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Abstract

Background
The estimates of future course of spreading of the SARS-CoV-2 virus are frequently based on Markovian models

in which the transitions between the compartments are exponentially distributed. Specifically, the basic reproduction
number R0 is also determined from formulae where it is related to the parameters of such models. The observations
show that the start of infectivity of an individual appears nearly at the same time as the onset of symptoms, while the
distribution of the incubation period is not an exponential.

Methods
We propose a method for estimation of R0 for COVID-19 based on the empirical incubation period distribution

and assumed very short infectivity period that lasts only few days around the onset of symptoms. It is tested on daily
new cases in six major countries in Europe, in the first wave of epidemic in spring, 2020.

Results
The calculations show that even if the infectivity starts two days before the onset of symptoms and stops im-

mediately when they appear, the value of R0 is larger than that from the classical, Markovian approach. For more
realistic cases, when only individuals with mild symptoms spread the virus for few days after onset of symptoms, the
respective values are even larger.

Conclusions
The calculations of R0 and other characteristics of spreading of COVID-19 based on the classical, Markovian

approaches should be taken very cautiously. Instead, non-Markovian models with general distribution functions of
transition between compartments should be considered as more appropriate.

Key messages

• Although formulae for estimate of the basic reproduction number R0, by using general-form functions of infec-
tivity are known since the earliest works in epidemiology, majority of studies are based on exponential distribu-
tion function .

• We introduce a new methodology of calculating R0 with an infectivity function obtained by combining empirical
incubation period distribution with infectivity window function that is localized around the onset of symptoms.

• Estimates of R0 for the first wave of COVID - 19 in the spring 2020, by the proposed methodology are larger
than those from the classical SIR model.

• When possible, the estimates of R0 should be based on empirical distributions of the infectivity functions, while
the values obtained with the conventional epidemic spreading models should be taken with caution.
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1 Introduction
The mathematical epidemiology is a field of study with increasing public importance by providing valuable insights
for the authorities aimed for planning various actions against epidemic diseases. Although its inception dates back to
Daniel Bernoulli [1], the major development as separate field of study might be attributed to the works of Ross [2–4]
and Kermack and McKendrick [5]. The key quantity that is usually reported from studies about epidemic spreading
is the basic reproduction number (or rate, or ratio) R0. Its importance is particularly emphasized with the fact that
the herd immunity, achieved naturally or through vaccination expressed as fractions of the total population depends
on it as 1−1/R0 [6]. The basic reproduction ratio represents an estimated number of newly infected persons by one
infected individual introduced in a completely susceptible population. In its calculations, even in the earliest works it
was considered that the infectivity potential of the infector depends on the time passed since she or he become infected
- the age of infection, adequately modeled with certain function with general form. However, in majority of works
the dominant role has exponential function e−rt . This choice provides simple relationships for the basic reproduction
ratio, but also makes the epidemic spreading models to have simple form based on ordinary differential equations.
This exponential function in the probabilistic approach has a meaning of probability density function of the period in
which individuals stay in given compartment (exposed, infected, and so on), before transiting to another one. This is
the appropriate function when the Markovian property holds, which means that the probability for transition to another
state is independent on the past. However, very often this assumption is not empirically verified, and particularly for
the diseases like the COVID-19, which can have particularly long period of incubation [7–9]. This practically means
that the spreading potential of an infected individual becomes significant only when the incubation period is near its
end. As a consequence, more appropriate, and more accurate estimates would be obtained by non-Markovian approach
which allows for using arbitrary distribution functions of the incubation period duration.

Since the COVID-19 has become serious threat of the health and seriously disrupted the normal life, large number
of studies have been made for modeling its spread and particularly about estimates of the basic reproduction ratio.
It is calculated on a daily basis by various institutions and individuals. We have an impression that majority of the
methods for its estimate are based on relationships that result from compartmental models with ordinary differential
equations, that is, with the Markovian setting and the related exponential distribution of incubation period. It is thus
our motivation to provide an estimate of R0 with an approach that is based on the non-exponential distribution of
the incubation period, in a non-Markovian framework, which we believe is particularly relevant for the spread of the
SARS-CoV-2. A basis of our calculations are the empirically obtained distributions of the time to onset of symptoms.
Such distributions are further combined with certain window function that assumes that an individual is infectious
only few days around the onset of symptoms. The combination is an infectivity function that determines the basic
reproduction number. The obtained results for different European countries in the first wave of the epidemic, when the
virus was assumed to spread freely, are larger than those with the classical, Markovian approach. The key outcome of
these observations is that the estimates of R0 with the classical models should be considered very carefully. Finally,
it is worth noting that the method used here has also similarities with the early studies in demography by Richard
Böckh [10] and in epidemiology by Alfred Lotka [11].

The paper is organized as follows. In the Section 2 we first explain the formula used for estimation of R0. In the
following Section 3 it is elaborated on the infectivity function that is used for estimates of R0. In the next, Section 4
are presented the results and a discussion on them and we finish the paper with the Conclusions.

2 Methods
The derivation of the formula that we use for estimation of the basic reproduction rate R0 for general infectivity
function can be found in various works in the literature (for example in [12–14]). For completeness we present it here
and chose to use a discrete-time approach since it is more appropriate for the available data. To start with, assume that
the epidemic is in inception phase which means that the number of newly infected individuals grows exponentially.
As is the case of COVID-19, when daily new cases are reported, by denoting with Id(t) the confirmed cases for day t
given as fraction of the total population, one has the following exponential form

Id(t) = I0eλ t , (1)

where λ is a parameter for the growth rate, while I0 is a constant. The growth rate λ is related with the period
of doubling with Td = ln2/λ . For many diseases the individuals are not able to infect the others immediately, but
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after certain period has passed. We consider that the infectivity potential of the individuals that have contracted the
spreading agent at the same moment t, is described with certain infectivity function i(τ). We assume that this function
depends on the time elapsed since the individuals have become exposed, but not on the moment when that happened
and has finite support T which means that i(τ) = 0, for τ > T . The shape of this function will be elaborated later on.
Denote with I(t,τ) the fraction of infectees that have become infected at moment t, by having a contact with infectors
that have become infected τ time units earlier. The function I(t,τ) depends on the fraction of susceptibles, but also on
the fraction of those previously infected Id(t − τ) and on their infectivity potential encoded in i(τ). Thus one has the
following form

I(t,τ) = R0S(t)Id(t − τ)i(τ), (2)

where the constant of proportionality R0 will be shown to be exactly the basic reproduction ratio. The fraction of the
new infectees will be obtained as sum of contributions from all possible infectors

Id(t) =
T

∑
τ=1

I(t,τ), (3)

which will further result in the following recurrent relationship

Id(t) = R0S(t)
T

∑
τ=1

Id(t − τ)i(τ). (4)

By applying the exponential form for of the function of newly infected individuals (1), in the last relationship, one
will have

I0eλ t = I0R0S(t)eλ t
T

∑
τ=1

e−λτ i(τ), (5)

from where it follows that

1 = R0S(t)
T

∑
τ=1

e−λτ i(τ), (6)

Since at the inception of the epidemic S(t)≈ 1, one has the reproduction number

R0 =
1

∑
T
τ=1 e−λτ i(τ)

. (7)

If one has obtained R0 from the last expression and it is assumed to be the same during the epidemic, than the herd
immunity threshold Sth, which corresponds to unity reproduction number R, can be obtained from (6) as

Sth =
1

R0
. (8)

2.1 Self-consistency relationship for R0

The basic reproduction number R0 represents an estimated multiplicative factor determining the number of newly
infected individuals that will contract the spreading agent in a contact with certain infected individual. Here we use
it to denote the growth factor that corresponds to the group of individuals that have been exposed in the same period.
Thus, form one side, the fraction of all infectees that have contracted the pathogen from infectors that become infected
at certain moment t should be R0Id(t). From another side, this fraction can be represented as forward-time sum as
follows

R0Id(t) =
T

∑
τ=1

I(t + τ,τ), (9)

which accounts for all admissible combinations I(t + τ,τ). By using (2), one has

R0Id(t) = R0

T

∑
τ=1

S(t + τ)Id(t)i(τ). (10)
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For slowly growing epidemic one might assume that the fraction of susceptibles does not change significantly in the
considered period S(t)≈ 1. Then, one can see that the constant R0 in the relationship (2) will be the basic reproduction
number, if the infectivity function is normalized ∑

T
τ=1 i(τ) = 1.

2.2 Continuous-time formula
Although analysis of the data in this work is based on discrete time, for completeness we provide the continuous-
time version, that can be found in the literature in similar forms. Denote with I(t) the fraction of the population
that has become infected within infinitesimal interval (t, t + dt), and assume that it grows exponentially at the onset
of epidemics I(t) = I0eλ t . These infectees have appeared from contacts with others that have been infected in the
past I(t − τ). Again, let the function R0i(τ) denote the infectivity potential at some later moment τ of the group of
individuals infected nearly at the same time. As for the discrete-time case assume that i(τ) has some finite support
(0,T ). Now, the formula for newly infected population will read

I(t) = R0S(t)
∫ T

0
I(t − τ)i(τ)dτ, t ≥ T. (11)

One should note that similar relationship has appeared earlier in the works of Ross and Hudson [15]. By plugging in
the exponential form of the newly infected individuals one will obtain

I0eλ t = R0S(t)
∫ T

0
I0iλ (t−τ)i(τ)dτ. (12)

which will reduce to similar relationship as the discrete-time one

1 = R0S(t)
∫ T

0
e−λτ i(τ)dτ. (13)

At the onset of an epidemic S(t)≈ 1, the reproduction number will be

R0 =
1∫ T

0 e−λτ i(τ)dτ
. (14)

In reality, one does not have observations of the short-interval infections I(t), but for certain unit interval, like a day.
So, one has to choose a function I(t) such that its daily integral

∫ t+1
t I(t)dt would fit the observed data.

3 Shape of the infectivity function
The function i(τ) should model the infectivity potential of the fraction of the population, becoming infected within
the same unit interval, at some later moment τ after contracting the spreading agent. Its shape can be directly deduced
from epidemiological tracing of infector-infectee pairs. Our approach is to relate it with other characteristics of the
respective disease. First, its shape depends on the fractions of the individuals that have not been recovered yet and thus
is related to the function that describes the healing process. However, since the COVID-19 is a disease which has long
period of recovery we consider that the function modeling it can be considered as constant for the period under study.
Second, the infectivity function depends on the incubation period distribution, for which one can find many studies
in the literature. Third, the viral load in reality is not constant over time, which means that during infectiousness, a
person cannot spread the pathogen with equal intensity [16]. For simplicity in this work it is also considered to be
constant. As a side note we mention here that the product of the healing and incubation period functions was applied
in non-Markovian epidemic spreading models recently [17, 18], while the same relationship with other functions was
used in the pioneering work of demography [10]. Thus, in this work we are focusing on using the distribution of
the time to onset of symptoms as basis. To reach the final shape of the infectivity function we combine it with an
infectivity window function w(t). It is non-zero in the period t ∈ [tinit; tend], between certain initial moment tinit before
the onset of symptoms, and ends at tend after. From practical perspective, the shape of the window in the segment
[t ∈ tinit,0], with t = 0 being the time of onset of symptoms, may be obtained from sensitivity analysis conducted on
known infector-infectee pairs, as suggested in [16]. The shape of w(t) for t ∈ [0; tend] represents the distribution of
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Country Start date End date λ

Germany February 25 March 12 0.298
France February 25 March 11 0.322
Italy February 21 March 9 0.235
Russia March 12 March 30 0.171
Spain February 25 March 11 0.343
United Kingdom February 23 March 22 0.237

Table 1: Countries under study and the estimated exponential growth factor

time from onset of symptoms to self isolation, quarantining or viral clearance, obtained from epidemiological data. In
our approach we assume that after the onset of symptoms, a person with more severe symptoms would immediately
reduce the contacts with the others and thus would not be a significant infector any more. Those with mild symptoms,
that constitute about 80% of the cases [19], would continue with their normal daily life and would spread the virus
until tend, when they receive positive test results. Thus the infectivity window function has a shape of two steps

w(t) =

{
1, tinit ≤ t < 0
0.8, 0 ≤ t ≤ tend

. (15)

The infectivity function was considered to be the convolution of the incubation period distribution β (τ) and the
infectivity window w(τ)

i(τ) =C(β ∗w)(τ) =C∑
ν

β (τ −ν)w(ν), (16)

where C is a constant determined from the normalization condition ∑
T
τ=1 i(τ) = 1.

We compare our calculations with those obtained from the classical (Markovian) SIR model where the basic
reproduction ratio with the growth rate λ is related with [13]

R0 = 1+λ/β = 1+λTc, (17)

where β is the infectivity rate, and Tc is the mean infectivity period – the average value of the duration of the expo-
nentially distributed infective state.

4 Results and discussion
We have used the data from the Our World in Data database for the numbers of daily cases in the first wave in the spring
2020 for six major European countries. As a data window for study we have taken the period from the first day when
every day new cases were reported until the moment when lockdown measures were introduced. This choice was made
under the assumption that in that period the virus SARS-CoV-2 was spreading nearly freely in the population, with
only positive cases being isolated. From those numbers we have fit an exponential curve and estimated the exponential
growth rate factor λ . The results are summarized in the table 1.

We have used the estimates of the growth factor λ in the expression for the calculation of the basic reproduction
number (7). The infectivity function i(τ) was obtained from the convolution (16) of windows with variable width, and
incubation period functions from two sources in the literature [7, 8].

The onset of infectiousness was considered to be two [16] or one day before the appearance of symptoms. We
have also assumed that after the onset of symptoms only those with mild symptoms, that are about 80% [19] can be
considered as further infectors. As the end of the infectiousness period was considered either the same day or two days
after the onset of the symptoms. The first case is very conservative and is related to the assumption that all individuals
would be very cautious in their contacts with the others and are not infectors at all. The second one is less conservative
and likely a more realistic scenario, where those with mild symptoms do not change their daily routines and spread
the virus freely before receiving positive test. Finally, the results from the classical SIR model are also provided for
comparison. Details about the considered scenarios is given in table 2.
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Notation Description Function Parameters
S1 Start two days before onset, stop immediately Log-normala [7] P1 = 1.62;P2 = 0.42
S2 Start two days before onset, stop two days after Log-normal [7] P1 = 1.62;P2 = 0.42
S3 Start one day before onset, stop two days after Log-normal [7] P1 = 1.62;P2 = 0.42
S4 Classical relationship Log-normal [7] P1 = 1.62;P2 = 0.42
S5 Start two days before onset, stop immediately Weibullb [8] P1 = 2.04;P2 = 0.103
S6 Start two days before onset, stop two days after Weibull [8] P1 = 2.04;P2 = 0.103
S7 Start one day before onset, stop two days after Weibull [8] P1 = 2.04;P2 = 0.103
S8 Classical relationship Weibull [8] P1 = 2.04;P2 = 0.103

Table 2: Description of different scenarios for calculation of basic reproduction ratio

aFor the log-normal distribution, P1 is the mean and P2 is the standard deviation of the logarithm of the distribution.
bFor the Weibull distribution P1 is the scale, while P2 is the shape parameter.

Country S1 S2 S3 S4 S5 S6 S7 S8
France 3.22 4.06 5.02 2.87 5.37 6.72 8.01 3.50
Germany 3.00 3.73 4.53 2.73 4.93 6.10 7.17 3.31
Italy 2.45 2.95 3.42 2.37 3.85 4.60 5.22 2.83
Russia 1.97 2.27 2.51 1.99 2.87 3.29 3.60 2.33
Spain 3.43 4.38 5.49 2.99 5.78 7.31 8.81 3.66
UK 2.47 2.97 3.45 2.38 3.89 4.65 5.28 2.84

Table 3: Estimated basic reproduction ratio R0 for six European countries for the eight different scenarios.

The estimates of R0 for the different scenarios for all six European countries are presented in table 3. One can
easily note that in all scenarios the values of R0 from the non-Markovian approach considered here are larger than
those from the classical, Markovian one. In the overly restricted scenarios S1 and S5 when onset of symptoms, even
for those with mild symptoms, is a reason for immediate self-quarantine leads to larger estimates than the reference
cases S4, and S8, respectively. The more realistic assumptions in the other cases produce even larger estimates. In the
reality there would have been cases for even longer period of infectivity than two days after the onset of symptoms, and
this could be the true for significant fraction of infected population. Although we have not tried to model this, the logic
suggests that the longer the infectivity period, after the onset of symptoms, the larger R0 is. This implies that the values
of R0 based on the classical Markovian SIR model for the COVID-19 are likely significant underestimates. From this
observation one has that the more accurate estimate of R0 needs knowledge of the infectivity window function w(τ),
that is the period when an infected person is infectious, in relation to the onset of symptoms. The situation can be
even more complicated if the infectivity window function is dependent on the incubation period duration. It could be
possible for those that develop symptoms earlier to correspond one infectivity window function, while for those that
develop them after longer period another one. Thus, besides being very cautious with using the estimated R0 from the
classical approach, it is needed to have good estimate of the infectivity function in order to have more correct value of
the basic reproduction ratio.

5 Conclusions
We have estimated the basic reproduction ratio R0 by using the more general non-Markovian framework, that besides
being known from the emergence of mathematical epidemiology, has not been widely applied. The approach was used
to determine the value of R0 in six major countries in Europe during the first wave of the COVID-19 epidemic. The
onset of infectiousness, instead of starting immediately after contraction of the pathogen, was taken to be related to the
onset of symptoms, for which the empirical evidence suggests that is not distributed exponentially as the Markovian
assumption implies. The incubation period distribution was further combined with an infectiousness window function
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which was considered to have short period - one or two days before and finish up to two days after the onset of symp-
toms. From both functions we have constructed an infectivity function that uniquely determines R0. In all scenarios
we have considered, the calculated value for R0 was obtained to exceed the one from the classical relationship. This
suggests that the calculations with the classical, Markovian approach, should be taken rather cautiously.

Better estimates of R0 would be obtained with empirical function of the infectiousness window, or direct estimation
of the shape of the infectivity function. This needs more involving epidemiological tracing, that is not an easy task.
However, we hope that the observation that the classically obtained value of R0 is an underestimate would lead to
more intensive work for gathering epidemiological data and increase the awareness that non-Markovian setting in the
epidemic models should be given more attention.

6 Competing interests
There is NO Competing Interest.

7 Author contributions statement
L.B. and I.T. initiated the study of non-Markovian approach for estimation of the basic reproduction number, formu-
lated the basic model and made the numerical calculations. L.B., I.T. and F.A. contributed to the final model and the
overall form of the manuscript.

8 Acknowledgement
This research was partially supported by the Faculty of Computer Science and Engineering, at the Ss. Cyril and
Methodius University in Skopje, Macedonia.

References
[1] K. Dietz and J. Heesterbeek, “Daniel bernoulli’s epidemiological model revisited,” Mathematical biosciences,

vol. 180, no. 1-2, pp. 1–21, 2002.

[2] R. Ross, “An application of the theory of probabilities to the study of a priori pathometry.—part i,” Proceedings
of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, vol. 92,
no. 638, pp. 204–230, 1916.

[3] R. Ross and H. P. Hudson, “An application of the theory of probabilities to the study of a priori pathometry.—part
ii,” Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical
character, vol. 93, no. 650, pp. 212–225, 1917.

[4] R. Ross and H. P. Hudson, “An application of the theory of probabilities to the study of a priori pathometry.—part
iii,” Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical
character, vol. 93, no. 650, pp. 225–240, 1917.

[5] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” Proceedings
of the royal society of london. Series A, Containing papers of a mathematical and physical character, vol. 115,
no. 772, pp. 700–721, 1927.

[6] P. Fine, K. Eames, and D. L. Heymann, ““herd immunity”: a rough guide,” Clinical infectious diseases, vol. 52,
no. 7, pp. 911–916, 2011.

[7] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich, and
J. Lessler, “The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed
cases: estimation and application,” Annals of internal medicine, vol. 172, no. 9, pp. 577–582, 2020.

7

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.21265937doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.04.21265937
http://creativecommons.org/licenses/by-nd/4.0/


[8] J. Qin, C. You, Q. Lin, T. Hu, S. Yu, and X.-H. Zhou, “Estimation of incubation period distribution of covid-19
using disease onset forward time: a novel cross-sectional and forward follow-up study,” Science advances, vol. 6,
no. 33, p. eabc1202, 2020.
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[10] R. Böckh, Statistisches Jahrbuch der Stadt Berlin. Leonh. Simion, 1877.

[11] A. J. Lotka, “A contribution to quantitative epidemiology,” Journal of the Washington Academy of Sciences,
vol. 9, no. 3, pp. 73–77, 1919.

[12] O. Diekmann, J. A. P. Heesterbeek, and J. A. Metz, “The legacy of kermack and mckendrick,” Epidemic models:
their structure and relation to data, vol. 5, p. 95, 1995.

[13] J. Wallinga and M. Lipsitch, “How generation intervals shape the relationship between growth rates and repro-
ductive numbers,” Proceedings of the Royal Society B: Biological Sciences, vol. 274, no. 1609, pp. 599–604,
2007.

[14] F. Brauer, “Mathematical epidemiology: Past, present, and future,” Infectious Disease Modelling, vol. 2, no. 2,
pp. 113–127, 2017.

[15] J. A. P. Heesterbeek, “A brief history of r 0 and a recipe for its calculation,” Acta biotheoretica, vol. 50, no. 3,
pp. 189–204, 2002.

[16] X. He, E. H. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, et al., “Temporal
dynamics in viral shedding and transmissibility of covid-19,” Nature medicine, vol. 26, no. 5, pp. 672–675, 2020.

[17] I. Tomovski, L. Basnarkov, and A. Abazi, “Discrete-time non-markovian seis model on complex networks,”
IEEE Trans. Netw. Sci. Eng. (accepted), 2021.

[18] L. Basnarkov, I. Tomovski, T. Sandev, and L. Kocarev, “Non-markovian sir epidemic spreading model,” arXiv
preprint arXiv:2107.07427, 2021.

[19] Z. Wu and J. M. McGoogan, “Characteristics of and important lessons from the coronavirus disease 2019 (covid-
19) outbreak in china: summary of a report of 72 314 cases from the chinese center for disease control and
prevention,” Jama, vol. 323, no. 13, pp. 1239–1242, 2020.

8

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.21265937doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.04.21265937
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Methods
	Self-consistency relationship for R0
	Continuous-time formula

	Shape of the infectivity function
	Results and discussion
	Conclusions
	Competing interests
	Author contributions statement
	Acknowledgement

