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Abstract
Compartmental models are often used to understand and predict the progression of an
infectious disease such as COVID-19. The most basic of these models consider the total
population of a region to be closed. Many incorporate human mobility into their
transmission dynamics, usually based on static and aggregated data. However, mobility
can change dramatically during a global pandemic as seen with COVID-19, making
static data unsuitable. Recently, large mobility datasets derived from mobile devices
have been used, along with COVID-19 infections data, to better understand the
relationship between mobility and COVID-19. However, studies to date have relied on
data that represent only a fraction of their target populations, and the data from mobile
devices have been used for measuring mobility within the study region, without
considering changes to the population as people enter and leave the region.

This work presents a unique case study in Andorra, with comprehensive datasets
that include telecoms data covering 100% of mobile subscribers in the country, and
results from a serology testing program that more than 90% of the population
voluntarily participated in. We use the telecoms data to both measure mobility within
the country and to provide a real-time census of people entering, leaving and remaining
in the country. We develop multiple SEIR (compartmental) models parameterized on
these metrics and show how dynamic population metrics can improve the models. We
find that total daily trips did not have predictive value in the SEIR models while
country entrances did. As a secondary contribution of this work, we show how
Andorra’s serology testing program was likely impacted by people leaving the country.
Overall, this case study suggests how using mobile phone data to measure dynamic
population changes could improve studies that rely on more commonly used mobility
metrics and the overall understanding of a pandemic.

Introduction 1

At the start of the COVID-19 pandemic, nonpharmaceutical interventions (NPIs) were 2

widely deployed in an effort to stymie the rate of new infections. These interventions 3

included stay-at-home orders and restrictions on economic activity, which were used as 4

a means to reduce contact and hence transmission rates, effectively limiting mobility. 5
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Country border restrictions were also put in place to reduce the chance of importing the 6

virus through inter-country travel. At the same time, tests became more available to 7

better track population infection rates [1]. There has been an influx of data and 8

research used to study the efficacy of various interventions [2–4]. In particular, this 9

work addresses the use of population movement data. 10

Research preceding COVID-19 has indicated a close relationship exists between 11

human mobility and the spread of infectious disease [5]. Past studies have shown how 12

mobility data, such as commuter trips, can be used to improve disease forecasting 13

models [6]. These earlier works highlighted the importance of combining their modeling 14

frameworks with mobility data to address potential future emergent respiratory viruses, 15

while also citing a lack of real-time mobility data as a limitation. In the wake of 16

COVID-19, such real-time mobility data became widely available to study the pandemic, 17

largely collected through airlines or via mobile phones. This is demonstrated in early 18

works using aggregated metrics from Baidu LBS [7] to estimate domestic population 19

movement in China. By combining this data with airline transportation data to 20

estimate international travel, researchers modeled the effect of travel restrictions and the 21

international spread of COVID-19 [8]. Similarly, the Baidu LBS data was also used to 22

model the spatial spread of COVID-19 from Wuhan to evaluate the impact of domestic 23

control measures [9]. Mobility data collected from mobile phones has also since been 24

made available by Google [10], Facebook [11], Safegraph [12], transit apps [13], telecoms, 25

and other companies [14]. Metrics based on these sources have been used to model or 26

predict COVID-19 transmission rates [15–20] as well as to verify model results [21], with 27

the assumption that changes in transmission rates are correlated with changes in the 28

mobility metrics. Researchers have also combined mobile phone data from multiple 29

sources to better understand the spatiotemporal dynamics of how the virus can spread. 30

This includes work that simulated relationships between the number of virus cases 31

imported to an area, subsequent population mobility, and virus spread in multiple 32

European countries [22]. Whereas another study tracked a specific fast-spreading lineage 33

of COVID-19 in the United Kingdom by combining aggregated mobility metrics from 34

both Google and the O2 telecommunications service provider with genomic data [23]. 35

Despite the broad use of these mobility data sources, their relationship to COVID-19 36

remains unclear. The published mobility metrics are often aggregated statistics 37

representing the number of trips taken, such as measured through transit apps, or based 38

on foot traffic to points-of-interest (POIs). Furthermore, the mobility data used in each 39

of the above works are limited in that they report on a fraction of the population. (For 40

example Baidu LBS and O2 have about 30% and 35% market share, respectively [9, 23], 41

and Safegraph has one of the larger U.S. datasets yet in 2019 they covered only about 42

10% of the U.S. population and acknowledged reporting bias [24]). Likewise, other 43

studies using reported cases microdata or air travel data to analyze the risks of 44

importing the virus via inter-country travel (e.g. [25, 26]) are also limited by data 45

sources that only report on a fraction of the true data. 46

Contribution. This work presents a unique case study in Andorra, with 47

comprehensive datasets that include telecoms data covering 100% of mobile subscribers 48

in the country, and results from a serology testing program that more than 90% of the 49

population voluntarily participated in. Previous work used these data sources to 50

compare various mobility metrics and infection rates with retrospective correlation 51

analysis [27]. This work builds upon these previous findings and develops 52

compartmental epidemic models. 53

At the start of the pandemic in Andorra, border restrictions and economic 54

lockdowns drastically reduced country entrances and internal country mobility. This 55

study includes that period as well as when restrictions were lifted. The mobile phone 56
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data are used to estimate mobility metrics representing trips, similar to related works, 57

as well as to conduct a real-time census and estimate metrics that represent the 58

dynamic population changes, such as daily country entrances. These data are then used 59

to improve the understanding of the pandemic in Andorra in multiple ways. 60

First, we show how Andorra’s serology testing program, conducted in May 2020, was 61

likely impacted by people leaving the country. We then show how the estimated country 62

entrances data can improve epidemiological (SEIR) models that otherwise rely on 63

mobility measured by trips. Related works have used meta-population SEIR models 64

where the modeled sub-populations are dynamic, yet based on static census commuting 65

data or based on a combination of POI visits and static commuting data (e.g. [28]). In 66

contrast, this work uses comprehensive telecoms data to estimate a real-time census to 67

more accurately capture the changing dynamics of the population during the period of 68

study. 69

We develop and test multiple (SEIR) models that differ in how they parameterize 70

transmission rates based on the trips and entrances metrics developed in this work. The 71

models are simple, where their purpose is to illustrate how different types of mobility 72

information can be better incorporated into SEIR models. 73

Finally, we use the best model to simulate a hypothetical counterfactual, 74

representing a scenario where economic and border restrictions had not been put in 75

place, and trips and entrances metrics had not drastically reduced. 76

Outline. Before presenting our methods and results, we provide background 77

information, with a timeline of events around the start of COVID-19 in Andorra, and 78

the features of the country that contribute to a unique case study. We also provide 79

background information about compartmental epidemic models to guide the reader in 80

the presentation of our models. 81

Background 82

Andorra and COVID-19 83

The study region of this work is the small country of Andorra, which is located in the 84

Pyrenees mountains and shares borders with only France and Spain. The country has a 85

population of approximately 77,000 [29], yet attracts more than 8 million visitors 86

annually, mostly for tourism associated with skiing and nature-related activities [30]. In 87

addition, a large number of cross-border temporary workers reside in the country, 88

mainly employed in the tourism industry. Andorra lacks an airport or train service so 89

the primary way to enter or exit the country is by crossing the French or Spanish border 90

by car. The country is divided into 7 municipalities, called parishes. 91

Partly because of the country’s small size and limited border crossings, Andorra was 92

able to implement comprehensive policies at the start of the COVID-19 pandemic, as 93

well as implement a serology testing program which more than 90% of the population 94

participated in. Furthermore, there is one telecoms provider for the entire country, 95

which contributes a comprehensive view of all mobile subscribers who spend any time in 96

Andorra, whether they are Andorran nationals or have foreign SIM cards. The telecoms 97

data and serology data are used in this work and are described in the Data sources and 98

preprocessing section. 99

Timeline of COVID-19 cases and policies 100

The first COVID-19 case in Andorra was reportedly imported via Italy and confirmed 101

March 2, 2020 [31]. Reported cases then rose rapidly in March before falling again in 102

February 23, 2022 3/24

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2022. ; https://doi.org/10.1101/2021.11.06.21265955doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.06.21265955
http://creativecommons.org/licenses/by-nd/4.0/


April (see Fig 1). On March 13, government officials ordered the closure of public 103

establishments and a quarantine was requested of the entire population. A series of 104

COVID-19 related policies followed and neighboring country borders were restricted. In 105

accordance with these policies, mobility within the country dropped and border 106

crossings ceased. Other NPIs, such as masks and hand sanitizer, were also deployed. 107

The lockdown measures in Andorra were gradually lifted in April and May, and fully 108

lifted starting June 1. Borders also reopened in June and border crossings resumed. 109

Table A.1 in S1 Appendix shows a timeline of COVID-19 related events. 110

Nationwide serology testing program 111

In May of 2020, Andorra conducted a nationwide serology testing program. This 112

resulted in the first published seroprevalence study universally testing the entire 113

population of a country and one of the largest of its kind [32]. Anyone over the age of 2 114

was invited to participate in the study, including the country’s temporary workers. The 115

testing was conducted in two phases: May 4 -14, and May 18 - 28, 2020. The objectives 116

of the second phase were (a) to track the progression of COVID-19 between the two 117

surveys and (b) to account for indeterminate or potential false negative results from the 118

first survey. More than 90% of the population participated voluntarily in at least one of 119

the two surveys. However, an issue with the testing program was that many 120

participants in the first phase did not participate in the second, limiting the data 121

collection and impact of the two-phase study. This issue is further explored and 122

addressed in the Results section. 123

SEIR models and COVID-19 124

SEIR models, and their variations, are compartmental models used in epidemiology. 125

They have been widely used in forecasting COVID-19 transmission and modeling the 126

outcomes of government policies [15,33,34]. The basic concept of these models is that 127

the population is partitioned into sequential compartments, and transitions through the 128

compartments over time. This framework was first developed by Kermack and 129

McKendrick in 1927 [35] and has been well described more recently by Keeling et 130

al. [36]. In short, the SEIR model takes its name from its compartments: 131
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Fig 1. Daily reported cases, trips, and entrances metrics at the start of the
COVID-19 pandemic in Andorra. The time series data are plotted for March to
August, 2020, which covers the study period. Solid lines show values smoothed over a
7-day rolling window.
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S = Susceptible 132

E = Exposed 133

I = Infectious 134

R = Removed (quarantined, recovered, or deceased) 135

S represents the number of Susceptible people in the population who have not yet 136

been exposed to the virus. Individuals transition from Susceptible to Exposed after 137

exposure to individuals in the Infectious (I) compartment. Hence the transition S to E 138

is a function of the number of people in the Susceptible (S) and Infectious (I) 139

compartments, as well as the transmission rate, β, and the total population size, N. The 140

standard model considers N constant, and the following conservation holds for any time, 141

t: 142

N = S(t) + E(t) + I(t) +R(t) (1)

Transitions between compartments are modeled by a set of ordinary differential 143

equations (ODEs). 144

S′(t) = −β
S(t)I(t)

N(t)

E′(t) = β
S(t)I(t)

N(t)
− σE(t)

I ′(t) = σE(t)− γI(t)

R′(t) = γI(t)

(2)

Where 145

β = transmission rate of the infection 146

σ = latent rate 147

γ = removal rate 148

The latent rate, σ, is the average rate to become infectious after exposure (i.e. 149

σ−1=average incubation period) and the removal rate, γ, is the average rate at which 150

individuals transition from I to R. 151

The modeled compartments and transitions are simplifications, yet this simple 152

framework may be well applied to COVID-19 at the start of the pandemic, before 153

populations were vaccinated or encountering re-infections. (Models for diseases over 154

longer periods of time may also incorporate changes in the population via birth and 155

death rates, while other models handle individuals becoming susceptible again [37].) 156

An epidemic is often characterised by the basic reproduction number, R0. The 157

estimation and value of the reproduction number is complex and often misrepresented, 158

but in general it represents the expected number of secondary infections which would be 159

caused by a typical infected case if everyone in the population were susceptible [38,39]. 160

R0 can be calculated as the ratio of the transmission rate to the removal rate. Often in 161

compartmental models, both of these parameters are constant in time. However, if one 162

or both of these parameters is time-varying, then the variation of R0 over time can be 163

estimated. While the R0 only represents the true reproductive rate at the start of the 164

pandemic when the whole population is susceptible, the variation of this ratio over time 165

isolates the impact of changes in human behavior and NPIs on the reproductive rate. 166

(The effective reproductive rate Rt, on the other hand, represents the actual 167

reproductive number at any point in time, given the behaviour as well as the susceptible 168

portion of the population [40].) Estimates for reproduction numbers have been used to 169

understand the state of a pandemic and to measure the effectiveness of 170

interventions [4, 34,41–43]. 171

R0 = β/γ 172
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R0 is a function of both transmission rate and removal rate. The removal rate 173

represents the rate at which infectious individuals are removed from the population and 174

then are no longer at risk of infecting susceptible individuals. Removal might occur 175

because they isolate, or recover and are no longer infectious, or die. The removal rate 176

may vary due to changes in testing procedures (e.g. more proactive testing can identify 177

more cases and cause individuals to isolate earlier in their infectious period) or 178

government policies (e.g. quarantine rules). Likewise, the transmission rate can change 179

due to governmental policies and behavioral changes (e.g. staying home, wearing masks, 180

and other NPIs). 181

Recent models that address COVID-19 have taken into account that transmission 182

rates vary over time [15,44–46]. Many models do so by incorporating mobility metrics 183

to estimate behavioral changes and model changes in transmissibility based on these 184

data. However, these mobility metrics are often based on sources that report on a small 185

fraction of the population, and where the mobility metrics are aggregated statistics 186

based on the number of trips to points of interest (POIs), which may not be the most 187

important indicators of COVID-19 transmission. This is in contrast to the telecoms data 188

used in this work, which covers all mobile subscribers within the country of Andorra, 189

and is provided as a complete and unaggregated dataset, not limited to trips to POIs. 190

We note that any of the models referenced or presented in this work are 191

oversimplifications of the complex dynamics of disease spread. They also suffer from 192

unreliable case reports data, limited by the availability of tests, and reactive to changes 193

in testing protocols [1]. 194

Materials and methods 195

This section describes the SEIR models used in this work, and how they are trained and 196

tested. It then describes data sources and preprocessing methods. 197

Code and data availability 198

All aggregated metrics and code used in this work are made available and documented 199

in a public repository. The code includes analysis notebooks as well as the preprocessing 200

scripts that produced the aggregated metrics. The data reporting on individuals, which 201

was used to compute aggregate metrics, is sensitive and kept private. 202

https://github.com/CityScope/CSL_Andorra_COVID_Public 203

Modeling 204

This work develops and compares multiple SEIR models that differ in how they 205

incorporate trips and entrances data in order to model transmission rates. The trips 206

data measure mobility behavior within the country while the entrances data measure 207

new country entrances (described in the Data sources and preprocessing section.) 208

The aim is to evaluate the relative impact of the trips and entrances data on model 209

performance; the aim is not to build a state-of-the-art, accurate predictive model. To 210

this end, the models are highly simplified. 211

Comparison models 212

In SEIR models, β(t) typically represents the average number of people an infected 213

person would expose per-unit time if everyone were susceptible. In particular, β(t) is 214

used to model the transition from the Susceptible to Exposed compartments. The use of 215

β(t) in our models is captured by the following equation from Eq (2). 216
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E′(t) = β(t)S(t)I(t)
N(t) − σE(t) 217

We develop multiple models that only differ in how they define β(t). 218

In the following descriptions, b0, ..., bn are parameters of β(t) and are estimated 219

during model training for each model in which they are included. 220

One model uses trips without entrances data (model ii). Another model uses both 221

trips and entrances data (model iii). A model that uses neither data source is used as a 222

baseline (model i). 223

Each of the models use the same framework, methods, and training and testing 224

periods, described further below. 225

Model i: constant transmissibility 226

This is a baseline, dummy model where β(t) is constant. 227

β(t) = b0 228

Model ii: transmission as a function of trips data 229

β(t) = b0 + b1× trips(t)b2 230

Model iii: transmission as a function of trips and entrances data 231

In this model, the average rate at which the susceptible population is exposed can be 232

impacted by the behavior of people within the country (e.g. mobility measured in trips) 233

as well as the import of new cases (entrances). 234

E′(t) = β(t)S(t)I(t)
N(t) + S(t)f(entrances(t))− σE(t) 235

where 236

β(t) = b0 + b1× trips(t)b2 237

f(entrances(t)) = I(t)
N × b3× entrances(t)b4 238

f(entrances(t)) represents the likelihood of new country entrants importing the 239

virus. The term I(t)
N reflects the assumption that the likelihood of new country entrants 240

being infectious tracks with the timeline of infection rates in Andorra. This assumption 241

is based on the fact that during the study period, the timeline of infections in Andorra 242

was highly correlated with the timeline of infections in Spain and France (with Pearson 243

correlation coefficients of 0.922 (p=0.000) and 0.932 (p=0.000), respectively), and the 244

primary way to enter Andorra is through the Spanish or French borders. Furthermore, 245

telecoms data showed that 86% of entrances by foreign SIMs were either Spanish or 246

French, and when accounting for entrances by Andorran SIMs, 68% of all entrances 247

were by Spanish or French SIMs. See section A.3 in S1 Appendix. 248

The above functions using entrances and trips can be combined into one equivalent 249

expression representing transmissibility. We do this to simplify modeling and maintain a 250

common expression for E′(t). 251

E′(t) = β(t)S(t)I(t)
N(t) − σE(t) 252

where 253

β(t) = b0 + b1× trips(t)b2 + b3× entrances(t)b4 254
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Fig 2. Schematic representing the SEIR model framework used in this work.
The population is divided into compartments where individuals transition through the
compartments: Susceptible, Exposed, Infected, Removed, Case reported, where the
transitions are described by ODEs (Eq (3)).

Model framework 255

The SEIR framework used in this work is illustrated in Fig 2 and is described by the 256

ODEs in Eq (3)). We note that many traditional SEIR models use the I compartment 257

to represent the entirety of an individual’s infectious period. Our modeling framework 258

assumes that individuals transition from I to R as soon as they suspect they are 259

infectious. Individuals may then seek a test, and the result of the test will be reported 260

with some delay. C represents the report of a positive test after that delay, d. 261

S′(t) = −β(t)
S(t)I(t)

N(t)

E′(t) = β(t)
S(t)I(t)

N(t)
− σE(t)

I ′(t) = σE(t)− γI(t)

R′(t) = γI(t)

C ′(t) = rR′(t− d)

(3)

262

Where 263

S(t) = N − E(t)− I(t)−R(t) 264

C(t) is cumulative case reports and accounts for reporting delay, d, and the 265

reporting rate, r. 266

Given initial values for the compartments and the other model parameters, time 267

series data for the compartments can be deterministically estimated by integrating over 268

the ODEs into the future, where each compartment time series represents the 269

compartment population on each day, t. This is done to calibrate parameters during 270

model training as well as to generate forecasts beyond the training period. 271

Initial values for R and C at t = 0 are set based on the number of cumulative 272

reported cases at the start of the study period. Initial values for E, I, are estimated by 273

model training, along with γ and parameters of β(t). The reporting rate, r, is set to 1
11 , 274

estimated from the serology and case reports data (Data sources and preprocessing 275

section). The latent rate, σ, is set to 1
5.2 , estimated by prior work [47]. The reporting 276

delay, d, is set to 7, consistent with related works [21,48] and empirical checks (see 277

section A.7 in S1 Appendix). d is the average time from when an infectious individual is 278

removed (isolated) to the time the case is reported, and must account for the time it 279

takes to seek a test, for the test to be processed, and for the result to be included in 280

reported cases data. At the start of the pandemic, tests in Andorra were sent to Spain 281

for processing, which may have increased reporting delays. The reporting delay is 282

incorporated into the models by shifting the trips and entrances metrics time series by d. 283

See Table A.5 in section A.6 of S1 Appendix for a concise description of model 284

parameters. 285
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Training and testing 286

Cumulative reported cases in Andorra reached a threshold of 2 (over a 7-day average) 287

on March 14. The serology tests, which were used to estimate the reporting rate, were 288

conducted in May. In September, massive testing programs began and even before then, 289

testing started to become more available. These programs and test availability increased 290

the case identification rate, impacting both the reporting rate and the removal rate, 291

changing the dynamics in modeling. For these reasons, the study period includes March 292

to August, 2020. The period of March 14 - May 31 is used for model training and the 293

following 10 weeks are used for testing. 294

Training: Parameters and initial values for E(t), I(t) at t = 0 were fit with maximum 295

likelihood estimation (MLE). Log-likelihood was computed by comparing time series 296

values of predicted cumulative reported cases (C) to the time series of actual cumulative 297

reported cases: 298

log-likelihood =
∑

log Pk,λ(k, λ) (4)

Where the sum is over all days in the training data, Pk,λ(k, λ) is the Poisson 299

distributed probability mass function, k is actual reported cases, λ is predicted reported 300

cases. 301

Parameters were optimized by minimizing the negative log-likelihood using the 302

L-BFGS-B method [49]. See section A.5 in S1 Appendix for details. 303

Testing: Median absolute percentage error (MAPE) over cumulative estimates has 304

been used in a recent framework to evaluate and compare COVID-19 models [50], where 305

the errors incorporate an intercept shift. MAPE is similarly used to evaluate and 306

compare the performance of models in this work. Given model training estimates 307

S,E, I,R,C up to time t, the trained model is tested starting at time t+ 1 as follows. 308

The value of C(t) is corrected to the true reported cases at time t and further integration 309

over the ODEs is used to continue the simulation over the test period. The resulting C 310

estimated over the test period is compared to actual reported cases via MAPE. 311

Data sources and preprocessing 312

Three main data sources are used in this work and are further described below: (i) 313

serology data from the nationwide testing program conducted in May 2020, (ii) telecoms 314

data covering all mobile subscribers in the country, (iii) official COVID-19 case and 315

death reports. All time series metrics estimated from (ii) and (iii) are smoothed by 316

taking the mean over a 7-day rolling window. 317

Serology Data 318

As described in the Andorra and COVID-19 section, a nationwide serology testing 319

program was conducted in May of 2020. The program was voluntary, and conducted in 320

2 phases, and 91% of the population participated. 321

The program was conducted for a previous research study, in which the methods and 322

results are detailed [32]. The study was approved by the Institutional Review Board of 323

the Servei Andorra Atencio Sanitaria (register number 0720). An anonymized version of 324

the dataset was also provided to researchers in our lab as part of a research partnership. 325

The dataset includes a unique identifier for each participant and results from the 1st 326

and 2nd round of tests; test results were left empty when there was a lack of 327

participation. The dataset also includes demographic information for participants, 328
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including their home parish and whether they are a temporary worker. As previously 329

described, an issue with the serology testing program was that many of the participants 330

from the first phase of testing did not participate in the second phase (see Table A.3). 331

From the serology data, Bayes Theorem [51] was used to estimate the portion of the 332

population infected up to May. With this number and the official reported cases data, 333

we estimated a case reporting rate of 1
11 . This reporting rate is used in the epidemiology 334

models described in this work. 335

Telecoms data and metrics 336

Andorra has one telecoms provider (Andorra Telecom), which provided the data for this 337

study. Since they are the sole provider, the dataset covers 100% of mobile subscribers in 338

the country, including subscribers using foreign SIM cards. This is unlike most telecoms 339

datasets where the market is fragmented. Each data point includes a unique ID for the 340

subscriber, a timestamp, the coordinates of the device, and nationality for the 341

subscriber’s home network. The data have been further described in [52]. 342

The stay-point extraction algorithm of Li et al. (2008) [53] was used to reduce the 343

series of data points for each subscriber into a series of stay-points of 10 minutes or more 344

within a radius of 200m or less. The stay-points represent a more concise and reliable 345

series of places the subscriber spent time; stay-points were used to infer presence in the 346

country, dynamic population changes, and compute the trips and entrances metrics. 347

There are gaps in the available telecoms data and the resulting trips and entrances 348

metrics during the period of study (data gaps are June 28-29, and July 21-27, 2020). 349

Missing values were imputed by taking the mean across the values from the 7 days 350

surrounding each missing period of data. 351

Dynamic population inference and metrics: On each day, a subscriber was 352

considered present in the country if they had a stay-point in the country within a 7-day 353

window. The window accounts for unobserved subscriber devices due to a combination 354

of inactivity, lack of reception in certain areas, or noisy data. The beginnings and 355

endings of periods of presence were counted as entrances to and departures from the 356

country, respectively. 357

Trips metrics: Daily trips for subscribers were counted as their daily number of stay 358

points minus 1, since a new stay point is recorded when a subscriber moves beyond a 359

200m radius. Daily trips by subscribers were summed as a total daily trips metric. 360

Home inference: The home parish of each subscriber was inferred from the telecoms 361

data, to come up with a population count for each of the 7 parishes of Andorra. This 362

was done by first assigning each stay-point to the parish in which it was contained. 363

Each subscriber’s home parish was then determined to be the parish in which they 364

spent the most cumulative time during night-time hours (12:00am to 6:00am). Related 365

studies of human mobility that use cellular data have employed similar methods [54–57]. 366

These inferred parish-level populations were compared to the published 2020 367

population statistics [29]. There is a Pearson correlation coefficient of 0.959 (p < 0.001), 368

suggesting that the telecoms data are representative of the true population. (See 369

Table A.2 and Fig A.1 in S1 Appendix). Inferring the parish of residence is done both 370

to check methodology as well as compare populations to serology test participation (see 371

the Serology tests and country departures section). 372
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COVID-19 infection data 373

This dataset was made available by Johns Hopkins University [58] and downloaded from 374

OWID [59] as a time series of daily reports. Reported cases in Andorra were used for 375

model estimation and prediction. There were cases identified in Andorra through the 376

May serology testing program that were reported late, on June 2 [60]. This reporting 377

error was handled by removing the excess case reports. Fig 1 plots the resulting daily 378

new and cumulative case reports over the period of study. Reported deaths data for 379

Andorra and its neighboring countries, Spain and France, were used in model 380

assumptions (see section A.3 in S1 Appendix). 381

Results 382

2019 versus 2020 metrics 383

Before presenting our main findings, we first present the start of the pandemic in 384

Andorra through a series of plots, and compare this period to the same period in 2019, 385

when Andorra experienced a normal economy with tourism. 386

Fig 3 shows that by the start of March of 2020, there were already fewer people 387

(mobile subscribers) in the country than in 2019. This number then substantially 388

dropped with the start of the border restrictions and economic lockdown in mid March. 389

There were also already fewer total daily trips being taken at the start of March, 2020, 390

compared to 2019. This is largely due to fewer people in the country making the trips. 391

This metric also substantially dropped at the start of the lockdown. This drop was 392

partly due to even fewer people in the country making trips, and due to the government 393

imposing restrictions on movement. The number of trips gradually rose again before the 394

border restrictions were lifted in June, indicating that the population increased internal 395

mobility. The number of daily entrances to (and departures from) Andorra also 396

significantly dropped in mid March of 2020, as tourists and others left the country and 397

border restrictions were imposed, limiting entry to the country. These daily metrics 398

remained near zero throughout April and May, until border restrictions were lifted in 399

June. 400

COVID-19 cases and mobility 401

The time series of reported COVID-19 cases is shown with the time series of the trips 402

and entrances metrics in Fig 1. Other studies have implied that changes in case growth 403

often lag changes in behavior and mobility metrics by 14 or more days [17,21,27]. 404

However, Fig 1 shows that daily trips were able to increase throughout May of 2020 405

while newly reported cases remained low. Case growth did not increase again until daily 406

entrances increased again when the border restrictions were lifted in June. This suggests 407

that the entrances metric is more related to case growth than the trips metric in this 408

case study. The relative predictive power of these metrics is further shown by the model 409

results (Models results section). 410

Serology tests and country departures 411

Andorra’s nationwide serology testing program conducted in May, 2020 involved two 412

phases of testing (see the Andorra and COVID-19 section). An issue with this program 413

was that many of the participants from the first phase of testing did not participate in 414

the second phase, limiting the impact of the study. An important question for a country 415

conducting such a program might be why this happened. 416
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Fig 3. Estimated population, trips, country entrances and departures
metrics for 2020 vs 2019. (Top) daily mobile subscribers counted as present in the
country, (middle) daily total trips, and (bottom) daily country entrances and
departures, for the country of Andorra during the start of the pandemic in 2020 versus
the same period in 2019. All metrics are estimated from telecoms data that covers 100%
of mobile subscribers in the country. Solid lines show values smoothed over a 7-day
rolling window.
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This drop in participation might be particularly concerning, as we found the drop in 417

participation was more than 3 times higher among temporary workers versus the 418

general population, and results from the testing program showed that temporary 419

workers had higher seroprevalence (infection rates) versus the general population. See 420

Table A.4 in S1 Appendix. This might imply that a more infected demographic group 421

was then less monitored. 422

By combining the serology test data with information inferred from the telecoms 423

data, we find that test participants likely left the country after their first test. 424

We counted the number of mobile subscribers, by inferred home parish, who were in 425

the country during the first and second phases of testing (May 4-14 and May 18-28, 426

2020). Subscribers were counted as present during a testing period if they had at least 427

one "stay" within the period. We estimated how many subscribers left the country after 428

the first test by counting how many subscribers were present during only the first test 429

period versus both test periods. 430

These numbers were compared to the parish-level serology test participant 431

populations. Namely, the portion of serology test participants who did test 1 but not 432

test 2 was compared to the estimated portion of mobile subscribers who left the country 433

between test periods, and this comparison was done for each home parish. Comparing 434

across parishes, there is a statistically significant Pearson correlation coefficient of 0.937 435

(p=0.0019). 436

To check the robustness of this result, we also restricted the May 2020 telecoms data 437

to subscribers who had at least 7 days, or 4 nights, of data. The results are similar with 438

Pearson correlation coefficients of 0.925 (p=0.0028), and 0.955 (p=0.0008), respectively. 439

To further validate that the decline in test participation was related to people 440

leaving the country, we repeated these tests using 2019 telecoms data: we estimated the 441

number of subscribers by home parish who were in the country during the periods May 442

4-14 and May 18-28 of 2019 (using 2019 telecoms data) and compared the number of 443

subscribers who left the country between those periods to the serology test participation. 444

In this case, there is a Pearson correlation coefficient of 0.4928 (p=0.2612). If the May 445

2020 subscribers had left the country for reasons not related to the pandemic, we would 446

expect the correlation to be similar for the 2019 and 2020 data. However, the 447

correlation for the 2019 data is much lower and not statistically significant. See 448

Table A.4 in S1 Appendix. 449

Models results 450

Simple models based on the SEIR framework, were developed to compare the impact of 451

trips and entrances data on transmission rates and predicted infections. 452

The baseline, dummy model (i) assumes a constant transmission rate. For model (ii) 453

transmission is a function of mobility measured by trips data, and for model (iii) 454

transmission is a function of both trips and entrances data. (See the Modeling section 455

for details.) 456

Models were trained over the period March 14 - May 31, 2020. Table A.5 and 457

Fig A.5 in S1 Appendix show the parameter values for the best fit models and the 458

corresponding time series values for the estimated R0, the compartment populations, 459

and the predicted reported cases, over the training period. 460

Models were evaluated by their prediction performance over the weeks that followed 461

the training period. This was done using MAPE, based on the framework used by 462

Friedman et al. to evaluate leading COVID-19 models [50]. Results for 1 - 10 463

forecasting weeks are shown in Table 1. All models performed relatively well during the 464

period of study. (As a point of comparison, Friedman et al. found in their global 465

evaluation of COVID-19 models, MAPE values of 1 - 2% for 1 week forecasts and 17 - 466
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25% for 10 week forecasts. See Fig. 3 and Fig. 5 in [50]. Note their evaluation used 467

cumulative deaths data whereas this work uses cumulative cases data.) 468

The model (iii) using both trips and entrances data outperformed the other models 469

in all but excluding the first week that followed the training period. More importantly, 470

the model (ii) that used trips data to model transmission rates (without entrances data) 471

had results similar to, and slightly worse than, the baseline model (i) which assumed a 472

constant transmission rate. This is not surprising, as the data indicated trips were able 473

to increase without impacting transmission rates (Fig 1). 474

This is also shown in that the best fit for model (ii) had parameters that flattened 475

the impact of the trips data, resulting in a nearly flat reproduction number, R0. Given 476

that there were few new infections at the end of the training period (i.e. a smaller 477

population in the I compartment), this resulted in relatively flat predictions for new 478

reported cases for model (ii) over the forecasting weeks that followed the training period 479

(similar to model (i)). This is in contrast to the model (iii) that used both trips and 480

entrances data, and where predictions for new reported cases closely tracked with actual 481

predictions. See Fig 4. Overall, these estimated R0 values are reasonable and within the 482

range of values estimated by previous works [61]. 483

Table 1. MAPE results for the 3 models.

MAPE

model

forecasting weeks i. constant β ii. trips data iii. trips & entrances data

1 0.03 0.02 0.24

2 0.20 0.30 0.19

3 0.65 0.80 0.25

4 0.97 1.16 0.34

5 1.22 1.44 0.52

6 1.47 1.73 0.76

7 1.36 1.60 1.01

8 1.39 1.54 1.08

9 1.59 1.78 1.09

10 1.80 1.98 1.12

Median absolute percentage error (MAPE) used to evaluate the 3 models. The MAPE
measures errors relative to the true values and can vary from 0 to infinity where 0 represents
perfect agreement. The models differ in whether they incorporate trips and entrances data to
model transmissibility. Model (i) is a baseline, dummy model where transmissibility is constant,
model (ii) uses trips data, and model (iii) uses trips and entrances data. All models used the
same framework and methods.

As a robustness check, all models were trained and tested over an additional set of 484

training and testing periods that ended slightly earlier than those used for the main 485

results. (The training period for the robustness check was March 14 - May 14, 2020.) 486

The results are similar to the main results, and shown in Table A.6 and Fig A.6 in 487

section A.8 of S1 Appendix. However in this case, the model (iii) using trips and 488

entrances data consistently outperformed the other models for all forecasting weeks. 489

These results may seem surprising and their interpretation remains unclear. In 490

epidemiology, the 3 models may be considered as (i) a homogeneous mixing model, (ii) a 491
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Fig 4. Fit model results. Time series values for (top) the estimated R0 and (bottom)
actual versus predicted reported cases that resulted from model training. Left: Plotted
values for the model which uses just trips data. Right: Plotted values for the model
which uses both trips and entrances data. Models were trained over the period March
14 - May 31 and tested over the weeks that followed. The training and testing periods
are divided by gray and white backgrounds, respectively. Axes for the R0 values are set
to highlight that values were flattened for the trips data model. See Fig A.5 in S1
Appendix for plots that show the full variation in the R0 values.
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model of one population in which transmission depends on local mixing only, and (iii) a 492

model that accounts for local mixing and external seeding, where trips are a proxy for 493

local mixing and entrances are a proxy for external seeding. It is possible that the lack 494

of predictive power of trips in the model is due to the model being calibrated during a 495

lockdown period, when transmission opportunities represented by trips were not as 496

important without external seeding. However, it is also possible that while trips have 497

been used as a proxy for mixing in related works, trips did not necessarily convert to 498

transmission opportunities in this case. This may be due to trips being safely taken 499

with social distancing guidelines and other NPIs in place. And again, this may partly be 500

due to the model being calibrated during a lockdown. At the same time, the entrances 501

metric may represent more than external seeding, and also represent a more open 502

economy and additional activities that may increase transmission opportunities. 503

Counterfactuals 504

What if Andorra had not imposed a lockdown, which caused reduced mobility? What if 505

border restrictions had not been put in place, which caused a drop in entrances? 506

Overall, what if the population mobility, measured in total trips and entrances, had not 507

dropped in March? 508

In this section we explore such a counterfactual scenario by using the best fit model 509

(iii) from the Models results section, which uses the trips and entrances data. 510

The lockdown in Andorra began on March 13, 2020, and there was a large drop in 511

trips and entrances surrounding this date (see Fig 1). We again take a simplified 512

approach to modeling, and create hypothetical trips and entrances data for a 513

counterfactual scenario where mobility and border restrictions were not put in place. 514

We do this by using the true metrics up to March 13 of 2020, and then keeping the 515

metrics constant at the March 13 values. This is shown in Fig 5. We then estimate 516

counterfactual case reports by using the previously fit model (i.e. we use the model 517

parameters that were fit with the true trips and entrances time series values) and 518

replace the model’s trips and entrances data with the counterfactual data. We then run 519

the simulation over the same period that was used to train the original model. The 520

result is a prediction of 2941 cumulative reported cases up to May 31, 2020 under the 521

counterfactual model, versus the actual 766 reported cases up to May 31, under the true 522

scenario. The difference is an additional 2175 (more than 3x as many) reported cases 523

during this time period under the counterfactual scenario. 524

Discussion 525

When COVID-19 was introduced to Andorra at the start of March 2020, the country 526

and its bordering neighbors responded quickly with economic and border restrictions. 527

These interventions and other NPIs showed to be effective in Andorra, as the country 528

brought case growth under control from March - May 2020, before the restrictions were 529

fully lifted. The counterfactual scenario modeled in this work shows a stark alternative 530

had the mobility changes observed during this period not occurred, with more than an 531

estimated 3x as many cases, likely overwhelming the hospital system. 532

Numerous other works have also used mobility data collected from mobile phones to 533

model the impacts of mobility restrictions on COVID-19 transmission. However, these 534

studies have relied on data about trips, and the data represented a small sample. Other 535

works using meta-population SEIR models, where the modeled sub-populations are 536

dynamic, have been based on static census data. In contrast, this work leverages data 537

collected from mobile phones that represent 100% of subscribers in a country. 538
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Fig 5. Counterfactual results. Top: Hypothetical total trips and entrances metrics
that are used to simulate reported cases for a counterfactual scenario where mobility
and border restrictions had not been put in place. Bottom: Simulated reported cases for
such a counterfactual scenario, versus the actual reported cases that occurred in the
true scenario.

We showed how these data could be used to build on previous works by computing 539

daily trips metrics as well as estimating a dynamic, real-time population census. We 540

then showed how these data can be used to improve upon the understanding of a 541

pandemic in two main ways. 542

First, these data were used in order to better understand why participation in the 543

nationwide serology testing program dropped between the first and second phases of 544

testing. The drop in participation may have been concerning as the second phase of 545

testing was intended to help better detect and track the virus. This decreased ability to 546

track the virus might have been particularly concerning because the test results showed 547

that the temporary worker population had the highest infection rates and this 548

population also had the largest drop in test participation. However, the analysis, which 549

leveraged the telecoms data to estimate dynamic population changes, suggested that the 550

decline in participation was likely due to test participants leaving the country after their 551

first test. 552
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Second, we showed how the dynamic population data could be used to improve 553

epidemiological (SEIR) models that otherwise rely on mobility measured by trips. In 554

our contribution, we developed simple SEIR models that differed in how they used the 555

trips and entrances metrics developed through this work. These models performed well 556

compared to the 7 global COVID-19 models evaluated by Friedman et al. 557

(2021) [15,44,45,50,62–64], but their purpose was not to be highly accurate; the 558

purpose of these models was to illustrate the relative importance of trips mobility data 559

versus real-time population data, namely country entrances. In particular, for the case 560

of Andorra, we find that the population was able to regain internal mobility measured 561

in daily total trips with limited growth in cases, and that total trips per day did not 562

have predictive value in the SEIR models while country entrances did. 563

While we show that the entrances metric had superior predictive power over the 564

trips metric in Andorra, we do not mean to draw a direct line between country 565

entrances and new COVID-19 cases. Changes in the entrances metric may have been 566

highly correlated with other changes that impacted transmission rates, such as changes 567

in COVID-19 policies and cautions. 568

In general, the models were limited by their simplifications. For example, there was 569

likely an interaction effect between the trips and entrances metrics that was not 570

captured in the models. The models also assumed that the case identification rate (and 571

hence removal rate) and reporting rate were constant, which related works have as well 572

(e.g. [21]). However, these rates likely changed with Andorra’s increased testing. Future 573

works can more accurately model the impacts of mobility and entrances, and the 574

interaction between these metrics. This might also include incorporating data on the 575

infection rates for other countries whose populations contribute to entrances. Future 576

work can also incorporate data on testing rates to better model changes in the removal 577

and reporting rates. 578

Furthermore, our modeling approach was able to leverage features that make 579

Andorra a special case study compared to other countries. In particular, Andorra 580

normally has a highly dynamic population, given its small population and relatively 581

large number of cross-border traffic and temporary workers. These features, along with 582

the fact that our study was conducted over one period at the start of COVID-19, may 583

make our results less transferable to other countries or contexts. 584

Despite these limitations, overall, this case study suggests how using mobile phone 585

data to measure dynamic population changes could improve studies that rely on more 586

commonly used mobility metrics and the overall understanding of a pandemic. 587
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Supporting information 588

S1 Appendix. Supplementary Appendix. 589
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S1 Appendix

A.1 Andorra and COVID-19

March 2 First COVID-19 case confirmed in Andorra.
March 12 Ski stations closed.
March 13 Partial confinement: school closures and recommended confinement.
March 18 Total confinement: all non-essential activities ordered closed.
April 7 Beginning of masks delivery and progressive use by population.
April 17 Allowance to 1 hour of walk in 1km radius every two days.
April 20 Phase 1 reopening: low risk economic activities resume; 1000 people return

to work.
May 4 Start of 1st round of population serology screening.
May 4 Phase 2 reopening. Additional 4760 workers return to normal activity.
May 13 Increase to 2 hours of activity every day to walk or exercise.
May 18 Start of 2nd round of population serology screening.
May 18 Phase 3 reopening: additional 3300 workers returned to normal activity.
June 1 Confinement restrictions completely lifted.
June 15 French and Spanish borders opened (with restrictions on Spanish side).
June 21 Spain ended state of emergency and further lifted border controls.
July 1 Remaining Spanish border restrictions lifted.
September 1 Massive testing for teachers and school kids began.

Table A.1. Timeline of the COVID-19 related dates in Andorra.
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A.2 Home parish inference
The parish-level populations inferred from the telecoms data for May 2020 were
compared to published 2020 population statistics [29]. There is a Pearson correlation
coefficient of 0.959 (p<0.001), suggesting that the telecoms data are representative of
the true population.

Parish Published population Inferred mobile subscriber population
Andorra la Vella 22504 13555
Canillo 4371 4367
Encamp 11716 6766
Escaldes-Engordany 14626 7366
La Massana 10199 6165
Ordino 4957 2427
Sant Julià de Lòria 9374 4339

Table A.2. Published parish populations compared to parish populations inferred
from telecoms data.

Fig A.1. Published parish populations compared to parish populations inferred
from telecoms data There is a Pearson correlation coefficient of 0.959 (p<0.001), suggesting
that the data are representative of the true population.
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A.3 Comparing entrances and infection rates between Andorra,
France, and Spain

The SEIR model (iii) in this work incorporates trips and entrances data to model
transmission rates. It includes an assumption that the likelihood of new country
entrants being infectious tracks with the timeline of infection rates in Andorra. In order
to check this assumption, we compare the rates of COVID-19 between the country of
Andorra and its bordering neighbors, Spain and France, during our period of study. This
is done by comparing the timeline of reported deaths per 1 million residents, where data
is smoothed over a 7 day rolling window. Death reports are used instead of case reports
as a more stable comparison indicator in this study and others because death reports
were considered to be less impacted than case reports by the dynamically changing
testing procedures which varied by country [21,65]. The Pearson correlation coefficients
between Andorra and France and Andorra and Spain are 0.916 (p < 0.001) and 0.928 (p
< 0.001), respectively. We note there was an error in the Spain data with negative
deaths values in late May. We changed the negative values to 0 for this comparison.
Without the change, the correlation was still statistically significant with Pearson
correlation coefficient 0.918 (p < 0.001). The timeline of infections is shown in Fig A.2.

During this same period, telecoms data showed that 86% of entrances by foreign
SIMs were either Spanish or French, and 68% of all entrances were by Spanish or French
SIMs when accounting for entrances by Andorran SIMs. The timeline of entrances by
SIM nationality is shown in Fig A.3.

Fig A.2. Comparison of reported deaths per 1 million residents between the
country of Andorra and its only bordering neighbor countries, Spain and France.
The Pearson correlation coefficients between Andorra and France and Andorra and Spain are
0.916 (p<0.001) and 0.928 (p<0.001), respectively.

Fig A.3. The timeline of country entrances, measured via Andorra Telecom data,
by mobile subscribers’ SIM nationality. During the period of March through July, 2020,
86% of entrances by foreign SIMs were either Spanish or French, and 68% of all entrances were
by Spanish or French SIMs when accounting for entrances by Andorran SIMs.
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A.4 Serology tests and country departures
Note that the sum of survey participation varies due to missing values regarding the
participants’ parish of residence or temporary worker status.

survey 1 participants (N) survey 1 seroprevalence survey 2 participation
all 70,626 9.7% 91.6%

temporary workers 2,714 13.3% 70.7%
Table A.3. Serological survey participation and results for temporary workers
versus general population. Seroprevalence results were previously reported by
Royo-Cebrecos et al. Survey 2 participation indicates how many individuals who participated
in survey 1 also participated in survey 2.

Two cross sectional serological surveys were conducted in Andorra from May 4-28,
2020, using a rapid serological test (nCOV IgG/IgM) [32]. For each participant, the test
data include the dates of their participation in surveys 1 and/or 2, the positive versus
negative results for IgG/IgM antibodies for each round of testing, the participant’s
parish of residence, whether the participant is a temporary worker, and other
demographic information. Table A.3 shows the number of participants and
seroprevalence from survey 1 as well how many participants from survey 1 also
participated in survey 2. Data for temporary workers is highlighted. Seroprevalence
data is from previously reported results and was calculated based on the number of
individuals who had a positive result of IgG and/or IgM [32]. The testing was voluntary;
an issue with the testing was that many people who participated in the first survey did
not participate in the second survey. Seroprevalence was higher among temporary
workers. At the same time, temporary workers who participated in survey 1 were less
likely to participate in survey 2 versus the general population. See Table A.3.

parish serology survey participants 2020 mobile subscribers present 2019 mobile subscribers present

survey 1 (N) survey 1 & 2 decline survey
period 1

survey
periods 1 & 2 decline survey

period 1
survey
periods 1 & 2 decline

Andorra la Vella 4542 4262 6.2% 15803 15415 2.5% 27531 23295 15.4%
Canillo 4495 4017 10.6% 5406 5121 5.3% 5095 3936 22.7%
Encamp 10846 10273 5.3% 7613 7449 2.2% 8102 7397 8.7%
Escaldes-Engordany 28924 27688 4.3% 8336 8172 2.0% 9089 6961 23.4%
La Massana 8843 8451 4.4% 7389 7214 2.4% 9813 8365 14.8%
Ordino 4214 4049 3.9% 2821 2758 2.2% 3446 2964 14.0%
Sant Julià de Lòria 8632 8295 3.9% 5056 4929 2.5% 9201 8197 10.9%

Table A.4. Serological survey participation and mobile subscribers by home parish.

We counted the number of mobile subscribers, by inferred home parish, who were in
the country during the first and second survey periods (May 4-14 and May 18-28, 2020).
Subscribers were counted as present during a survey period if they had at least one
"stay" within the period. We estimated the rate at which subscribers left the country
after the first test by counting how many subscribers were present during only the first
period versus both periods.

These numbers were compared to the parish-level serology test participant
populations. Namely, the portion of serology survey participants who did survey 1 but
not survey 2 was compared to the estimated portion of mobile subscribers who left the
country between survey periods. There is a statistically significant Pearson correlation
coefficient of 0.937 (p=0.0019).

To further validate that the decline in test participation was related to people
leaving the country, we repeated these tests using 2019 telecoms data. In this case,
there is a Pearson correlation coefficient of 0.4928 (p=0.2612), which is not statistically
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significant. If the May 2020 subscribers had left the country for reasons not related to
the pandemic, we would expect the correlation to be similar for the 2019 and 2020 data.
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A.5 Model training details
All modeling work is publicly accessible in a Python Jupyter notebook:
https://github.com/CityScope/CSL_Andorra_COVID_Public/blob/main/
analysis/SEIR_models_trips_entrances.ipynb.

Optimal parameters were estimated by minimizing the negative log-likelihood
function using the L-BFGS-B method with the Python SciPy library [49,66]. This step
searches for optimal parameters by taking initial parameters which are then modified
towards improved values, with specified bounds. The (minimum, maximum) bounds for
γ were set to (1/10, 1/2). The bounds used for each of the parameters related to β -
b0, b1, b2, b3, b4 - were (0, 2), with the observation that the parameters for the best fit
models did not come up against these bounds. The (minimum, maximum) bounds for
both E(0) and I(0) were set to (40, 4000), where t=0 corresponds to March 14, the first
day of the training period. The values of (40, 4000) were conservatively set where the
minimum was based on reported active cases, and the maximum based on reported
cumulative cases. In addition, the training routine discarded models where E(0) and
I(0) values differed by more than 3000.

Before describing how initial parameters were handled, first note that the optimizing
function is not convex. To avoid the optimization function terminating at local minima,
a grid search was used for the initial parameters. The same grid search method was
used for each of the models.

In addition to the grid search routine, another step was taken to find optimal model
fits: The models using the trips and entrances data were initially fit using spline
approximations of these metrics, where the splines were estimated from the true metrics
using knots spaced by 7 days. Fig A.4 shows the comparison of the true metrics versus
their spline approximations. This step was taken to further smooth the data and ease
the computational complexity of the model fitting routine. Without this improvement,
the model training was slow and rarely resulted in successful outcomes, and the
estimated parameters rarely varied from their initial values.

Fig A.4. Metrics and spline approximations. Daily estimated total trips and entrances
metrics, and the linear spline approximations of these metrics where knots are spaced by 7 days.

After the models were fit using the spline approximations of the data, the models
were finally fit again using the true data, where the parameters found via the fitting
routine with the spline approximations of the data were used as the initial parameters
in the L-BFGS-B method.
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A.6 Fit model values and parameters
Table A.5 shows the values of the parameters for the best fit models that resulted from
model training. Fig A.5 shows the corresponding time series values representing each of
the best fit models. The values include R0, the compartment populations, and the
predicted reported cases.

The best fit models were determined as those with the best log-likelihood score when
fit over the training data, where the training data period was March 14 - May 31, 2020.
See section A.8 for values from the robustness check.

Models were trained based on the standard SEIR model where:

S′(t) = −β(t)
S(t)I(t)

N(t)

E′(t) = β(t)
S(t)I(t)

N(t)
− σE(t)

I ′(t) = σE(t)− γI(t)

R′(t) = γI(t)

C ′(t) = rR′(t− d)

and
S(t) = N − E(t)− I(t)−R(t)
C(t) is cumulative case reports and accounts for reporting delay, d, and reporting

rate, r.

The 3 models in this work differed based on how they defined transmission rate and
the transition from S to E. See the Modeling section for details.

Model i: baseline model with constant transmission rate
Model ii: daily transmission a function of daily trips data
Model iii: daily transmission a function of daily trips and entrances data
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Fig A.5. Fit models. The time series values for (top) estimated R0, (middle) estimated
compartment populations, and (bottom) actual reported cases versus predicted reported cases.
Plots are shown for each of the models: (left) model i is the baseline, dummy model with a
constant transmission rate, (middle) model ii uses trips data, (right) model iii uses trips and
entrances data.
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parameter model

description i. constant β ii. trips data iii. trips & entrances data

N Population. Set based on estimated population. 77,000 77,000 77,000

r Reporting rate. Set based on serology and case reports data. 11−1 11−1 11−1

d Reporting delay. Set based on prior information. 7 7 7

σ Latent rate. Set based on prior work. 5.2−1 5.2−1 5.2−1

γ Removal rate. Fit by model training. 0.10 0.10 0.18

b0 Transmission rate parameter. Fit by model training. 0.0529 0.0289 3.9126e-03

b1 Transmission rate parameter. Fit by model training. - 0.027 7.69112e-02

b2 Transmission rate parameter. Fit by model training. - 0.004 7.2082e-03

b3 Transmission rate parameter. Fit by model training. - - 2.6668e-06

b4 Transmission rate parameter. Fit by model training. - - 1.3168

E(0) Initial exposed population. Fit by model training. 3408 3105 1261

I(0) Initial infectious population. Fit by model training. 1488 1597 567

R(0) Initial removed population. Set based on reported cases. 77 77 77

LL Log-likelihood value for model fit over the training period 528.08 545.01 415.2
Table A.5. Parameters for fit models.
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A.7 Time from exposure to reported case
The average delay in time from exposure to reported case in our model (i.e. the full
transition through compartments E,I,R,C) is due to the average latent period, σ−1, plus
average infectious period, γ−1, plus average reporting delay, d. σ−1 is set to 5.2 based
on previous research [47], γ−1 is estimated via model training, and d is set to 7 based on
related work [21, 48]. Reporting delays, d, can be due to the time it takes to seek a test,
for the test to be processed, and then officially reported. Note that at the start of the
pandemic in Andorra, tests were sent for processing to Spain, potentially adding extra
time to reporting delays.

A study in Singapore from March 2020 estimated an average reporting delay of 6.4
days (95% CI 5.8, 6.9) [48]. A reporting delay of d = 7 was implicitly assumed by
Arroyo-Marioli et al. [21]. They estimated time series values for the effective
reproduction number for 124 countries across the world and validated their work by
correlating their estimates of Rt to mobility data from the "COVID-19 Community
Mobility Reports" collected by Google, where the lag between Rt and mobility was 14
days (2 weeks). They assumed an SIR model rather than an SEIR model, with time
from exposure to removed, γ−1, of 7 days, implying a reporting delay of 7 days (14− 7).
We note that Arroyo-Marioli et al. produced time series estimates for Rt in Andorra.
However their estimates are not comparable to the R0 estimates in this work because
(a) they did not correct for the reporting error that caused an influx of 78 additional
cases June 1-10 [60], as was done in this work, and (b) their estimates were for the
effective reproduction number versus the basic reproduction number. We also note that
Google’s “COVID-19 Community Mobility Reports” are not available for Andorra.

The best fit for the model estimated γ−1 ∼ 5.5 days (γ = 0.18). Combined with
σ−1 = 5.2, d = 7 results in a total estimated average delay from exposure to case report
∼17.7 days. This is consistent with previous work over a similar study period in
Andorra that studied the correlation between mobility metrics and transmission rates
over various lags and found the best correlations were with mobility metrics lagged by
18 days [27].
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A.8 Robustness check
As a robustness check, we trained and tested all models over an additional set of
training and testing periods that ended slightly earlier than those used for the main
results. The training period for the robustness check was March 14 - May 14, 2020. The
models were then tested on the period that directly followed this training period.

Table A.6 shows the comparison of MAPE values for each of the 3 models evaluated
over the testing period. The model that uses the trips and entrances data consistently
outperforms the other models.

MAPE

model

forecasting weeks i. constant β ii. trips data iii. trips & entrances data

1 2.12 1.65 1.13

2 3.86 2.99 2.02

3 5.37 4.12 2.74

4 6.66 5.06 3.02

5 7.37 5.44 3.15

6 7.73 5.50 3.23

7 8.44 5.92 3.34

8 9.24 6.45 3.44

9 9.87 6.83 3.57

10 9.88 6.48 3.47
Table A.6. MAPE. MAPE values for the 3 models trained over the period used for a
robustness check: March 14 - May 14, 2020.

Fig A.6 shows the resulting model time series values over the training period March
14 - May 14.
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Fig A.6. Robustness check fit models. The time series values for the models fit for the
robustness check. Values include (top) estimated R0, (middle) estimated compartment
populations, and (bottom) actual reported cases versus predicted reported cases. Plots are
shown for each of the models: (left) model i is the baseline model and has a constant
transmission rate, (middle) model ii uses trips data, (right) model iii uses trips and entrances
data.
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