of the at-1437 
risk population, their higher risk of acquiring infections could increase the impact of a campaign 1438 
that targeted them for vaccination. This could also increase the safety of those that are often at 1439 
the frontline of an outbreak response. Similar targeted strategies might be envisioned for camel 1440 
workers in areas where MERS-CoV is endemic in livestock, or individuals who collect or 1441 
consume date palm sap in India and Bangladesh (Dudas et al. 2018; Islam et al. 2016). 1442 
  1443 
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Finally, spillover cases were distributed over catchment areas representing 2nd administrative 1444 
districts (or hospitals within the 1st administrative units in our sensitivity analysis), irrespective of 1445 
the urban/rural nature of the catchment area. This may result in an overestimation of the 1446 
population at risk and thus the number of regimens needed. Simulating the spillover rates per 1447 
2nd administrative unit, instead of at the 1st administrative level, could improve the estimation of 1448 
reactive vaccine demand. However, the adm2 location of spillover cases were not available 1449 
most of the time.  1450 
 1451 
 1452 
  1453 
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Figure S5. Vaccine regimens required for Lassa fever virus (LASV). The impact of varying 1455 
several model parameters on the number of vaccine regimens required to meet reactive 1456 
vaccination campaign targets. Base refers to the default scenario used in our main analysis. 1457 
See Table 2 for specific parameter values. 1458 
 1459 
  1460 
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Figure S6. Vaccine regimens required for Middle Eastern respiratory virus (MERS-CoV). 1462 
The impact of varying several model parameters on the number of vaccine regimens required to 1463 
meet reactive vaccination campaign targets. Base refers to the default scenario used in our 1464 
main analysis. See Table 2 for specific parameter values.  1465 
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 1466 

Figure S7. Vaccine regimens required for Nipah virus (NiV). The impact of varying several 1468 
model parameters on the number of vaccine regimens required to meet reactive vaccination 1469 
campaign targets. Base refers to the default scenario used in our main analysis. See Table 2 for 1470 
specific parameter values.  1471 
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Figure S8. Vaccine regimens required for Rift Valley fever virus (RVFV). The impact of 1473 
varying several model parameters on the number of vaccine regimens required to meet reactive 1474 
vaccination campaign targets. Base refers to the default scenario used in our main analysis. 1475 
See Table 2 for specific parameter values.  1476 
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Figure S9. Vaccine regimens required to vaccinate healthcare workers for Lassa fever 1478 
virus (LASV). The impact of varying several model parameters on the number of vaccine 1479 
regimens required to meet reactive vaccination campaign targets among healthcare workers 1480 
(HCWs). Base refers to the default scenario used in our main analysis. See Table 2 for specific 1481 
parameter values.  1482 
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Figure S10. Vaccine regimens required to vaccinate healthcare workers for Middle 1484 
Eastern respiratory virus (MERS-CoV). The impact of varying several model parameters on 1485 
the number of vaccine regimens required to meet reactive vaccination campaign targets among 1486 
healthcare workers (HCWs). Base refers to the default scenario used in our main analysis. See 1487 
Table 2 for specific parameter values.  1488 
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Figure S11. Vaccine regimens required to vaccinate healthcare workers for Nipah virus 1490 
(NiV). The impact of varying several model parameters on the number of vaccine regimens 1491 
required to meet reactive vaccination campaign targets among healthcare workers (HCWs). 1492 
Base refers to the default scenario used in our main analysis. See Table 2 for specific 1493 
parameter values.  1494 
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Figure S12. Vaccine regimens required to vaccinate veterinarians for Rift Valley fever 1496 
virus (RVFV). The impact of varying several model parameters on the number of vaccine 1497 
regimens required to meet reactive vaccination campaign targets among veterinarians (HCWs). 1498 
Base refers to the default scenario used in our main analysis. See Table 2 for specific 1499 
parameter values.  1500 
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Figure S13. Vaccination impact sensitivity analysis for LASV. Sensitivity of vaccination 1502 
impact for LASV to variation in different campaign parameters expressed as (A) fraction of 1503 
cases averted, (B) cases averted per 100,000 vaccinated in the general population, and (C) 1504 
cases averted per 1,000 health care workers (HCWs) vaccinated.  1505 
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Figure S14. Vaccination impact sensitivity analysis for NiV. Sensitivity of vaccination impact 1507 
for NiV to variation in different campaign parameters expressed as (A) fraction of cases averted, 1508 
(B) cases averted per 100,000 vaccinated in the general population, and (C) cases averted per 1509 
1,000 health care workers (HCWs) vaccinated.  1510 
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Figure S15. Vaccination impact sensitivity analysis for RVFV. Sensitivity of vaccination 1512 
impact for RVFV to variation in different campaign parameters expressed as (A) fraction of 1513 
cases averted, (B) cases averted per 100,000 vaccinated in the general population, and (C) 1514 
cases averted per 1,000 health care workers (HCWs) vaccinated.  1515 
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Figure S16. Number of cases under different R0 assumptions.   1517 
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Figure S17. Number of vaccine regimens required under different R0 assumptions.   1519 
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Figure S18. Number of vaccine regimens required for healthcare workers (HCWs) under 1521 
different R0 assumptions.   1522 
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Figure S19. Number of cases averted by vaccinating the general population under 1524 
different R0 assumptions.  1525 
  1526 
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Figure S20. Fraction of cases averted by vaccinating the general population under 1528 
different R0 assumptions.  1529 
  1530 
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Figure S21. Number of cases averted per vaccine regimen administered to  the general 1532 
population under different R0 assumptions.  1533 
  1534 
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Figure S22. Number of cases averted per vaccine regimen administered to healthcare 1536 
workers (HCWs) under different R0 assumptions.   1537 
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3. Analysis of different spillover and vaccination catchment areas 1538 
 1539 
In our analysis we estimated spillover rates for each pathogen at the 1st administrative level 1540 
(adm1). We then accounted for spatial clustering of cases below the adm1 level by associating 1541 
each simulated case with a catchment area. In the main analysis, catchment areas were defined 1542 
as the 2nd administrative units (adm2) within each adm1. For countries with no 2nd 1543 
administrative level, hospitals within an adm1 were treated as catchment areas (hospitals within 1544 
10 km were combined into a single catchment area). This catchment area definition produced 1545 
1570 catchment areas for LASV, 767 for MERS-CoV, 5076 for NiV and 2126 for RVFV. Here we 1546 
consider two alternative catchment area definitions: (1) treating all adm1 units as unique 1547 
catchment areas, and (2) treating all hospitals within adm1 units as unique catchment areas 1548 
(with hospitals <10km apart combined into a single catchment area). The adm1 catchment area 1549 
definition resulted in 214 catchment areas for LASV, 82 for MERS-CoV, 375 for NiV and 343 for 1550 
RVFV. The adm1 hospitals catchment area definition produced 1749 catchment areas for 1551 
LASV, 3138 for MERS-CoV, 10799 for NiV and 4722 for RVFV. Therefore the adm1 catchment 1552 
areas are larger than the adm2 catchment areas, while the adm1 hospitals catchment areas are 1553 
generally smaller than the adm2 catchment areas. Because spillover rates were estimated at 1554 
the adm1 level, spillovers within an adm1 unit were allocated via a multinomial distribution to all 1555 
hospital catchment areas within that adm1 unit, with a probability of 1/(# of catchment areas 1556 
within adm1). 1557 
 1558 
The number of spillover cases remained the same under the different catchment area 1559 
definitions, but the frequency, timing, and location of reactive vaccination campaigns were 1560 
shifted. Reactive vaccination campaigns tended to be triggered sooner during the transmission 1561 
season for adm1 catchment areas because these catchment areas covered a broader area and 1562 
larger population (Figures S23-S26). There were only minor differences in the timing of 1563 
vaccination campaigns between the adm2 and adm1 hospitals catchment areas (Figures S1-S4, 1564 
S27-S30). The geographic distribution of spillovers was less clustered for the larger adm1 1565 
catchment areas, but more finely distributed and clustered for the adm1 hospital catchment 1566 
areas, particularly in countries like South Africa and Madagascar with large 1st-level 1567 
administrative regions (Figures 2A, S31A-S32A). A similar geographic pattern was observed for 1568 
the location of reactive vaccination campaigns (Figures 2B, S31B-S32B). 1569 
 1570 
The total number of human-to-human cases did not differ by catchment area definition for any of 1571 
the pathogens (Figures 1A, S33A-S34A). The median number of reactive vaccination 1572 
campaigns was lower using adm1 catchment areas than adm2 catchment areas for MERS-CoV 1573 
(3; 95% PrI: 1-6 vs. 4; 95% PrI: 0-11) and RVFV (3; 95% PrI:0-6 vs. 5; 95% PrI: 0-20) (Figures 1574 
1B, S33B). In contrast, the median number of reactive vaccination campaigns were higher using 1575 
adm1 catchment areas for LASV (3; 95% PrI: 1-6 vs. 0; 95% PrI: 0-20) and NiV (1; 95% PrI: 0-3 1576 
vs. 0; 95% PrI: 0-8). The frequency of years with no reactive vaccination campaigns was lower 1577 
using adm1 catchment areas compared to adm2 or adm1 hospital catchment areas for all four 1578 
pathogens. Both the median number of reactive vaccination campaigns and the frequency of 1579 
years with no campaigns were similar using adm1 hospital catchment areas compared to the 1580 
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baseline adm2 catchment areas, although the frequency of years with no campaigns was 1581 
slightly higher for the adm1 hospital catchment areas for all four pathogens (Figures 1B, 34B). 1582 
 1583 
The number of vaccine regimens required to cover the general population were significantly 1584 
higher using adm1 catchment areas versus adm2 or adm1 hospital catchment areas for 1585 
(Figures 1C, S33C-34C). For MERS-CoV, the median required number of regimens increased 1586 
from 286,259 (95% PrI: 0-855,099) for adm1 hospital catchment areas, to 1,242,922 (95% PrI: 1587 
0-4,062,010) for adm2 catchment areas, and 14,303,325 (95% PrI: 1,416,969) for adm1 1588 
catchment areas. For LASV, the median required number of regimens increased from 0 (95% 1589 
PrI: 0-4,452,966) for adm1 hospital catchment areas and 0 (95% PrI: 0-5,184,360) for adm2 1590 
catchment areas, to 11,603,802 (95% PrI: 2,953,628-25,277,594) for adm1 catchment areas. 1591 
The number of vaccine regimens needed to vaccinate healthcare workers (HCWs) was also 1592 
lowest for adm1 hospital catchment areas and highest for adm1 catchment areas (Figures 1C, 1593 
S33C-S34C). 1594 
 1595 
The total number of cases averted via vaccination for each pathogen was also lowest using 1596 
adm1 hospital catchment areas and highest using adm1 catchment areas (Figures 1D, S33D-1597 
S34D).  For MERS, the median number of cases averted increased from 2 (95% PrI: 0-60) for 1598 
adm1 hospital catchment areas, to 6 (95% PrI: 0-83) for adm2 catchment areas, and 77 (95% 1599 
PrI: 0-342) for adm1 catchment areas. For Lassa fever, the median number of cases averted 1600 
increased from 0 (95% PrI: 0-306) for adm1 hospital catchment areas and 0 (95% PrI: 0-357) for 1601 
adm2 catchment areas, to 101 (95% PrI: 3-771) for adm1 catchment areas. For RVF, the 1602 
median number of cases averted increased from 29 (95% PrI: 0-3,525) for adm1 hospital 1603 
catchment areas, to 43 (95% PrI: 0-5,826) for adm2 catchment areas, and 66 (95% PrI: 0-1604 
2,451) for adm1 catchment areas. For Nipah, the median number of cases averted was 0 for 1605 
each catchment area definition, but the mean was highest for adm1 catchment areas. The total 1606 
number of cases averted via vaccination of HCWs was also lowest using adm1 hospital 1607 
catchment areas and highest using adm1 catchment areas (Figures 1D, S33D-S34D). For 1608 
example, for MERS, the median number of nosocomial cases averted increased from 1 (95% 1609 
PrI: 0-60) for adm1 hospital catchment areas, to 4 (95% PrI: 0-77) for adm2 catchment areas, 1610 
and 55 (95% PrI: 0-259) for adm1 catchment areas. 1611 
 1612 
Although the number of cases averted via reactive vaccination was highest using adm1 1613 
catchment areas, the number of cases averted per vaccine regimen administered was not 1614 
necessarily the highest under this scenario because the number of regimens required was also 1615 
higher using adm1 catchment areas. For MERS, the highest per regimen impact was achieved 1616 
using adm1 hospital catchment areas where a median of 0.75 (95% PrI: 0-18.10) cases were 1617 
averted per 100,000 vaccine regimens administered. In comparison, a median of 0.58 (95% PrI: 1618 
0.02-2.58) cases were averted per 100,000 vaccine regimens administered in adm1 hospital 1619 
catchment areas, and 0.49 (95% PrI: 0-5.21) cases were averted per 100,000 vaccine regimens 1620 
administered in adm2 catchment areas. The highest per regimen impact for RVF was also 1621 
achieved using adm1 hospital catchment areas, with a median of 3.18 cases averted per 1622 
100,000 vaccine regimens administered versus 2.86 (95% PrI: 0-349.78) using adm2 catchment 1623 
areas or 1.69 (95% PrI: 0-68.42) using adm1 catchment areas. For Lassa fever the per regimen 1624 
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impact was relatively consistent across different catchment areas, and for Nipah the median 1625 
impact per 100,000 vaccine regimens administered was 0 for adm2 or adm1 hospital catchment 1626 
areas and 0.01 (95% PrI: 0-11.17) for adm1 catchment areas. For MERS and Lassa fever, the 1627 
largest impact of vaccinating HCWs as measured on a per-regimen-administered basis, was 1628 
also achieved using adm1 hospital catchment areas. The per-regimen impact of vaccinating 1629 
HCWs was minimal for Nipah, just as it was for vaccinating the general population (although the 1630 
estimated per-regimen impact of vaccinating HCWs was higher than the impact of vaccinating 1631 
the general population). 1632 
  1633 
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Figure S23. Spillover and reactive vaccination patterns for Lassa fever virus (LASV) 1635 
within adm1 catchment areas. (A) Observed weekly Lassa fever spillover cases (grey bars) 1636 
and estimated seasonal spillover rate (red line). (B) Annual number of spillovers over the past 5 1637 
years (red) and cumulative distribution of simulated annual spillovers from 1000 replicates 1638 
(grey). (C) Median weekly simulated spillover and human-to-human Lassa fever cases. (D) 1639 
Average weekly number of reactive campaigns triggered via spillover detection compared to the 1640 
estimated seasonal spillover rate (red line). 1641 
 1642 
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Figure S24. Spillover and reactive vaccination patterns for Middle Eastern respiratory 1644 
virus (MERS-CoV) within adm1 catchment areas. (A) Observed weekly MERS spillover 1645 
cases (grey bars) and estimated seasonal spillover rate (red line). (B) Annual number of 1646 
spillovers over the past 5 years (red) and cumulative distribution of simulated annual spillovers 1647 
from 1000 replicates (grey). (C) Median weekly simulated spillover and human-to-human MERS 1648 
cases. (D) Average weekly number of reactive campaigns triggered via spillover detection 1649 
compared to the estimated seasonal spillover rate (red line). 1650 
 1651 
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Figure S25. Spillover and reactive vaccination patterns for Nipah virus (NiV) within adm1 1653 
catchment areas. (A) Observed weekly Nipah spillover cases (grey bars) and estimated 1654 
seasonal spillover rate (red line). (B) Annual number of spillovers over the past 5 years (red) 1655 
and cumulative distribution of simulated annual spillovers from 1000 replicates (grey). (C) 1656 
Median weekly simulated spillover and human-to-human Nipah cases. (D) Average weekly 1657 
number of reactive campaigns triggered via spillover detection compared to the estimated 1658 
seasonal spillover rate (red line). 1659 
 1660 
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Figure S26. Spillover and reactive vaccination patterns for Rift Valley fever virus (RVFV) 1662 
within adm1 catchment areas. (A) Observed monthly RVF spillover cases by region. (B) 1663 
Annual number of spillovers over the past 5 years (red) and cumulative distribution of simulated 1664 
annual spillovers from 1000 replicates (grey). (C) Median weekly simulated spillover and 1665 
human-to-human RVF cases. (D) Average weekly number of reactive campaigns triggered via 1666 
spillover detection compared to the estimated seasonal spillover rate (red line). 1667 
 1668 
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Figure S27. Spillover and reactive vaccination patterns for Lassa fever virus (LASV) 1670 
within adm1 hospital catchment areas. (A) Observed weekly Lassa fever spillover cases 1671 
(grey bars) and estimated seasonal spillover rate (red line). (B) Annual number of spillovers 1672 
over the past 5 years (red) and cumulative distribution of simulated annual spillovers from 1000 1673 
replicates (grey). (C) Median weekly simulated spillover and human-to-human Lassa fever 1674 
cases. (D) Average weekly number of reactive campaigns triggered via spillover detection 1675 
compared to the estimated seasonal spillover rate (red line). 1676 
 1677 
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Figure S28. Spillover and reactive vaccination patterns for Middle Eastern respiratory 1679 
virus (MERS-CoV) within adm1 hospital catchment areas. (A) Observed weekly MERS 1680 
spillover cases (grey bars) and estimated seasonal spillover rate (red line). (B) Annual number 1681 
of spillovers over the past 5 years (red) and cumulative distribution of simulated annual 1682 
spillovers from 1000 replicates (grey). (C) Median weekly simulated spillover and human-to-1683 
human MERS cases. (D) Average weekly number of reactive campaigns triggered via spillover 1684 
detection compared to the estimated seasonal spillover rate (red line). 1685 
 1686 
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Figure S29. Spillover and reactive vaccination patterns for Nipah virus (NiV) within adm1 1688 
hospital catchment areas. (A) Observed weekly Nipah spillover cases (grey bars) and 1689 
estimated seasonal spillover rate (red line). (B) Annual number of spillovers over the past 5 1690 
years (red) and cumulative distribution of simulated annual spillovers from 1000 replicates 1691 
(grey). (C) Median weekly simulated spillover and human-to-human Nipah cases. (D) Average 1692 
weekly number of reactive campaigns triggered via spillover detection compared to the 1693 
estimated seasonal spillover rate (red line). 1694 
 1695 
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Figure S30. Spillover and reactive vaccination patterns for Rift Valley fever virus (RVFV) 1697 
within adm1 hospital catchment areas. (A) Observed monthly RVF spillover cases by region. 1698 
(B) Annual number of spillovers over the past 5 years (red) and cumulative distribution of 1699 
simulated annual spillovers from 1000 replicates (grey). (C) Median weekly simulated spillover 1700 
and human-to-human RVF cases. (D) Average weekly number of reactive campaigns triggered 1701 
via spillover detection compared to the estimated seasonal spillover rate (red line). 1702 
 1703 
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Figure S31. Geographic distribution of spillover cases and reactive vaccination 1706 
campaigns for adm1 catchment areas. (A) Geographic distribution of the expected annual 1707 
number of spillover cases for each pathogen. (B) Proportion of time a campaign will be 1708 
triggered. 1709 
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Figure S32. Geographic distribution of spillover cases and reactive vaccination 1712 
campaigns for adm1 hospital catchment areas. (A) Geographic distribution of the expected 1713 
annual number of spillover cases for each pathogen. (B) Proportion of time a campaign will be 1714 
triggered.  1715 
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Figure S33. Annual cases and reactive vaccination impacts for adm1 catchment areas. 1717 
(A) Annual number of spillover, human-to-human (H2H), and total cases for each pathogen 1718 
across the entire study region. (B) Annual number of vaccine campaigns that will be triggered 1719 
due to the outbreak threshold. (C) Number of vaccine regimens required per year for outbreak 1720 
response when either the general population or healthcare workers (HCWs) only are targeted. 1721 
(D) Annual number of cases averted via vaccination.  1722 
 1723 
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Figure S34. Annual cases and reactive vaccination impacts for adm1 hospital-based 1725 
catchment areas. (A) Annual number of spillover, human-to-human (H2H), and total cases for 1726 
each pathogen across the entire study region. (B) Annual number of vaccine campaigns that will 1727 
be triggered due to the outbreak threshold. (C) Number of vaccine regimens required per year 1728 
for outbreak response when either the general population or healthcare workers (HCWs) only 1729 
are targeted. (D) Annual number of cases averted via vaccination. 1730 
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