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Abstract 22 

Background Estimating the transmissibility of infectious diseases is key to inform situational 23 

awareness and for response planning.  Several methods tend to overestimate the basic (R0) and 24 

effective (Rt) reproduction numbers during the initial phases of an epidemic. The reasons driving the 25 

observed bias are unknown. In this work we explore the impact of incomplete observations and 26 

underreporting of the first generations of infections during the initial epidemic phase.  27 

Methods We propose a debiasing procedure which utilises a linear exponential growth model to 28 

infer unobserved initial generations of infections and apply it to EpiEstim. We assess the 29 

performance of our adjustment using simulated data, considering different levels of transmissibility 30 

and reporting rates. We also apply the proposed correction to SARS-CoV-2 incidence data reported 31 

in Italy, Sweden, the United Kingdom and the United States of America. 32 

Results In all simulation scenarios, our adjustment outperforms the original EpiEstim method. The 33 

proposed correction reduces the systematic bias and the quantification of uncertainty is more 34 

precise, as better coverage of the true R0 values is achieved with tighter credible intervals. When 35 

applied to real world data, the proposed adjustment produces basic reproduction number estimates 36 

which closely match the estimates obtained in other studies while making use of a minimal amount 37 

of data. 38 

Conclusions The proposed adjustment refines the reproduction number estimates obtained with the 39 

current EpiEstim implementation by producing improved, more precise estimates earlier than with 40 

the original method.  This has relevant public health implications. 41 

  42 
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Summary 46 

We propose a back-imputation procedure tackling the issue of unobserved initial generations of 47 

infections to reduce the bias observed in the early R0 and Rt estimates and apply it to EpiEstim using 48 

simulated and reported COVID-19 data to evaluate it. 49 

 50 
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Introduction 59 

The wide-ranging impacts of the current COVID-19 pandemic have highlighted the threats posed 60 

by infectious diseases to our society. The impacts of such threats are not exclusively confined to the 61 

domain of public health: in addition to the millions of confirmed deaths worldwide, COVID-19 has 62 

caused severe economic and societal disruption around the world. 63 

As such, it is crucial that the properties of all emerging pathogens are adequately characterised as 64 

soon as possible, making the best use of the limited data that are typically available in the early 65 

phases of an epidemic.  In particular, understanding the transmissibility of a novel pathogen allows 66 

for the evaluation of the risks involved, to inform public health decision making and the 67 

implementation of interventions. 68 

In this context, the basic and instantaneous reproduction numbers, R0 and Rt, represent key 69 

epidemiological parameters. Rt  represents the average number of secondary infections 70 

caused by a single infectious individual at time t and R0 represents the average number of secondary 71 

infections generated by a typical infection in a completely susceptible population. 72 

 These parameters relate to important quantities such as the final size of an epidemic [1] and the 73 

critical herd immunity threshold [2,3] and are essential to project the expected future number of 74 

cases, hospitalisations and deaths. 75 

In the last couple of decades, several methods have been developed to estimate Rt. EpiEstim, 76 

developed by Cori et al. [4], has been recommended as one of the best methods for near real-time 77 

estimation of Rt to detect changes in transmissibility patterns [5].  However, EpiEstim and other 78 

commonly used statistical methods, can suffer from systematic overestimation of the basic 79 

reproduction number in the early stages of an epidemic [6]. In the initial epidemic stages, EpiEstim is 80 

outperformed by simpler inference methods based on exponential growth [7], which produce 81 

smaller bias and better quantify uncertainty in R0 estimates. 82 

Following the theory of exponential growth [7], we propose an adjustment to EpiEstim  to account 83 

for missing initial generations of infections and use simulated  84 
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data to test its effectiveness. We show how the adjustment entails a reduction in the bias of both 85 

the R0 and early Rt estimates produced by the original EpiEstim method. 86 

Finally, we compare the estimates produced with and without the proposed adjustment on early 87 

COVID-19 data in Europe and in the US. 88 

Methods 89 

Several methods, based upon different frameworks, have been developed to estimate the 90 

reproduction number. One of the simplest methods assumes exponential growth of the number of 91 

new infections, which can be characterised by applying a simple linear regression on the log-92 

transformed incidence data. Wallinga and Teunis [8] base their methodology on determining 93 

likelihoods of chains of infections, White and Pagano [9] use branching process theory, 94 

while Bettencourt and Ribeiro [10] base their approach on SIR differential equations. In this work we 95 

focus on EpiEstim, the method developed by Cori et al [4], which has been recommended for near 96 

real-time estimation [5] and has been applied extensively during the ongoing and past epidemics 97 

[11]. 98 

Despite differences in the mathematical formulations, all methods described above infer Rt  or R0 99 

from case incidence data using assumptions on the generation interval or the serial interval 100 

distributions. The generation interval is defined as the average length of time between the moment 101 

an individual becomes infected and the moment in which they infect a secondary case. 102 

Similarly, the serial interval corresponds to the difference between symptom onsets of the primary 103 

case and symptom onset of the secondary case. Assuming that infectiousness starts after symptom 104 

onset and the infectiousness profile of an individual is independent of the incubation period, the two 105 

distributions are equivalent [4]. Therefore, without loss of generality, we focus on the generation 106 

interval distribution, denoted w. 107 

Exponential Growth 108 
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One of the simplest methods to characterise the speed of an epidemic, as measured by the growth 109 

rate r,  is to fit the log-transformed incidence data by linear regression. The growth rate r can then 110 

be used to estimate the reproduction number R0 if the generation interval w is known [12]. When 111 

observations with 0 cases are present, linear regression requires the addition of a small constant to 112 

each incidence data point, so that the logarithm of each data point is well defined. 113 

The assumption of exponential growth is justifiable in a first epidemic period where the proportion 114 

of susceptible individuals in a population is large. As more individuals get infected and immunity 115 

accumulates in the population, the growth of the number of new cases slows down and deviates 116 

from being exponential. A rule of thumb to identify the time window of the exponential growth, 117 

proposed by White and Pagano [9] and based on the theoretical work of Ball and Donnelly [13], is 118 

that the cumulative number of infected individuals does not exceed the square root of the 119 

population size. 120 

EpiEstim 121 

Cori et al. [4] model observed infections as a Poisson process, where the mean is defined via two 122 

quantities: the effective reproduction number Rt, and population infectiousness Λt = ∑s=0
n 

It-s ws . 123 

The reproduction number is assumed to remain constant over sliding windows of time with length τ, 124 

allowing for data aggregation over time and reduced variance. 125 

Assuming a Gamma prior distribution on Rt,τ , the posterior distribution is Gamma distributed with 126 

parameters: 127 
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where a and b refer to the shape and scale parameters, respectively. Considering τ = 1 and 128 

uninformative priors (i.e. letting aprior, bprior tend to 0) yields the posterior mean: 129 
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Thus we can effectively think of EpiEstim’s estimates of Rt  as closely related to the ratio between 130 

the number of observed infections on day t over the population infectiousness on the same day.  131 

Given enough data, this estimator can accurately identify Rt and detect abrupt changes in 132 

transmissibility [5]. However, the method can suffer from systematic bias in the initial period of 133 

estimation, as described by O’Driscoll et al. [6]. When the first chains of infections are not observed, 134 

the estimator will tend to attribute all new cases to the first observed cases, overestimating 135 

the reproduction number. 136 

EpiEstim - proposed adjustment 137 

We propose an adjustment to account for unobserved initial infections and exponential growth 138 

similar to the one developed in Dorigatti et al. [14]. Specifically, we assume that the epidemic is 139 

growing exponentially to back-impute infections in the period prior to the fist observation. Note that 140 

this  assumption is theoretically justified in the early stages of an epidemic [7], and exponential 141 

growth inference methods are between the most accurate in this initial period, as observed in 142 

O’Driscoll et al.[6]. Our procedure can be summarised in three simple steps and is visualised in 143 

Figure 1. First, we fit a linear model on the log-transformed incidence data to estimate the growth 144 

rate, , as shown in Figure 1A. Second, we use this linear model to back impute incidence data, prior 145 

to the time of the first observed case. In particular, we obtain an estimate of the number of cases for 146 

S days, where S is the largest possible generation interval length, i.e., the largest value such that ws > 147 

0. We highlight that it is not necessary to round the output of the inferred number of cases, and 148 

estimates lower than 1 should not be removed. Finally, we apply EpiEstim to the extended epidemic 149 

curve (including the back imputed incidence data). 150 

Simulations 151 

To evaluate the effects of our correction, we compared the performance of EpiEstim with and 152 

without the adjustment on simulated data. We additionally compared the results to those obtained 153 

by fitting a linear exponential growth model, as the performance of our correction strongly depends 154 
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on the accuracy of the estimates of the growth rate . 155 

We used a stochastic SEIR simulator to generate 100 epidemic curves for each R0 values in {1.5, 156 

2,2.5,3}. 157 

We considered a large population of 10
6
 individuals, and epidemics initiated by 5 initial infections. 158 

We assumed 3 days and 3.5 days as the mean times spent in the exposed and infectious 159 

compartments respectively, yielding a 6.5 mean generation interval commonly used to model 160 

COVID-19 [6]. 161 

To account for imperfect reporting, we simulated two types of issues commonly affecting the 162 

observed data: underreporting and unobserved initial generations of infections. We simulate 163 

unobserved initial generations by considering the simulated data from day 15 to day 28, 164 

corresponding to two generation intervals worth of data after having missed the first two 165 

generations. 166 

Further, we simulated under-reporting by considering a constant reporting rate ρ in {0.15 , 0.3 , 0.5 , 167 

1}. Daily observations were sampled as binomial realisations of true incidence with success 168 

probability equal to the reporting rate ρ.  169 

Results 170 

Method comparison 171 

We fitted the exponential growth, EpiEstim and adjusted EpiEstim methods to the simulated data 172 

assuming a Gamma distributed generation interval matching the mean and variance of the 173 

generating process (i.e., 6.5 mean generation interval).  174 

Figure 2 shows the effect of our adjustment when the reporting rate is 50% and shows that the 175 

initial bias observed in the estimates obtained with EpiEstim is strongly reduced by the proposed 176 

adjustment, and the mean estimates are comparable with those produced by the 177 

exponential growth method. These trends are observed for each value of ρ, implying consistency in 178 
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the estimates obtained with different reporting rates (Figure 2 and Supplementary Figures 4 to 6). 179 

Our adjustment does not only improve the accuracy of the central estimates of R0, but also improves 180 

uncertainty quantification. Average credible/confidence interval widths and coverage are reported 181 

in Figure 3. Coverage remains constant across different values of the reporting rate for the estimates 182 

obtained with the exponential growth and adjusted EpiEstim methods. On the other hand, the large 183 

bias observed in the estimates obtained with EpiEstim implies that as credible intervals get 184 

narrower, coverage decreases dramatically (Figure 3, panels B and C). The EpiEstim adjustment 185 

proposed in this paper produces generally narrower credible intervals as compared to the 186 

exponential growth method, at the price of a slight decrease in coverage. This trade-off is in avour of 187 

our adjustment for values of R0 larger than 2, when coverage amongst the 188 

two methods is similar. Further, we highlight that the proposed adjustment does not influence later  189 

estimates of Rt produced by EpiEstim (Figure 1). 190 

Impact of missed generations 191 

Beyond simulating undetected cases, reflecting a surveillance system which may be unprepared or 192 

unaware of a newly unfolding epidemic, we investigated the impact of the number of unobserved 193 

generations on the estimates obtained with our adjustment using simulated data generated under a 194 

scenario with perfect reporting rate (ρ = 1) and R0 = 2.5 . From each epidemic trajectory, we 195 

considered 3 different left truncations of the data to account for 0, 1 and 2 unobserved generations. 196 

We then applied EpiEstim with and without the proposed adjustment using biweekly time windows 197 

starting on weeks 0, 1 and 2. 198 

Figure 4 shows the distribution of the mean estimates for the 100 simulations. Each row identifies 199 

the number of unobserved generations, while on the x-axis we show the time window used to 200 

obtain the estimate.  201 

Figure 4 also shows that the adjustment is particularly useful when larger numbers of initial 202 

generations are unobserved. While the proposed adjustment produces comparable estimates to 203 
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those obtained with EpiEstim when all generations are observed (top row of Figure 4), its 204 

dependence on the exponential growth method introduces a layer of stochasticity that  205 

increases the variance of the mean estimates. On the other hand, when 1 or 2 generations are 206 

unobserved, the proposed adjustment adequately compensates for EpiEstim’s bias and the median 207 

estimates become closer to the true R0 value used to simulate the data. 208 

Application to reported COVID-19 data 209 

In addition to validating the proposed adjustment on simulated data, we applied it to real-world 210 

COVID-19 incidence case data reported in the John Hopkins Center for Systems Science and 211 

Engineering database [15,16]. During the initial phases of the outbreak, surveillance systems of 212 

several countries were unprepared to detect infectious individuals and it is likely that the first 213 

generations of infections were not observed, justifying our back-imputation adjustment. We 214 

selected Italy, Sweden, UK and the US as case studies. For each country, we fitted the log-215 

transformed incidence case count reported for the first sequential 7 days of sustained transmission 216 

(no days with 0 new cases in the selected time window) with a linear regression model. We then 217 

inferred the number of unobserved cases before the selected time window and applied EpiEstim 218 

with and without adjustment to the observed and imputed data, using weekly sliding windows and 219 

assuming a generation interval with mean 5.7 days and standard deviation of 1.72 days [17] . Figure 220 

5 shows that the adjustment lowers the estimates of R0 in every scenario, suggesting a role for 221 

unobserved generations of infections in overestimating the early R0 estimates of SARS-CoV-2, which 222 

in turn also affect the early estimates of Rt. We obtained average R0 estimates of 3.6 with 95% 223 

credible interval (2.8,4.6) in the UK, 5.2 (95% CrI 4.9,5.6) for Italy, 8.7 (95% CrI 7.8,9.6) for the US and 224 

3.9 (95% CrI 3.5, 4.3) in Sweden.  225 

Discussion 226 
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We propose a correction for the systematic overestimation of R0 that occurs in the early stages of an 227 

epidemic when using EpiEstim and other common inferential methods, utilising a back-imputation 228 

procedure which relies on exponential growth. 229 

The proposed correction aims to account for unobserved generations of infections. For this reason, 230 

we deem it to be most applicable in scenarios where generations of infections may have been 231 

missed due to emergency situations and limited testing, and generation intervals are relatively short. 232 

In practice, the adjustment will prove especially useful to evaluate transmissibility of diseases that 233 

are either asymptomatic or cause mild symptoms for a large proportion of infected individuals. 234 

Similarly, the adjustment may prove applicable to diseases characterised by long time lags between 235 

infection to symptom onset, especially if infectiousness develops significantly earlier than symptoms. 236 

In this paper, we demonstrate the application of this adjustment to the EpiEstim method, though it 237 

can be applied to other statistical methods where this bias may occur. The resulting adjusted 238 

EpiEstim method combines the best features of EpiEstim and the exponential growth method, which 239 

is more adequate for the early phases of an epidemic. In particular, the long-run Rt estimates of the 240 

original EpiEstim method are preserved, while the initial bias observed in the estimates is reduced by 241 

the proposed adjustment.  This was confirmed in all scenarios of our simulation experiments, 242 

independently of the reproduction number and the reporting rate values used to simulate the data. 243 

The adjusted estimates of R0 strongly outperformed the estimates obtained with the original 244 

EpiEstim method in terms of bias and coverage, and produced tighter 95% credible intervals. Our 245 

results show that the R0 estimates obtained with the adjusted EpiEstim and linear exponential 246 

growth method are very similar.  This is likely due, in part, to the fact that the proposed adjustment 247 

relies on linear regression, which is used for the back imputation of the unobserved generations of 248 

infections. 249 

The proposed method does not currently incorporate uncertainty in the growth rate estimate nor in 250 

the imputed cases. Further work is required to understand how the uncertainty in our correction 251 

may be best propagated throughout the R0 or Rt estimation process. 252 
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The effect of our adjustment was evident when working with early COVID-19 data from Italy, 253 

the UK, Sweden and the US. The adjusted estimates where significantly lower than the estimates 254 

obtained with the original EpiEstim method, and were found to be largely consistent with estimates 255 

derived in Ke et al.[18]. This is especially encouraging considering that our adjusted R0 estimates 256 

were obtained by making use of 7 days’ worth of data, while those of Ke et al. [18] were obtained on 257 

both case and death time series data spanning  months.  258 

This suggests that our method can yield improved precision with limited information, which may 259 

prove valuable in emerging epidemics. While several papers and meta-analyses reported  estimates 260 

of the exponential growth rate for the 4 countries [19–21], the parameterisation of the generation 261 

interval used and the reproduction number estimates were often lacking [22] thus hindering further 262 

comparisons. Further, the adjustment alone was not enough to explain the estimated decrease in Rt 263 

in the study period considered (see Figure 5), possibly suggesting that changes in individual 264 

behaviour and governmental interventions lowered transmissibility of the disease. However, other 265 

biases may be playing a role, such as changes in reporting rates, overestimation due to importations 266 

[23], or model misspecification. 267 

Critically, the results are sensitive to the choice of EpiEstim parameters, such as the generation 268 

interval and the length of the time window used. As expected, longer generation intervals produce 269 

larger reproduction number estimates, and we observe larger discrepancies between the estimates 270 

obtained with the original and adjusted EpiEstim methods, even if the coefficient of variation is kept 271 

constant (Supplementary Figures S1-S3). 272 

Concerning the choice of the sliding window, the larger time windows produce smoother estimates, 273 

which reduces the impact of the imputed cases. 274 

This means that our adjustment has a much smaller effect when considering sliding windows 275 

covering two generation intervals worth of data or more.  276 
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It is possible that other methods may estimate the initial growth rate more accurately than linear 277 

regression particularly if the assumption of exponential growth is not met.  In fact, the linear 278 

regression model assumes normality of the errors, which may not always hold true with count data. 279 

In future work it will be interesting to compare alternative methods to back impute unobserved 280 

cases from early incidence data. 281 

Here, we have used a linear exponential growth method to infer missing initial generations of 282 

infection, improving the accuracy of early R0 and Rt estimates produced by commonly used statistical 283 

methods such as EpiEstim. Our analysis shows how a simple adjustment can reduce initial bias in 284 

reproduction number estimates in a newly emerging epidemic when the interpretation of 285 

reproduction number estimates is crucial for public health decision making. 286 

  287 
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 288 

 289 

Figure 1. Visualisation of the exponential growth adjustment method applied to simulated data 290 

obtained with R0 = 2.5, reporting rate ρ = 1 and resulting changes in posterior estimates having 291 

assumed 2 unobserved generations. On panel A, the logarithms of the first reported data (those in 292 

the green region) are used to fit a linear model (line). The linear model is then used to back-impute 293 

unobserved cases (red dots) to complement the available data (blue dots). On panel B, the true   Rt    294 

value (black solid line) is compared to EpiEstim estimates without (blue) and with (red) adjustment 295 

using sliding windows of 7 days. The back-imputation reduces the initial mean estimates (dotted 296 

lines) and 95% credible interval widths (ribbons). The adjusted method then converges to the 297 

original method as the importance of the imputed datapoints vanishes. Method abbreviations: 298 

EpiEstim (EpEs); Adjusted EpiEstim (EpEsAdj)299 
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 300 

Figure 2. Distribution of mean R0 estimates assuming a fixed reporting rate ρ=50%.  Each  panel 301 

shows the distribution of the mean R0 estimates obtained using 100 simulations for a given true R0 302 

value (red dashed line). Method abbreviations: Linear exponential growth rate method (EG); 303 

EpiEstim (EpEs); Adjusted EpiEstim (EpEsAdj). 304 

 305 

 306 
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 307 

Figure 3. Median (point) and 95% CrI (interval range) of the basic reproduction number (R0) mean 308 

estimates (panel A), mean coverage (panel B) and mean 95% confidence/credible intervals widths 309 

(panel C) for different values of R0 and reporting rates ρ. Each panel represents distinct values of R0, 310 

while different colours represent different reporting rates. Method abbreviations: Linear 311 

exponential growth rate method (EG); EpiEstim (EpEs); Adjusted EpiEstim (EpEsAdj). 312 

  313 
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 314 

Figure 4. Distribution of mean R0 estimates, obtained using biweekly time windows (x-axis) and a 315 

variable number of unobserved generations (0, 1 and 2, see rows), assuming R0 = 2.5 and reporting 316 

rate ρ = 1. EpiEstim estimates are shown in blue, adjusted EpiEstim estimates are shown in red. On 317 

the axis, the sliding window used to fit the method is shown. Each window contains 14 consecutive 318 

data points, starting at week 0, or week 1, or week 2. Method abbreviations: EpiEstim (EpEs); 319 

Adjusted EpiEstim (EpEsAdj). 320 
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 322 
Figure 5: Comparison of Rt estimates obtained with (red) and without (blue) adjustment for 323 

COVID-19 data in 4 countries: Italy, France, the UK, and the USA. Each quadrant includes a 324 

subfigure showing the logarithm of the data and the regression line (left) and the Rt estimates 325 

obtained using a sliding window of 7 days (and the data up to that day) and a generation interval of 326 

mean 5.7 days and standard deviation of 1.72 days (right).  Method abbreviations: EpiEstim (EpEs); 327 

Adjusted EpiEstim (EpEsAdj). 328 

 329 
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