Abstract
The current mental health crisis is a growing public health issue requiring a large-scale response that cannot be met with traditional services alone. Digital support tools are proliferating, yet most are not systematically evaluated, and we know little about their users and their needs. Shout is a free mental health text messaging service run by the charity Mental Health Innovations, which provides support for individuals in the UK experiencing mental or emotional distress and seeking help. Here we study a large data set of anonymised text message conversations and post-conversation surveys compiled through Shout. This data provides an opportunity to hear at scale from those experiencing distress; to better understand mental health needs for people not using traditional mental health services; and to evaluate the impact of a novel form of crisis support. We use natural language processing (NLP) to assess the adherence of volunteers to conversation techniques and formats, and to gain insight into demographic user groups and their behavioural expressions of distress. Our textual analyses achieve accurate classification of conversation stages (weighted accuracy = 88%), behaviours (1-hamming loss = 95%) and texter demographics (weighted accuracy = 96%), exemplifying how the application of NLP to frontline mental health data sets can aid with post hoc analysis and evaluation of quality of service provision in digital mental health services.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We acknowledge funding through EPSRC award EP/N014529/1 supporting the EPSRC Centre for Mathematics of Precision Healthcare at Imperial and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 424778381-TRR 295. Mental Health Innovations also supported the research through a charitable donation to Imperial College London. EL was partly supported by a grant to Mental Health Innovations from the Rayne Foundation.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Imperial College Research Ethics Committee of Imperial College London gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
zhaolu.liu16{at}imperial.ac.uk
r.peach13{at}imperial.ac.uk
emma.lawrance{at}mhiuk.org
ariele.noble{at}mhiuk.org
mark.ungless{at}mhiuk.org
Data Availability
Data used in the present study is not available due to its sensitive nature.