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ABSTRACT 
 
Gene-environment interactions (GEIs) represent the modification of genetic effects by environmental 
exposures and are critical for understanding disease and informing personalized medicine. GEIs often 
induce differential phenotypic variance across genotypes; these variance-quantitative trait loci (vQTLs) 
can be prioritized in a two-stage GEI detection strategy to greatly reduce the computational and statistical 
burden and enable testing of a broader range of exposures. We performed genome-wide vQTL analysis 
for 20 serum cardiometabolic biomarkers by multi-ancestry meta-analysis of 350,016 unrelated 
participants in the UK Biobank, identifying 182 independent locus-biomarker pairs (p < 4.5x10-9). Most 
vQTLs were concentrated in a small subset (4%) of loci with genome-wide significant main effects, and 
44% replicated (p < 0.05) in the Women’s Genome Health Study (N = 23,294). Next, we tested each 
vQTL for interaction across 2,380 exposures, identifying 846 significant GEIs (p < 2.4x10-7). Specific 
examples demonstrated interaction of triglyceride-associated variants with distinct body mass- versus 
body fat-related exposures as well as genotype-specific associations between alcohol consumption and 
liver stress at the ADH1B gene. Our catalog of vQTLs and GEIs is publicly available in an online portal. 
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INTRODUCTION 
 
Despite advances in identifying the genetic and environmental determinants of common complex diseases 
like cardiovascular disease and type 2 diabetes, the variability in the penetrance of genetic effects and the 
role played by environmental factors across populations are not fully understood. Part of this variability is 
due to gene-environment interactions (GEIs), in which genetic and non-genetic exposures synergistically 
affect disease-related traits. Understanding how exposures, including demographic, physiological, and 
lifestyle, modify genetic effects can spur new biological insights and therapies. Conversely, clarifying the 
ways in which one’s genetic background alters the effect of environmental exposures is a key step 
towards genome-guided precision medicine. 
 
Comprehensive mapping of cardiometabolic GEIs across all genome-wide genetic variants and possible 
exposures carries practical, computational, and statistical challenges. Practically, it is difficult to collect 
and examine the thousands of exposures necessary for an “exposome-wide” approach, though recent 
software tools have made the process of high-dimensional phenotype processing substantially easier1. 
Meanwhile, the massive number of GEI tests involved renders such an endeavor computationally 
infeasible and statistically underpowered, compounding known power limitations due to typically modest 
GEI effect sizes and low breadth and precision of exposure measurements2. Many screening procedures 
have been proposed to circumvent these computational and statistical limitations by reducing the genetic 
search space. These strategies prioritize specific sets of variants for GEI testing, such as those with main 
effects on the outcome3 or the exposure4. 
 
GEIs may induce differences in the variance of continuous phenotypes across genotypes. Thus, tests for 
genetic markers associated with this variance, termed variance quantitative trait loci (vQTLs), represent 
an alternate strategy to identify loci harboring underlying GEIs for quantitative traits5–11. vQTLs can be 
identified in genome-wide scans analogous to those testing for phenotypic mean differences in typical 
genome-wide association studies (GWAS). Though direct GEI tests are more powerful when the 
environmental factor is measured accurately, vQTL tests may be advantageous when the relevant 
exposure is unknown or poorly measured, or when multiple exposures have aligned GEI effects at a locus. 
Such scenarios are quite common in practice due to the high dimensionality, dense correlation structure, 
and poor measurement of typical environmental exposures12. Recent studies in the UK Biobank (UKB) 
have demonstrated that a genome-wide vQTL discovery approach for anthropometric and lung function-
related traits prioritizes variants enriched for GEI effects10,11. However, it is unclear whether vQTL effects 
are observed more broadly for cardiometabolic traits and to what degree the specific underlying GEI 
relationships can be uncovered using a more comprehensive array of environmental exposures. 
 
Our objective was to identify genetic variants associated with the variance of a series of cardiometabolic 
blood biomarkers and to leverage these associations to efficiently detect underlying GEIs at an exposome-
wide scale. We conducted a multi-ancestry, genome-wide vQTL scan to prioritize genetic loci across 20 
biomarkers in UKB (N=350,016) in stage one, followed by an exposome-wide interaction study (EWIS), 
incorporating 2,380 exposures, to identify the specific underlying GEIs in stage two. We found 134 
vQTLs, many of which were pleiotropic across biomarkers and largely overlapped with known GWAS 
loci. Using our EWIS approach, we then identified more than 800 specific GEIs with numerous correlated 
exposures underlying 54 of our vQTLs. Our study develops novel genetic maps of variance effects on a 
panel of cardiometabolic biomarkers, greatly increases the breadth of exposures tested for GEI, and 
introduces a publicly available catalog of vQTLs and GEIs that can inform precision medicine related to 
cardiometabolic health. 
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RESULTS 
 
vQTLs are common and concentrated in known GWAS loci 
 
The primary analysis consisted of two stages: first, the identification of vQTLs via genome-wide analysis 
using Levene’s test13, and second, the exploration of underlying GEIs at these loci across thousands of 
exposures (workflow described in Fig. 1). Each stage was conducted in each of four ancestry groups in 
the population-based UKB cohort (Supp. Table S1), though the European-ancestry subset was by far the 
largest, comprising 96% of the sample. Twenty cardiometabolic serum biomarkers were examined in this 
study, including lipids, lipoproteins, glycemic traits, liver enzymes, and kidney function markers 
(biomarkers listed in Supp. Table S2; preprocessed biomarker distributions shown in Supp. Fig. S1). 
 
In stage one, a study-wide Bonferroni significance threshold of p < 4.51×10-9 was established to correct 
for testing of 11.1 effective biomarkers (see Methods). The meta-analysis identified 182 vQTL-biomarker 
pairs at 134 independent loci after distance-based pruning (Fig. 2a, Supp. Table S3). While most vQTLs 
were biomarker-specific, a modest proportion were “pleiotropic” with respect to phenotypic variance, 
with five loci common to at least four biomarkers (Fig. 2b). The locus surrounding rs7259350 near the 
APOE/APOC cluster was the most pleiotropic, associating with the variance of nine biomarkers 
(including lipids [TC, LDL-C, HDL-C, TG], lipoproteins [ApoA, ApoB, LipA], liver enzymes [ALT], 
and hsCRP). This locus has strong main effects on the same biomarkers and is known to interact with 
lifestyle factors in determining cardiovascular disease risk14. 
 
P-values from the vQTL meta-analysis tracked closely with those from the European subset (Supp. Fig. 
S2), as expected given the associated sample sizes. However, there were also 72 ancestry-specific vQTLs 
in one or more ancestry-specific analyses but not the meta-analysis (Supp. Table S4), 62 of which were 
found in non-European ancestry groups. While these ancestry-specific vQTLs may indicate the presence 
of heterogeneous variance effects across populations due to genetic ancestry differences or ethnic 
differences in environmental exposures, it is also possible that the non-European findings are the result of 
spurious associations given lower sample sizes, especially at lower minor allele frequencies10. Therefore, 
downstream analysis focuses on the meta-analysis vQTL findings only.  
 
To understand these vQTLs in the context of genetic main effects (MEs), standard GWAS were also 
conducted for the same adjusted biomarker phenotypes. The resulting genetic MEs showed strong overlap 
with the identified vQTLs (Fig. 2c, Supp. Table S5). The majority of vQTLs had significant main effects: 
across all biomarkers, 91.6% of vQTLs were in ME loci. However, the converse was not true: only 3.7% 
of ME loci contained vQTLs. Thus, while this analysis did not discover many novel loci, it substantially 
narrowed the genomic search space and therefore multiple testing burden for downstream analysis as 
compared to starting with the set of loci from a standard mean-effect GWAS. Creatinine was particularly 
notable in this comparison, having the greatest number of MEs but no vQTLs – this could be explained by 
a true lack of underlying GEIs or gene-gene interactions, or by the limited power of vQTL approaches to 
detect more-complex interactions (e.g., involving multiple exposures in opposite directions). In contrast, 
Lipoprotein A was especially enriched for vQTLs, with 7 of its 8 MEs having vQTL associations. Beyond 
simple overlap of loci, we observed a quantitative relationship between vQTL and ME significances, 
which persisted when examining specific biomarkers whose raw values were either normally distributed 
(HbA1c) or non-normally distributed (GGT) (Supp. Fig. S3). This quantitative relationship confirms a 
similar result found for body mass index (BMI) in the UKB, and may be due to the fact that interactions 
are more likely to be present at loci with established biological connections to the phenotype of 
interest11,15. 
 
We next conducted a genetic correlation (ρg) analysis, using bivariate LD-score regression, to understand 
whether specific pairs of biomarkers were notably more or less similar in their genetic architecture when 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.08.21265930doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.08.21265930
http://creativecommons.org/licenses/by/4.0/


measured using MEs (standard) or vQTLs. We observed similar genetic correlations between biomarkers 
when using vQTL (ρg,vQTL) and main-effect (ρg,ME) summary statistics (Spearman correlation of 0.69 
between ρg,vQTL and ρg,ME values across all non-identical biomarker pairs; Supp. Fig. S4). Genetic 
correlation magnitudes tended to be similar (mean |ρg| of 0.16 across all non-identical biomarker pairs), 
while ρg,ME p-values were substantially lower. For nine biomarker pairs, the ρg,vQTL estimate was 
substantially higher (|ρg,vQTL| - |ρg,ME| > 0.2; such as between HbA1c and AST). These pairs may thus be 
more similar in their modifiable genetic effects (through GEIs, for example) than their fixed genetic 
effects. 
 
We performed a replication analysis for each of the significant vQTLs for the 10 biomarkers available in 
the Women’s Genome Health Study (WGHS; N = 20,852 women of European ancestry)16. Of 61 
significant vQTL-biomarker pairs for which replication was possible, nominal replication (p < 0.05) was 
seen for 27 (44%) in spite of the much smaller sample size (full set of vQTL replication results in Supp. 
Table S6). We found a strong correlation between discovery and replication significances (Spearman 
correlation of 0.49 between the p-values; Supp. Fig. S5a). The strongest vQTL associations in both the 
discovery and replication were with lipid-related biomarkers; for example, we find nominal replication for 
5/6 LDL-C vQTLs, but only 1/9 HbA1c vQTLs. 
 
Exposome-wide interaction study reveals interactions underlying many vQTLs 
 
In stage two, we conducted exposome-wide interaction tests for the 182 vQTL-biomarker pairs. We used 
the PHESANT program to produce 2,380 filtered and cleaned exposures, including physical, lifestyle, 
psychosocial, medical, and other types of traits (Supp. Table S7; see Methods). For each vQTL-biomarker 
pair, we tested for GEI effects involving the index variant and biomarker with each of 2380 exposure 
variables as potential effect modifiers, first stratified by ancestry and then meta-analyzed. Using a 
conservative multiple testing adjusted significance threshold (p < 0.05 / 182 / 1,156.2 effective exposures 
= 2.38×10-7) we identified 846 significant interaction effects at 54 of the 182 vQTL-biomarker pairs, 
altogether representing 34 loci (Fig. 3, Supp. Table S8). The 846 GEIs were unevenly distributed across 
biomarkers, with greater than one hundred for ALT, TG, and AST and none for albumin, creatinine, 
cystatin C, total bilirubin, and urea. Many of the participating exposures were from highly correlated 
categories such as anthropometric measures. This dense correlation structure means that many resulting 
interactions may reflect the same biological phenomenon, but also provides a unique opportunity to 
isolate the specific relevant exposure with greater precision. 
 
Returning to the WGHS dataset, we chose to replicate specifically those interactions involving BMI as an 
exposure, since (1) many significant GEIs implicated BMI or another anthropometric trait (84%), (2) BMI 
is an objective and standard quantitative measurement that is easily compared across studies, and (3) BMI 
has strong biological links to the majority of biomarkers assessed in this study. Of 12 interactions 
involving BMI and one of the 10 available biomarkers in WGHS, nominal replication (p < 0.05) was seen 
for seven interactions (58%; Chi-square p = 2.31×10-17; Supp. Table S9). These included 3/5 (60%) BMI 
interactions for TG, 3/3 (100%) for hsCRP,1/1 (100%) for ApoB, and 0/1 for each of TC, HDL-C, and 
HbA1c. The replication of these interactions demonstrates their robustness across populations despite the 
substantially lower sample size in WGHS. As in the WGHS vQTL replication in stage one, we found that 
the strongest GEI signals by p-value from the discovery UKB cohort replicated in WGHS; in fact, the 7 
BMI interactions that replicated were among the top 8 BMI interactions in UKB (among those with 
matching biomarkers in WGHS). 
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.08.21265930doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.08.21265930
http://creativecommons.org/licenses/by/4.0/


vQTLs and interactions are robust in sensitivity analyses 
 
To increase confidence in the catalog of vQTLs and interactions identified, we undertook a series of 
sensitivity analyses. First, we re-tested a subset of 174 vQTLs (those that were significant in the 
European-ancestry subset) using inverse-normal transformed (INT) biomarkers again in the European 
subset to confirm that the vQTLs were not artifacts of skewed biomarker distributions. While a substantial 
number of these relationships were attenuated, 47% remained significant at the Bonferroni level (94% at a 
nominal threshold of p < 0.05; Supp. Fig. S6).  
 
Previous work has shown that naive two-stage, vQTL screening-based interaction testing procedures can 
have inflated type I error whenever the exposure tested in stage two is associated with the outcome, due to 
a correlation between test statistics for stage one and stage two17. In the context of a single exposure, one 
solution is straightforward: residualize the phenotype on the exposure prior to vQTL testing. However, 
this approach is not optimal when undertaking an unbiased EWIS with over 2,000 exposures: it is 
impractical to stably fit regression models with this dimensionality in the smaller non-European ancestry 
groups in this study (N < 6,100). Thus, we performed a sensitivity analysis based on the results of the 
primary analysis, residualizing each preprocessed biomarker on the much smaller set of 88 significant 
GEI exposures (separately in each ancestry) and re-performing genome-wide vQTL scans plus meta-
analysis. In these exposure-adjusted analyses, 141 out of the original 182 vQTL-biomarker pairs (77%) 
remained significant (Supp. Fig. S7a), with only one completely diminished signal (p > 0.05). This result 
means that most of these vQTLs would have passed on to stage two for interaction testing even after 
explicit removal of this potential bias in the two-stage testing procedure. As additional support for the 
robustness of our interaction results to false positives, we did not observe substantial systematic inflation 
of interaction p-values across the entire set of EWIS tests (Supp. Fig. S7b). 
 
Investigation of anthropometric exposures for triglyceride GEIs highlights distinct biology   
 
Many significant GEIs involved correlated anthropometric exposures, such as BMI, waist and hip 
circumference, and bioelectrical impedance metrics (which measure body fat and fat-free mass). Focusing 
on TG specifically as a biomarker with known complex relationships with obesity and cardiometabolic 
disease risk, we extracted GEI z-scores for the nine variants participating in significant interactions with 
an anthropometric trait (all of which are annotated to well-known TG-related genes). The nine variants 
showed distinct patterns of variation across exposures: two interacted more strongly with body fat 
measures (FADS1-2 and LIPC), three interacted more strongly with body mass measures (APOC1, 
ANGPTL3, and LPL), and four were balanced across anthropometric exposures (TRIB1, APOA5, GCKR, 
and PNPLA3) (Fig. 4a). Given such highly correlated measurements, we also conducted a principal 
components analysis on the 33 relevant anthropometric exposures in the European subset, finding that top 
principal components appeared to represent body mass (PC1) and body fat (PC2; Supp. Fig. S8). These 
PCs reproduced the differential interactions with body mass and body fat (Fig. 4a). 
 
The intronic indel rs139566989 in the hepatic lipase (LIPC) gene interacted almost exclusively with body 
fat-related measures. Hepatic lipase is a glycoprotein in the triacylglycerol lipase family that is important 
for the metabolism of lipoproteins including intermediate-density lipoprotein (IDL) and HDL18. The 
insertion (AF = 79% in the European subset) is associated with increased expression of LIPC (Genotype-
Tissue Expression Portal browser) and decreased serum TG (p = 3.86×10-59 in our primary ME analysis). 
Its GEI effect with BMI represents a small but significant increase in the positive association between 
BMI and serum TG (p = 5.05×10-25). To further pinpoint relevant biological mechanisms, we further 
tested GEIs with BMI and the two anthropometric PCs for their effects on TG-containing lipid 
subfractions measured by nuclear magnetic resonance in the UKB (N~90,000; Figure 4b). We found the 
strongest interactions (with both BMI and anthropometric PC2) for TG in IDL, large LDL, and large HDL 
(Fig. 4b). For example, the insertion increased the association between adiposity and TG in very large 
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HDL: the bottom and top BMI tertiles had little TG difference in non-carriers, but a mean difference of 
almost 0.3 standard deviations in insertion homozygotes (Fig. 4c). Interactions between these three 
primary anthropometric exposures and all nine TG-related variants impacting TG subfractions can be 
found in Supp. Table S10. 
 
A group of three variants (annotated to APOC1, ANGPTL3, and LPL) had a strong interaction with body 
mass PC1 on TG levels (all p � 2.4×10-6) but none with body fat PC2. These three genes are involved in 
the production or regulation of lipoprotein lipase, which cleaves TG from circulating lipoproteins18. These 
body mass-specific interactions may reflect (1) biological processes in skeletal muscle rather than 
adipose, or (2) body mass-associated behavioral characteristics such as total caloric intake, which is likely 
better measured by body mass than from self-reported questionnaires.  
 
Alcohol intake interacts with a common ADH1B polymorphism to influence liver stress 
 
One of our lead vQTLs with a clear underlying GEI was the combined effect of SNP rs1229984 and 
alcohol consumption on ALT, a biomarker of liver stress. SNP rs1229984 is a missense variant in the 
ADH1B gene that affects alcohol processing in the liver and is known to influence alcohol consumption19. 
This variant had a strong vQTL effect (p = 1.71×10-13) but did not have a significant main effect (p = 
1.68×10-4) in the meta-analysis for ALT (Fig. 5a), highlighting the value in the vQTL screen for stage 1. 
In the following exposome-wide scan, the exposure most strongly interacting with rs1229984 to influence 
ALT was in fact self-reported “alcohol intake frequency” (p = 1.9×10-12; Fig. 5b). After stratifying self-
reported alcohol intake into three bins within the European-ancestry group, we observed a substantial 
positive association between alcohol and ALT in homozygous major allele carriers, versus no such 
increase for minor allele carriers (Fig. 5c). The rs1229984-ALT vQTL was robust to pre-adjustment of 
the preprocessed ALT distribution for alcohol intake (p = 6.55×10-13 after adjustment), confirming that 
this original vQTL signal was not simply an artifact of the alcohol-ALT relationship. This interaction 
suggests that alcohol consumption may be of greater concern for potential liver damage in individuals 
homozygous for the major allele at rs1229984. We note that mean alcohol intake was much lower in T 
allele carriers, producing a decrease in intake variability that may contribute to the lack of alcohol-ALT 
relationship in these individuals. 
 
DISCUSSION 
 
We conducted a two-stage analysis to first identify vQTLs impacting cardiometabolic traits then conduct 
a systematic search for underlying GEIs. Using this strategy, we identified 134 loci associated with the 
variance of one or more of 20 cardiometabolic serum biomarkers, subsequently uncovering 846 GEIs 
impacting those biomarkers at 34 independent loci.  
 
Results from our study largely align with previous results from Wang and colleagues, which utilized 
analogous methods in the same population (European-only subset of UKB)10. Examining anthropometric 
and lung function traits, they found a similar average number of vQTL relationships per effective 
phenotype (15 versus 16.4 in our study), indicating a similar level of polygenicity of vQTL effects. They 
found a somewhat smaller enrichment of vQTLs in ME loci (1.7% of ME loci contained vQTLs versus 
4% in our study), suggesting that the genetic control of cardiometabolic biomarkers may be particularly 
susceptible to modulation by genetic background or environmental exposures compared to traits like 
height or forced vital capacity.   
 
We observed that vQTLs were predominantly found in ME loci and that their strengths of association 
were generally correlated with the strengths of corresponding main effects. This observation has three 
important implications. First, it impacts the value of vQTLs as a screening tool. Screening that simply 
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uses genetic main effects is a common and viable strategy3, but we note that (1) the presence of a vQTL 
further increases the likelihood of identifying an underlying interaction11, (2) in our analysis, the use of 
vQTLs reduced the genetic search space by more than an order of magnitude compared to genetic MEs, 
and (3) the alcohol-ADH1B interaction is an example of a strong interaction found via vQTLs that would 
not have been explored using only ME-based screening. Second, the correlation between vQTL and ME 
strengths could theoretically suggest that the vQTLs are statistical artifacts unrelated to underlying 
interactions. Non-normally distributed variables have a mean-variance relationship and thus some vQTL 
tests are susceptible to false positives in the presence of genetic MEs and can be sensitive to trait 
transformations9,20. However, previous studies have demonstrated reasonable robustness of Levene’s 
median-based test to non-normality10 and our sensitivity analyses demonstrate that inverse-normal 
transformed phenotypes, which have no mean-variance relationship, produce largely similar vQTL 
results. Third, it highlights the weight of prior probability in agnostic analyses: loci that have already 
demonstrated a role in biology (by being implicated in MEs) are more likely to be relevant in GEI 
searches as well. 
 
Our two-stage approach required 4.3×105 GEI tests, compared to the 4.8×1011 tests that would have been 
necessary to exhaustively explore all genetic variants and biomarkers. Beyond the clear practical and 
computational benefits of this reduction in the genetic search space, the statistical value in this two-stage 
analysis is dependent on both the power of Levene’s test and the extent to which it decreases the multiple 
testing penalty in the second stage (in this study, p < 2.38×10-7 compared to p < 3.90×10-12 without 
prioritization). While it is well-established that vQTL loci are more enriched than ME loci for underlying 
GEIs10,11, the power of Levene’s test may be affected by the strength of the underlying exposure-outcome 
relationship and may be compromised in cases where a complex set of underlying interactions exist 
without consistent directions of effect6. Given this fact, it is not surprising that many of our significant 
GEIs involved straightforward and high-impact exposures such as body size (e.g., BMI) and alcohol 
intake as compared to more complex traits like socioeconomic status indicators or dietary behaviors. 
 
The PHESANT tool, which processes thousands of phenotypes in an automated way, was developed to 
facilitate phenome-wide association studies1, but here we leveraged it to create a library of exposures to 
be used in GEI tests. Many of its motivations apply equally in this context – non-normally distributed 
continuous variables and highly imbalanced binary variables can create instability and bias in GEI tests 
(as exposures) just as in standard genetic main effect tests (as outcomes). PHESANT enabled the high-
throughput pre-processing of 2380 variables for our exposome-wide analysis, which would be impractical 
to prepare one-by-one. We note that the semi-automated nature of this process means that there may be 
more appropriate quality control and coding strategies for specific exposures of interest in follow-up 
studies. 
 
Our approach identified 846 significant GEIs, many of which involved a set of highly correlated 
exposures (discussed further below). The large sample size of UKB provides the statistical power needed 
to identify interactions and has supported genome-wide GEI discovery in investigations of anthropometric 
and cardiometabolic phenotypes21–24. However, the scale of this population also means that spurious GEIs 
induced by even small statistical artifacts or biological confounders may reach statistical significance, as 
demonstrated by Tyrell and colleagues25. Thus, the catalog of GEIs described here should be treated as 
hypothesis-generating rather than confirmatory. 
 
Many of the significant GEIs involved a set of highly correlated anthropometric exposures (e.g., BMI and 
waist circumference). These are not typically used as GEI exposures because they are not behavioral or 
environmental, but they can nonetheless can play a role in modifying genetic associations with 
cardiometabolic biomarkers and outcomes26. The dense correlation of these exposures reduces the number 
of effective discoveries, but this more-comprehensive coverage of the exposure space allowed us to tease 
apart underlying mechanisms. Focusing on TG as an outcome, we found that nine relevant variants tended 
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to fall into three groups, interacting with anthropometric measures of either body mass, body fat, or both. 
We further validated this observation using representative principal component summary variables. For 
one variant (rs139566989 in LIPC), body fat interactions affected TG in specific lipoprotein subfractions 
such as IDL and very large HDL, consistent with the well-established role of hepatic lipase in lipoprotein 
remodeling (especially the IDL-to-LDL and large-to-small HDL conversions)18. Lipoprotein-related GEIs 
involving LIPC variants have been previously reported for relevant exposures such as dietary fat 
composition in weight loss trials27,28 and observational cohorts29. In general, our fine-grained exposure 
analysis provides insight into lipoprotein biology and highlights the importance of comprehensive and 
precise phenotyping.  
 
A primary strength of this investigation is the comprehensiveness of cardiometabolic biomarkers and 
exposures examined. However, the pipeline relies on many self-reported exposure measurements; follow-
up of specific interactions should employ more objective and precise methodologies (e.g., accelerometer-
based physical activity measurements) as well as more comprehensive sensitivity analyses to refine 
interaction estimates. Additionally, we were only able to assess replication of vQTLs and GEIs for half of 
the biomarkers of interest. While the replication analysis provides confidence in the general robustness of 
our approach across populations, many signals from UKB, such as those for liver enzymes, bilirubin, and 
random glucose, were not able to be tested in WGHS. The WGHS also contains only women, which may 
particularly impact replication for sex-differentiated biomarkers such as HDL-C. Finally, while multiple 
ancestries were analyzed here as available, the meta-analysis results primarily reflect the effects in 
European individuals due to the major sample size discrepancy. Future work should incorporate more 
ancestry-balanced datasets, explore heterogeneity of interaction effects across ancestries, and pursue 
follow-up of some of the many ancestry-specific vQTLs and interactions described here. 
 
The vQTLs and GEIs described here have been made publicly available in the AMP Common Metabolic 
Disease Knowledge Portal (https://hugeamp.org/research.html?pageid=UKB-vQTL-GxE). These catalogs 
can generate hypotheses for future research and enable lookups to better characterize findings from 
GWAS and other genetic studies. Our findings extend previous proofs-of-concept of the vQTL strategy to 
the realm of cardiometabolic biomarkers, establish a set of loci to be prioritized for further GEI analysis, 
and highlight specific GEIs that can inform cardiometabolic precision medicine strategies. 
 
METHODS 
 
UK Biobank genetic data  
UKB is a large prospective cohort with both deep phenotyping and molecular data, including genome-
wide genotyping, on over 500,000 individuals ages 40-69 living throughout the UK between 2006-201030. 
Genotyping, imputation, and initial quality control on the genetic dataset have been described 
previously31. We removed individuals flagged for failing UKBiLEVE genotype quality control, 
heterozygosity or missingness outliers, individuals with putative sex chromosome aneuploidy, individuals 
with self-reported vs. genetically inferred sex mismatches, and individuals that had withdrawn consent by 
the time of analysis. Additionally, we subset to a group of unrelated samples by including only those that 
were used for genetic principal components analysis (PCA) during central genetic data preprocessing 31. 
Furthermore, only genetic variants with minor allele frequency (MAF) > 0.005 in the full sample were 
included in the present analysis (in addition to subsequent ancestry-specific MAF filters). For the vQTL 
and GWAS analyses, imputed genotypes within 0.1 of an integer value (0, 1, or 2) were converted to 
hard-calls using PLINK2 32 and all other values were set to missing. Work was conducted on genetic data 
release version 3, with imputation to both Haplotype Reference Consortium and 1000 Genomes Project 
(1KGP), under UK Biobank application 27892. This work was conducted under a Not Human Subjects 
Research determination (NHSR-4298 at the Broad Institute of MIT and Harvard). 
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UKB samples were grouped into four primary ancestry groups: West African (AFR), East Asian (EAS), 
European (EUR) and South Asian (SAS). Using 1000 Genomes project (1KGP) phase 3 as the training 
dataset, probabilistic Gaussian mixture models were built to represent normally-distributed 
subpopulations within the overall population, assigning data points to the multivariate normal components 
that maximized the component posterior probability. Ten-fold cross-validation was used with different 
initialization states and clustering was evaluated using the adjusted Rand index score. The model with the 
highest adjusted Rand index score for each ancestry was used to cluster individuals in UKB into ancestry 
subgroups based on their 1KGP projected PCs and self-reported ethnicities (field 2100).  
 
Serum biomarkers 
 
We focused on 20 serum biomarkers related to cardiovascular disease and metabolism, including but not 
limited to lipids, liver enzymes, glycemic parameters, and kidney function markers (see Supp. Table S2). 
Blood samples were collected at the baseline visit for the majority of participants, and specific biomarkers 
were measured using colorimetric, enzymatic, and immunoassays (details available at: 
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf).  
 
Phenotype data processing and other downstream analyses were conducted using R version 3.6.033 unless 
described otherwise. Biomarker values were pre-processed separately within each ancestry group, and 
followed a modified version of the procedure described by Sinnott-Armstrong and colleagues; see 
original manuscript for detailed description and online code34. We additionally removed individuals with 
diabetes, coronary heart disease, cirrhosis, end-stage renal disease, cancer diagnosis within one year prior 
to their assessment center visit, or who were pregnant within one year of the assessment center visit. 
Briefly, log-transformed biomarkers were adjusted for sex, age, self-identified ethnicity, fasting time, 
dilution factor, assessment center, genotyping batch, genetic principal components, time of sampling, 
month and day of assessment, and a series of interactions between covariates. Of note, cholesterol, LDL-
C, and Apolipoprotein B were also adjusted for statin use using methods described previously34. 
Following residualization, outliers (residuals greater than 5 standard deviations from the mean) were set 
to missing. Finally, residuals were z-score normalized to mean zero and variance one.  
 
Due to the substantial correlation between the 20 cardiometabolic biomarkers, a smaller number of 
“effective” biomarkers was calculated to inform multiple hypothesis testing correction. Using a 
previously-described approach35, preprocessed biomarkers were collected into a single dataset across 
ancestries and principal components analysis was performed (prcomp function with standardized 
variables). The number of effective biomarkers was then calculated from the principal component 

variances � (equal to the eigenvalues of the biomarker covariance matrix) as ���,��� �
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Variance-QTL analysis 
 
vQTL analysis was performed using the vQTL module from the OSCA suite 36. Differential variance tests 
used the median-based Levene’s test, which is equivalent to a one-way analysis of variance (ANOVA) for 
absolute deviations from the median biomarker value. The test statistic, which is described in detail 
elsewhere 10, is: 
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 is the group indicator (one of three genotypes), �
  is the sample size for the 
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genotype, �
�  is the absolute difference between the phenotype value in sample � from genotype 
 and the 
median value in genotype 
, �
. is the average � value in genotype 
, and �.. is the average � value across 
all samples. Under the null hypothesis of equal variances, this statistic follows an F distribution with 
� � 1 and � � � degrees of freedom. 
 
Genome-wide vQTL analysis was performed separately for each of the 20 biomarkers (Supp. Table S2) in 
each of the four ancestry groups. Multi-ancestry meta-analysis was then performed using METAL (2011-
03-25 version)37. The inverse variance-weighted, fixed-effects meta-analysis strategy (based on effect 
sizes and standard errors rather than p-values and sample sizes) was used to incorporate effect directions. 
While Levene’s test does not natively produce effect sizes, they are derived by the OSCA tool based on a 
method described by Zhu and colleagues38 and previously implemented for vQTLs10. An effect direction 
is determined by regression of absolute deviations from the median on additively-coded genotypes, then 
this sign is combined with the Levene’s test p-value to derive an effect size and standard error through 

back-transformation: � �
�

�������	�����	
 and �� �

�

�������	�����	
 where b is the vQTL effect size, z is a 

z-statistic derived from the p-value and effect direction, p is the minor allele frequency of the variant, and 
n is the sample size.  
 
For each genome-wide vQTL scan (20 biomarkers × 4 ancestries), we performed an analogous standard 
GWAS testing for genetic effects on the mean of the phenotype using the --glm command in PLINK232. 
These GWAS used the same adjusted phenotypes with no additional covariates, followed by a fixed-
effects, standard error-based, multi-ancestry meta-analysis approach as described above. 
 
Genome-wide summary statistics were pruned by removing variants within 500kb of each index variant. 
This distance-based procedure was chosen to be reasonably conservative and avoid the need for separate 
LD matrices per ancestry. To identify overlapping variants across biomarkers, ancestries, and analysis 
types (vQTL vs. ME), relevant pruned summary statistics were combined and a second clumping 
procedure (similarly defined based on 1MB windows) was performed. For example, to identify 
overlapping vQTL loci across ancestries for ALT, all ancestry-specific, pruned summary statistic matrices 
for ALT (four in total) were stacked and then subject to a similar iterative clumping procedure as was 
used for the initial pruning. 
 
Preparation of exposure variables 
 
In order to conduct the GEI analysis in an exposome-wide manner, we needed to collect and clean a large 
set of relevant exposure variables. For this purpose, we used a program for automated phenotype pre-
processing initially developed for phenome-wide association studies (PHEnome Scan ANalysis Tool, or 
PHESANT 1) and later expanded (https://github.com/astheeggeggs/PHESANT). This PHESANT 
procedure relies on files describing variable input types (continuous, integer, categorical single [one 
choice], and categorical multiple [multiple choice]) and data coding schemes. Based on this input, it then 
conducts automated pre-processing of the phenotypic dataset, including removal of variables with 
excessive missingness or insufficient heterogeneity, conversion of categorical variables to ordinal and 
binary variables, and inverse-rank normal transformation of continuous variables.  
 
As originally applied, the PHESANT pipeline processed a comprehensive set of phenotypes appropriate 
for phenome-wide association studies. We modified the set of included variables to better reflect the 
space of traits and exposures that may participate in GEIs. For example, sex does not make sense to use as 
an outcome, but may be an important characteristic that modifies genetic associations with blood 
biomarker levels. Specifically, in comparison to the PHESANT pipeline referenced above, we 
additionally included sex, age, and assessment center, and 24-hour recall-based dietary assessments and 
excluded blood-based assays, hospital records, and cancer and death registers. After running PHESANT 
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on the full UK Biobank dataset, the output dataset contained 2,380 variables for analysis. This 
corresponded to 1,156.1 effective exposures tested based on the same procedure used above for 
determining the number of effective biomarkers. These exposures included physical (e.g., BMI), lifestyle 
(e.g., dietary behaviors), psychosocial (e.g., neuroticism score), medical (e.g., statin use), and other types 
of traits. Based on the data dictionary available from UKB and additional manual curation, phenotypes 
were placed into one of eight exposure categories. Exposure group summary counts and variable 
examples are available in Supp. Table S7. 
 
Genome-wide interaction studies 
 
For each combination of vQTL-biomarker pair (from Stage I) and exposure (from PHESANT), a GEI test 
was performed using the following simple model: 

�� ~ � � � � � � � 
where �� represents the preprocessed biomarker, � represents the imputed genotype dosage at the vQTL 
index variant, and � represents the relevant exposure. For the primary analysis, no additional covariates 
were used given the prior residualization on basic covariates (age, sex, and genetic principal components). 
Interaction analysis was performed with GEM v1.339 using robust standard errors. As with the vQTL and 
GWAS analyses, these interaction tests were performed separately in each ancestry group, followed by 
the inverse variance-weighted, fixed-effect meta-analysis37. Principal components analysis using prcomp 
in R was conducted on a set of anthropometric exposures in individuals of European ancestry in UK 
Biobank to include as additional body size-related exposures in GEI testing. 
 
Anthropometric exposure and lipid subfraction analysis 
 
Anthropometric exposures were defined as those with a “Level 3 Category” of “Anthropometry” in the 
UKB data dictionary. Initially, GEI summary statistics from the EWIS were collected for this set of 
exposures with TG as the outcome and including nine genetic variants passing the EWIS significance 
threshold for at least one of these 31 exposures. These nine variants were manually annotated to likely 
causal genes based on known lipid biology. To create a set of anthropometric summary variables for GEI 
analysis, PCA was performed on this set of exposures in the European ancestry subset. The first two 
principal components were determined to represent body mass and body fat based on inspecting of trait 
loadings. These two components were extracted and used for GEI testing. 
 
Triglyceride concentrations in various lipoprotein subfractions, based on nuclear magnetic resonance 
(NMR) spectroscopy metabolomics data, were retrieved for approximately 90,000 European ancestry 
individuals (differing numbers per metabolite based on missingness). Quality control was performed 
using measures provided by the UKBB, removing values lower than the limit of detection and samples 
with likely contamination or degradation issues. Metabolite measurements were inverse-normal 
transformed prior to modeling. GEI testing was performed for each anthropometric exposure-TG 
subfraction pair (as exposure and outcome, respectively), with additional adjustment for age, sex, 10 
genetic PCs, NMR batch, and spectrometer. 
 
WGHS replication analysis 
 
The WGHS cohort was used to replicate vQTLs and BMI GEIs. WGHS is a prospective US-based cohort 
of healthy adult females 45 years or older40. The biomarkers available in WGHS included ApoA, ApoB, 
hsCRP, TC, creatinine, HbA1c, HDL-C, LDL-C, LipA, and TG, and were pre-processed and analyzed 
similarly to biomarkers in UKB (limiting to European ancestry individuals, log transforming, removing 
individuals with diabetes or on blood pressure medication, adjusting for covariates, and testing vQTL 
hard-call genotype associations in OSCA; N=20,852). The same pre-processed biomarkers were used for 
replicating the BMI GEIs, adjusting for age and genetic PCs. 
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FIGURES 
 

Figure 1: Analysis workflow.  
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Figure 2: vQTLs identified across 20 cardiometabolic serum biomarkers. a) -log10PvQTL is shown for all 
significant index variants for each biomarker. Labels correspond to the closest gene (shown for variants 
with PvQTL < 10-20), highlighting some known GWAS loci. P-values are truncated at 10-300 for 
visualization purposes. b) Histogram displaying the number of biomarker associations for each vQTL 
locus. c) The number of significant vQTL loci is shown for each biomarker (inset: analogous plot for 
main effects). Colors denote three categories: vQTL loci not shared with an ME locus (red), vQTL loci 
shared with an ME locus (purple), and ME loci not shared with a vQTL locus (blue).  
 
 
 
 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.08.21265930doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.08.21265930
http://creativecommons.org/licenses/by/4.0/


Figure 3: Chord diagram displays GEI links between vQTL-biomarker pairs (top of circle) and exposures 
(bottom of circle). Lines correspond to interactions that are Bonferroni significant (p < 2.38×10-7) for the 
associated variant, biomarker, and exposure. vQTL-biomarker pairs are colored according to biomarker 
and labeled with the nearest gene. Exposures are colored according to exposure categories. 
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Figure 4: Exploration of anthropometric interactions influencing triglycerides. a) Heatmap shows 
interaction z-scores between nine genetic variants (x-axis) and 33 anthropometric exposures (y-axis). 
Colored panels pass a nominal significance threshold (p < 0.05). Variants are annotated with the closest 
gene, as well as a second likely causal gene based on manual annotation where appropriate. b) Heatmap 
shows interaction z-scores for a single variant (rs139566989 in LIPC), with varying TG lipid subfraction 
outcomes from nuclear magnetic resonance (x-axis) and three representative anthropometric exposures (y-
axis). c) Three stratified plots showing means and 95% confidence intervals for inverse-normal 
transformed total TG or TG in very large HDL after stratification by rs139566989 and tertiles of the 
relevant exposure (labeled at the top of each plot). 
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Figure 5: vQTL and GEI relationships for ADH1B, alcohol, and ALT. a) vQTL (red) and ME (blue) 
significance for rs1229984 is shown for each biomarker. Biomarkers with neither vQTL nor ME having p 
< 0.01 are not shown. b) EWIS results for rs1229984 impacting ALT are shown, with GEI significance 
plotted (y-axis) for each exposure having p < 0.05 (x-axis). c) Means and standard errors for ALT are 
plotted as a function of genotype at rs1229984 (x-axis) and self-reported alcohol intake (colors). 
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