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ABSTRACT

Currently, several western countries have more than half of their population fully vaccinated against COVID-19. At the same
time, some of them are experiencing a fourth or even a fifth wave of cases, most of them concentrated in sectors of the
populations whose vaccination coverage is lower than the average. So, the initial scenario of vaccine prioritization has given
way to a new one where achieving herd immunity is the primary concern. Using an age-structured vaccination model with
waning immunity, we show that, under a limited supply of vaccines, a vaccination strategy based on minimizing the basic
reproduction number allows for the deployment of a number of vaccine doses lower than the one required for maximizing the
vaccination coverage. Such minimization is achieved by giving greater protection to those age groups that, for a given social
contact pattern, have smaller fractions of susceptible individuals at the endemic equilibrium without vaccination, that is, to those
groups that are more vulnerable to infection.

Introduction
The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still imposing incredible pressure on
many countries’ healthcare and economic systems.

Nations in America, Europe, Asia, and Africa have faced large numbers of deaths due to COVID 19, and a continued
crisis situation. The only good news in this dark situation is that vaccines are becoming available from different companies
all over the world. Some countries are currently evaluating the efficacy and effectiveness of developed vaccines, while some
other countries have already started their vaccination campaign. In particular, as of July 2021, more than 60% of the people in
countries like Canada, United Kingdom, and Israel have received at least one dose of the vaccination, while only about 30% of
people in India and Mexico have received one dose at least1. These examples give an idea of the heterogeneous situation of the
vaccination campaign in the world. Additionally, it is very likely that many vaccines will provide a short-lived immunity, so
after 12-18 months from receiving the vaccine, its effect may vanish and individuals will become susceptible again.

While during the ongoing pandemic most countries agree to vaccinate first public health personnel and people in long term
care facilities, the limited availability of vaccines and the logistic complexities are still posing big questions on when and how
the vaccination campaign will be completed. Some countries estimate that herd immunity, assessed at around 70% of the
population vaccinated, will be reached in three years if vaccination rates are kept constant at their current levels. This type of
news are further discouraging people, who have been experiencing more than one year of pain and economical distress.

Countries are now developing immunization plans to face the challenge of distributing millions of vaccines, some of which
require very special maintenance conditions. These plans include the definition of priority schemes to start the distribution
process and, since it is very likely that not all people will be vaccinated for different reasons, understanding how vaccine
distribution among population age segments impacts the obtained herd immunity is of primary importance.

A vaccination strategy can be developed to obtain different goals such as minimizing deaths, minimizing number of cases,
minimizing severe cases requiring hospitalization, etc.2. For instance, in a very recent paper3, the authors consider five different
vaccine prioritization strategies. Among their findings, it was shown that giving priority to adults ages 20-40 years minimizes
the cumulative incidence, while mortality is minimized by giving priority to adults ages 60 and more. Another very recent
article4 investigates two criteria for vaccination priority based on age: lives saved and years of future life saved. While in
general these two criteria can be in conflict, in the case of COVID-19, vaccinating the oldest first saves the most lives and
simultaneously also maximizes years of remaining life expectancy.
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In our case, for a given supply of vaccine we aim at finding the minimum vaccination rate for each age segment that
guarantees the basic reproduction number R0 to be smaller than one, so stabilizing the dynamics at the disease-free equilibrium.
We hope that a specific vaccination rate for each age-group can lead to a total vaccination rate that is smaller than the critical
vaccination rate that brings R0 = 1 when homogeneous average contact patterns are considered.

The problem of vaccination strategies to achieve herd immunity has been studied for several infectious diseases and for
many years5–7. Recently, an aged-structured SEIR model has been developed to asses the feasibility of herd immunity and a
drastic reduction of the transmission rate8. The model revealed that obtaining heard immunity was not a practical objective and
social distancing needed to be maintained and adapted for an extended period. Almost at the same time, it was studied how
herd immunity is influenced by population heterogeneity9. The model of COVID-19 transmission was a SEIR model and the
population was divided in six age groups with heterogeneous contacts fitted to different social activities. In this setting, it is
shown that herd immunity can be reached at around 43% instead of the traditional value of 60% that appears when R0 = 2.5
under a homogeneous mixing of the population.

In another approach to vaccination10, the authors have investigated how much vaccine is required by any given country, year
by year, to create herd immunity to block SARS-CoV-2 transmission, assuming immunity is short lived (waning immunity). To
answer this question, a simple model is developed showing the percentage of the population in the first year of an epidemic that
must be vaccinated and the percentage that must be vaccinated once the system reaches equilibrium after a few years. Results
show that in year 1 a much larger fraction of the population needs to be vaccinated, being most of the population susceptible,
compared with the population fraction to be vaccinated in subsequent years, to create effective herd immunity.

In this paper, we deal with the question of the challenges associated to creating herd immunity to SARS-CoV-2 infection
by an age-structured vaccination program in the case of waning immunity but taking into account the contact rates among
age segments8, 9. In particular, we develop a model similar to the one considered by Brett & Rohani8, and derive from it the
expression for the vaccination rates that lead to the maximum vaccination coverage of the population for a limited supply of
vaccine. Having waning immunity implies that continuous vaccination campaigns are needed to preserve the herd immunity.
Furthermore, considering the contact pattern among age groups in several countries, we compute two different sets of rates: 1)
the per age-group vaccination rates that minimize R0 with the constrain that the total vaccination rate is the same as the critical
rate under uniform vaccination, and 2) the age-group vaccination rates that guarantee R0 = 0.996. Since the minimum R0
corresponding to the first set will be clearly smaller than 1, the vaccination rates of the second set will be smaller than those in
the first set, thus achieving the herd immunity at a lower level of population vaccination. For example, to reach herd immunity
in Italy, a total vaccination coverage of 60% of the population is required in the case of random homogeneous vaccinations.
However, if age-group contact patterns are considered, only 55% of the population needs to be vaccinated to reach a stable
disease-free equilibrium, with a non-negligible saving. We have also verified that these results hold when considering a high
but not complete success rate for vaccines, and a variable duration of immunity on different age groups.

To our knowledge, this is the first study on the combined impact of age-group contact patterns and short-lived vaccination
immunization on the fraction of the population that needs to be vaccinated in each age-group in order to minimize the basic
reproduction number. We are able to quantify the importance of specific contact patterns in different countries through a
reduction of the vaccination coverage, which can go from 62% coverage in the homogeneous settings to 53% in the age-
dependent vaccine distribution in Peru. Even though we are aware that these numerical results are obtained on the base of
measured and consequently noisy contact patterns, nevertheless our mathematical model reveals the critical role played by
the age-based contact patterns in efficiently administering vaccines and can be useful in encouraging the population to see a
possible end of the pandemic by vaccination.

The model
In this paper we consider a deterministic epidemic model with continuous vaccination where individuals are classified in three
age groups: youngsters, adults, and the elderly. Within each age class, individuals are classified according to their disease status:
susceptible, infectious, recovered, and vaccinated. It is assumed a loss of immunity in recovered and vaccinated individuals at
rates δi and δ v

i (i = 1,2,3), respectively. Moreover, the probability that the vaccine successfully protects against infection is
assumed to be age-dependent and it is denoted by pi (i = 1,2,3).

The number of infections in age group i caused by are individuals of age group j is β ci jSiI j/N j, where Si is the number
of susceptible individuals in age group i, I j/N j is the fraction of infected individuals in age group j, β is the transmission
probability through an infectious contact, and C = (ci j) is the social contact matrix. C gives the (mean) number of contacts per
unit time between a susceptible individual of age group i and individuals of age group j, and is the central ingredient of the
model since it reflects how individuals mix with each other in different countries.

To model the limited capacity of a public health system or situations of vaccine shortage as those occurring in low-income
countries where only 1% of people has received at least one dose of a COVID-19 vaccine as of July 20211, a fixed number
w of individuals is assumed to be vaccinated per unit of time (constant vaccination rate) and, moreover, we will assume an
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age-dependent targeting of vaccination3, 6. So, if wi denotes the number of vaccines assigned to age group i per unit of time
(vaccination rate of age group i), then wi Si/Ni is the number of susceptible individuals in age group i vaccinated per unit of time
when vaccination is made regardless of disease status11. In particular, if we do not consider age, then under a uniformly random
vaccination of a population it follows that wi = w fi with fi = Ni/N, i.e., wi is proportional to the fraction of the population in
age group i, with ∑i wi = w. In such a case, the vaccination term in the equation for the susceptible individuals in age group i is
given by wi Si/Ni = w fi Si/Ni = wSi/N. So, any strategy that departs from this uniform vaccination will be given by a vector
(w1,w2,w3) of vaccination rates of each age group satisfying ∑

3
i=1 wi = w.

According to these hypotheses, assuming an arbitrary vaccination strategy {wi}3
i=1, and ignoring the demographics of aging,

birth, and death given the short timescale of an epidemic, the equations governing its dynamics are

dSi

dt
=−

3

∑
j=1

βci jSi
I j

N j
+δiRi +δ

v
i Vi− piwi

Si

Ni
,

dIi

dt
=

3

∑
j=1

βci jSi
I j

N j
− γiIi,

dRi

dt
= γiIi−δiRi− piwi

Ri

Ni
,

dVi

dt
= pi

wi

Ni
(Si +Ri)−δ

v
i Vi,

with Si + Ii +Ri +Vi = Ni, i = 1,2,3.
Writing the system in terms of fractions (si = Si/Ni, yi = Ii/Ni, ri = Ri/Ni, and vi =Vi/Ni) and neglecting the last equation

because it is redundant, we have

dsi

dt
=−

3

∑
j=1

βci jsiy j +δiri +δ
v
i vi− piw̄isi,

dyi

dt
=

3

∑
j=1

βci jsiy j− γiyi, (1)

dri

dt
= γiyi−δiri− piw̄iri,

with si + yi + ri + vi = 1, and w̄i := wi/Ni (i = 1,2,3) is the per capita vaccination rate of age group i. Note that, from the
constraint ∑

3
i=1 wi = w and the definition of w̄i, it follows that ∑

3
i=1 w̄i fi = w/N =: w̄, the mean per capita vaccination rate in

the population.
The previous relationship among the per capita vaccination rates of each age group implies that, if the population fraction of

an age group i is lower than the number w̄ of available vaccines per person and per unit of time ( fi < w̄), then w̄i > 1 is required
when vaccines are mainly targeted at this age group (i.e., when w̄ j ≈ 0 for j 6= i). Roughly speaking, w̄i > 1 corresponds to
situations in which there are more available vaccines per unit of time than people to be vaccinated in the i-age group (remember
we are assuming a constant vaccination rate w) .

The disease-free equilibrium and vaccination strategies
The disease-free equilibrium (DFE) of system (1) is (s∗i ,0,0) with

s∗i =
δ v

i
piw̄i +δ v

i
(2)

and v∗i = 1− s∗i (i = 1,2,3). Therefore, at this equilibrium, only susceptible and vaccinated individuals are present.
The basic reproduction number at the DFE, here denoted by R∗0 to distinguish it from the one for the model without

vaccination, is the largest eigenvalue of the next-generation matrix12

N∗g = β diag(s∗i )C diag(1/γi)

where s∗i is given by (2), C is the social contact matrix, and 1/γi is the mean infectious period of infected individuals of
age group i. So, given the constraint on the per capita vaccination rates w̄i, we will consider R∗0 as a function of w̄1 and w̄2:
R∗0(w̄1.w̄2).
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Figure 1. R∗0(w̄) for system (1) at the disease-free equilibrium given by (2). The critical vaccination rate is given by the
intersection of R∗0(w̄) with the dashed line R∗(w̄) = 1. Parameters: γ1 = 1, γ2 = 1, γ3 = 0.9, δ v

1 = 1/40, δ v
2 = 1/52, δ v

3 = 1/40,
p1 = p2 = p3 = 1, and β is scaled such that R0 = 2.5 for the data set from Italy in the absence of vaccinated individuals
(w̄ = 0), see Results and Discussion for details.

From (2) we can compute the condition on w̄i for having a maximum vaccination coverage of the population at the DFE,

which is equivalent to minimize the fraction of susceptible population at this equilibrium, s∗ =
3
∑

i=1
fis∗i . Precisely, the condition

∇s∗(w̄1, w̄2) = (0,0) and the positivity of the rates amount to

p1w̄∗1 +δ v
1√

p1δ v
1

=
p2w̄∗2 +δ v

2√
p2δ v

2
=

p3w̄∗3 +δ v
3√

p3δ v
3

(3)

with w̄∗i satisfying ∑
3
i=1 w̄∗i fi = w̄. So, from (3) one easily obtains an explicit expression for the vaccinations rates w̄∗i leading to

the maximum vaccination coverage under the constraint of having a given amount of vaccine per unit of time, which turns out
to be a global maximum. In particular, it follows that, if the rate of immunity loss δ v

i is the same for the vaccinated individuals
of all the age groups and the probability of being protected after vaccination pi is also the same across age groups, then the
vaccination rates that guarantee the maximum fraction of vaccinated population are w̄i = w̄, i.e., they correspond to a uniformly
random vaccination of the population irrespective of age and disease status.

By definition, under such a vaccination strategy, the probability of being vaccinated per unit of time is the same for any
individual regardless of age. In this case, the differential equation governing the dynamics of the susceptible individuals of age
group i is

dsi

dt
=−

3

∑
j=1

βci jsiy j +δiri +δ
v
i vi− piw̄si.

Using w̄ as a tuning parameter, we compute the basic reproduction number R∗0(w̄) := R∗0(w̄, w̄), and find the critical per capita
vaccination rate w̄c defined by R∗0(w̄c) = 1. As an example, Fig. 1 shows the behaviour R∗0(w̄) with the data from Italy which
lead to w̄c = 0.0328. At this critical value, the vaccination coverage of the population is 60.37%.

When the rates δ v
i of immunity loss among groups differ from each other, the maximum vaccination coverage at the DFE

will be attained for values of the per capita vaccination rates w̄∗i that do not correspond to a uniformly random vaccination of
the population. These w̄∗i are optimal in the sense that they maximize the vaccination coverage; however, they do not guarantee
the minimum value of R∗0 at the DFE. This fact, indeed, can be used to define an alternative criterion for an optimal vaccination
strategy, namely, the one than leads to the lowest value of R∗0 at the DFE. Under such a strategy, we control the disease by
targeting age groups according to their potential contribution to an epidemic outbreak. So, we use the same amount of vaccines
per unit of time but, in comparison to the random vaccination, we are vaccinating more individuals from some age groups while
other age groups are less vaccinated. This situation corresponds to what has been called an optimal but inequitable distribution
of vaccine2.
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Methods
Data
The Social Contact Data initiative (http://www.socialcontactdata.org) includes contact matrices for Belgium, Finland, Germany,
Italy, Luxembourg, Netherlands, Poland and the UK from POLYMOD13, as well as data from studies on social mixing in other
countries14. All data are available on Zenodo at https://doi.org/10.5281/zenodo.1215899, and can be retrieved within R using
the socialmixr package. The SOcial Contact RATES (Socrates) data tool at http://www.socialcontactdata.org/socrates/15 enables
quick and convenient retrieval of these social contact matrices. Using the Socrates data tool, we have selected six countries for
our numerical evaluations: Belgium, Germany, Italy, the Netherlands, Peru, and Zimbabwe. All the European data-sets are from
the POLYMOD project13. The contact matrix for Peru is from16 and the one for Zimbabwe is from17. Furthermore, we have
selected three age groups: the first group includes people of age 0 to 17 years, the second group includes people of age 18 to 59
years, and the third group includes people 60 years old and older. For each of these countries and age groups, the Socrates data
tool provides the average number of contacts per day. We have selected the countries listed above to represent different contact
patterns for the three age groups. All the daily contact matrices and population proportions are reported in the Appendix.

Parameters
The recovery rate and loss of immunity rate are assumed to be the same in the six countries in exam and, also, to be very
similar among groups. The recovery rates are γ1 = γ2 = 1 and γ3 = 0.9. Therefore, since these rates are equal to 1 (or very
close to it), we can consider that time is measured in units of the infectious period, which is about one week (8 to 10 days)
for moderate cases of COVID-19. The loss of immunity rates for recovered (δi) and vaccinated (δ v

i = δi) individuals are
δ1 = δ3 < δ2 = 1/52. These values of δ v

i say that, on average, individuals between 18 an 60 years have one year (52 weeks) of
immunity against the disease, while the length of this period is assumed to be shorter for individuals from the other two age
groups (40 weeks; except for Fig. 5 in the Appendix, where it is equal to 26 weeks).

For each country, the transmission rate β is obtained by imposing that R0 = 2.5 at the beginning of the epidemic when
vaccinated individuals are not present. In this case, R0 is the largest eigenvalue of the next-generation matrix

Ng = β C diag(1/γi).

The original matrix C is given in terms of contacts per day. Since our unit of time is one week, we multiply the contact matrices
in the Appendix by 7 to compute β . However, note that working with these re-scaled contact matrices only affects the value of
β (which is divided by 7 when re-scaled contact matrices are used) but not the results we are presenting because the product
βci j in the incidence term is invariant to the re-scaling of C.

Given that the disease parameters across the countries are the same, we can assess the impact of the social contact patterns
on the spread of the disease and, in particular, on the optimal vaccination strategy. Fig. 2 shows the evolution of the fraction of
susceptible individuals during an epidemic without vaccination for the selected parameters. Although the mean fraction is
very similar in the three examples, we can see that the smallest fraction of susceptible individuals corresponds to a different
age group, suggesting that the vulnerability of the age groups depends on the demography and on the contact pattern in each
country.

Results
Critical rates under uniformly random vaccination
For all the data sets, the critical per capita vaccination rate under the uniformly random vaccination w̄c ∈ (0.0312,0.0354)
when perfect protection is assumed. The specific critical rate values and vaccination coverage for each country are reported in
Table 1 under full protection of the vaccine (the two left columns), and probabilities p1 = 1, p2 = 0.95, and p3 = 0.9 of being
protected after vaccination (the two right columns). In both scenarios, Peru is the country with the largest critical per capita
vaccination rate (3.54% and 3.59%, respectively), which leads to the highest vaccination coverage of the population (62.03%
and 61.48%, respectively). We can interpret these values of the coverage as the herd immunity level required for Peru under a
uniformly random vaccination.

Table 1 shows that, as expected, the critical vaccination rate increases when there is a fraction of people who are not
completely protected after being vaccinated (pi < 1). It also shows a small decrease in the vaccination coverage for all the data
sets except for the one from Zimbabwe. Note that the vaccination coverage depends in a nonlinear way on the probability pi of
being protected after vaccination.

Vaccination strategies
In Fig. 3 we show the contour plots of R∗0 as a function of w̄1 and w̄2 for the six data sets. In this figure, we assume that the
mean vaccination rate w̄ = w̄c and 100% of vaccine efficacy. Because of the constraint on the three w̄i, the interior boundary of
each plot corresponds to w̄3 = 0, i.e., to f1w̄1 + f2w̄2 = w̄c.
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Figure 2. Examples of evolution of susceptible individuals during an epidemic given by (1) without vaccination with initial
condition (si(0),yi(0),ri(0)) = (0.9999,0.0001,0) for i = 1,2,3. Parameters: γ1 = 1, γ2 = 1, γ3 = 0.9, δ1 = 1/40, δ2 = 1/52,
and δ3 = 1/40. For each country, β is scaled such that R0 = 2.5 for the corresponding data set in the absence of vaccinated
individuals.

Data set w̄c Vw̄c w̄c Vw̄c

Belgium 3.1222 59.17 3.2678 59.00
Germany 3.1487 59.38 3.2836 59.05

Italy 3.2765 60.37 3.3823 59.78
Netherlands 3.3374 60.87 3.4246 60.28

Peru 3.5408 62.03 3.5898 61.48
Zimbabwe 3.2882 59.74 3.4161 59.99

Table 1. Vaccination coverage (in %) adopting the uniformly random vaccination strategy at the critical per capita vaccination
rate w̄c (in %) with a 100% vaccine efficacy (left), and with p1 = 1, p2 = 0.95, p3 = 0.9 (right). Parameters: γ1 = 1, γ2 = 1,
γ3 = 0.9, δ v

1 = 1/40, δ v
2 = 1/52, δ v

3 = 1/40. For each country, β is scaled such that R0 = 2.5 without vaccination.

It is interesting to observe that the population fraction of the second age group (18 to 59 years), f2, varies narrowly from
0.46 (Zimbabwe) to 0.59 (Netherlands). This is why the range of values of w̄2 goes from 0 to 0.055-0.071 in all panels of Fig.
3 (its maximum value is w̄max

2 = w̄c/ f2). By contrast, the values of w̄1 (and, so, those of w̄3) show a greater variability. The
more extreme situation appears in the data from Zimbabwe with the highest population fraction in the first group (0-17 years)
( f1 = 0.49, w̄max

1 = 0.067), and the lowest fraction in the third group (60+ years) ( f3 = 0.04, w̄max
3 = 0.749).

With respect to the vaccination strategies shown in the panels of this figure, the (red) point (w̄c, w̄c) corresponds to the
uniformly random vaccination with R∗0 = 1 and, as expected, it is very close to the one that maximizes the vaccination coverage
(green point) because we are assuming very similar rates of immunity loss for the vaccinated individuals of the three age groups.
However, increasing the differences between these rates results in greater distances between both points, as it can be observed
in Fig. 5 (Appendix), where the probabilities pi are also different for each age group. In both figures, R∗0 > 1 at the maximum
coverage (green point) for the data sets from Belgium (1.0028, 1.0037) and Germany (1.0020, 1.0017), whereas R∗0 < 1 at this
point for the data sets from Italy (0.99786, 0.99024), the Netherlands (0.99538, 0.98184), and Peru (0.99001, 0.97032). For the
data set from Zimbabwe, R∗0 = 1.0008 in Fig. 3 and R∗0 = 0.9998 in Fig. 5.

In Table 2, we can see that, as just explained above, the per capita vaccination rates w̄∗i computed from (3) are all very close
to w̄c with w̄∗1 = w̄∗3 (because δ v

1 = δ v
3 ). Moreover, these rates lead to the same vaccination coverage as the uniformly random

vaccination with w̄ = w̄c (cf. Table 1). But, remarkably, they are clearly different from the vaccination rates w̄0
i defining the

minimum value of R∗0 for the same value of w̄ (blue point in Fig 3).
In Fig. 3, we also observe that there is a distance between the Rmin

0 blue point and the R0 = 1 black curve, which is more
evident in some of the six plots. This distance creates the opportunity for vaccination rates that can still guarantee a locally
stable DFE but with a total vaccination rate below the critical rate obtained under the assumption of a uniformly random
vaccination.

To illustrate this fact, in Fig. 4, we show contour plots for w̄ such that the rounded value of the minimum R0 is equal
to 0.996. As expected, in these figures this minimum (blue point) is very close to the R0 = 1 curve because, now, we are
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Data set Rmin
0 w̄0

1 w̄0
2 w̄0

3 VRmin
0

w̄∗1 w̄∗2 w̄∗3 Vmax

Belgium 0.977 3.26 3.59 1.78 58.16 3.19 3.07 3.19 59.17
Germany 0.957 4.04 3.59 1.50 57.63 3.22 3.09 3.22 59.38

Italy 0.914 5.46 3.51 1.26 57.46 3.36 3.22 3.36 60.36
Netherlands 0.924 5.13 3.27 1.50 59.00 3.43 3.27 3.43 60.87

Peru 0.874 6.04 2.16 1.97 58.53 3.64 3.26 3.64 62.03
Zimbabwe 0.977 2.88 3.39 6.86 59.15 3.35 3.21 3.35 59.74

Table 2. Mean vaccination coverage (in %) at the vaccination strategy {w̄0
i } (in %) leading to the minimum R0 at the DFE,

and at the vaccination strategy {w̄∗i } (in %) computed from Eq. (3) leading to the maximum mean vaccination coverage. In
both cases, the mean per capita vaccination rate w̄ = w̄c, and 100% vaccine efficacy is assumed. Parameters: γ1 = 1, γ2 = 1,
γ3 = 0.9, δ v

1 = 1/40, δ v
2 = 1/52, and δ v

3 = 1/40. For each country, β is scaled such that R0 = 2.5 in the absence of vaccinated
individuals.

administering a lower number of vaccines. Considering Italy, for example, we obtain w̄ = 0.0283, which, compared with
w̄c = 0.0328, is equivalent to a reduction of the vaccination rate of 13.7%. Such a reduction of the vaccination rate can
correspond to non-negligible savings. Peru is the country, among the ones considered, which gains the larger vaccination rate
reduction, from 0.0354 to 0.0284, with a vaccination reduction of 19.8%. Table 3 summarizes the vaccination rates for w̄ = w̄c
and w̄ = w̄0 for the selected countries and the corresponding vaccination coverage. When we look for a vaccination strategy to
bring the system to the disease-free equilibrium, taking into account the country’s contact patterns per age-group provides an
opportunity to reduce the critical vaccination rate compared with the one needed considering homogeneous mixing. This has
also a consequence on the estimation of the herd immunity coverage for each country. The consideration of contact patterns at
the level of age groups, reducing the required vaccination rate, reduces also the level of vaccination coverage required, reducing
in turn the herd immunity levels, as it is also shown in this table.

Data set w̄c Vw̄c w̄0 Vw̄0

Belgium 3.12 59.17 3.02 57.32
Germany 3.15 59.38 2.94 55.89

Italy 3.28 60.37 2.83 53.69
Netherlands 3.34 60.87 2.94 55.81

Peru 3.54 62.03 2.84 52.74
Zimbabwe 3.29 59.74 3.18 58.33

Table 3. Vaccination coverage (in %) at the critical per capita vaccination rate w̄c (in %) under the uniformly random
vaccination strategy, and at the mean per capita vaccination rate w̄0 (in %) at the DFE for which R0 ≈ 0.996. 100% vaccine
efficacy is assumed in both cases.

Discussion and conclusions
During an ongoing epidemic like COVID-19, priorities are focused on immunizing in a short time as many people as possible,
those working in front-line healthcare staff, in essential services, and those whose health conditions predispose to severe
morbidity from infection. In contrast, in the long term, R0 can play a role in defining the minimum vaccination coverage for
preventing new epidemic invasions6, 10 by reaching the so-called herd immunity. It is currently not clear whether many countries
could achieve such a herd immunity for COVID-19. Several reasons have been proposed for that: the limited availability of
vaccines in many countries, the fact that immunity might not last forever, or the appearance of new variants of the virus that
could change the herd-immunity threshold itself18. There is also a critical hesitation against vaccination arising from the spread
of misinformation on the Internet19, which has been called COVID-19 infodemic20.

In this paper, we have assumed a limited supply of vaccines conferring waning immunity to deal with some of these issues.
The aim is to see how herd immunity can be achieved in partially vaccinated populations whose individuals are classified in
(three) age groups when their contact patterns are taken into account. Moreover, by assuming similar disease rates for all age
groups and countries, we have been able to assess the impact of social contact patterns on the critical vaccination coverage.
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Such an impact has been analyzed by obtaining the set of per capita vaccination rates that minimizes R0 under the constraint
that the vaccine’s availability is given by the vaccination rate leading to a critical vaccination coverage (R0 = 1) under a
uniformly random vaccination. Even though this is a strong constraint, the first observation is that this set defines a vaccination
strategy that reduces R0 to values that are clearly below 1 (R∗0 = 0.874 for the data set of Peru). So, our first conclusion is that
there is room for an improvement in the vaccine distribution when demographic and social aspects are considered. We estimate
the vaccine reduction achieved following the R0-minimization strategy by decreasing the total availability of vaccines per unit
of time in such a way that the minimum of R0 is close to 1 (here R∗0 = 0.996).

A second conclusion is that, by adopting a vaccination strategy that minimizes R0 at the DFE with vaccinated individuals, we
are giving higher protection to those age groups that are more vulnerable to contract the infection in the absence of vaccination
due to their social contact pattern. This vaccination strategy is in sharp contrast to the one that yields the maximum mean
coverage of the population, which only depends on the rate of immunity loss and the probabilities of successful protection
against infection. Precisely, age groups with the highest/lowest per capita vaccination rates at the minimum R0 (see Table 2)
correspond to those with the smallest/highest fractions of susceptible individuals at the endemic equilibrium without vaccination
(cf. Fig. 2 for the data sets from Belgium, Peru, and Zimbabwe). The data set from Zimbabwe is particularly interesting since
it is the only data set where the highest per capita vaccination rate corresponds to the 60+ years age group, even though the
fraction of population that it represents (4.4%) is the smallest one in all data sets. However, the per capita number of contacts
of this age group is much higher than the ones of the same age group in the rest of the data sets we have considered (see contact
matrices in Appendix).

The results presented in the paper provide a first insight into the role of contact patterns in the spread of an infectious
disease like COVID-19 and in the definition of an optimal vaccination strategy. The values of the disease parameters have
been chosen to approximately mimic the COVID-19 infectious period (one week) and the current estimates of the possible
duration of the immunity (about one year). For our study, we used a simple SIRV(accinated) epidemic model that neglects
relevant aspects of the COVID-19 dynamics, such as, for instance, the existence of a latent period and different levels of disease
severity. Nevertheless, our analysis mainly focuses on the basic reproduction number for populations where only susceptible
and vaccinated individuals are present. Therefore, the inclusion of more non-infectious compartments in the model will not
change the paper’s main conclusions.
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Appendix

Tables
In Table 4, we report the contact data matrices used to derive our results15. Contact data have been downloaded with the default
settings, such as all contacts for day type, contact duration, contact intensity and all genders. Reciprocity, weigh by age, weigh
by week/weekend, include supplemental professional contacts, and all locations have been checked.

In particular, reciprocity means that contacts are reciprocal and, hence, the total number of contacts per unit of time of
individuals of age group i with individuals of age group j has to be equal to total the number of contacts per unit of time of
individuals of age group j with individuals of age group i. This is equivalent to impose that ci j fi = c ji f j where C = (ckl) is the
contact matrix and fk is the fraction of the population in the age group k15.

For each country, the population fraction fk of each age group used in our analysis is shown in Table 5.
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Country Age group contact [0,18) contact [18,60) contact 60+
[0,18) 5.426 5.143 0.772

Belgium [18,60) 1.864 9.383 1.540
60+ 0.723 3.982 3.175
[0,18) 4.045 3.907 0.567

Germany [18,60) 1.219 6.216 0.998
60+ 0.408 2.299 2.127
[0,18) 12.753 8.990 1.513

Italy [18,60) 2.669 13.530 2.594
60+ 1.032 5.957 3.558
[0,18) 11.181 5.649 0.681

Netherlands [18,60) 2.108 10.714 1.491
60+ 0.775 4.548 3.4635
[0,18) 13.855 6.664 0.792

Peru [18,60) 4.369 6.559 1.039
60+ 3.210 6.422 1.262
[0,18) 5.580 3.811 0.524

Zimbabwe [18,60) 4.025 6.617 0.825
60+ 5.861 8.737 2.007

Table 4. Daily contact matrices used in the numerical integration.

Age group Belgium Germany Italy Netherlands Peru Zimbabwe
[0,18) 0.207 0.179 0.171 0.219 0.361 0.491
[18,60) 0.572 0.573 0.577 0.588 0.550 0.465

60+ 0.221 0.249 0.251 0.193 0.089 0.044

Table 5. Population fraction for each age group in the considered countries.

Additional contour plots
To complement the contour plots presented in the main text, Fig. 5 shows a choice of values of the parameters that increases the
heterogeneity among the three age groups: lower waning rates of immunity for the age groups 1 and 3, and slightly different
probabilities of successful protection of the vaccine for each age group. Such heterogeneity implies that the vaccination strategy
that maximizes the vaccination coverage under the constraint w̄ = w̄c (green points) is now clearly distinguishable from the
uniformly random vaccination strategy (red points).
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(a) Belgium (b) Germany

(c) Italy (d) Netherlands

(e) Peru (f) Zimbabwe

Figure 3. Contour levels of R∗0(w̄1, w̄2) at the DFE of system (1) with pi = 1 (i = 1,2,3). Black level curve corresponds to
R∗0 = 1. Blue point: Minimum of R∗0. Red point: R∗0 under uniformly random vaccination: w̄1 = w̄2 = w̄c. Green point: R∗0 at
the disease-free equilibrium with the maximum vaccination coverage. Parameters: γ1 = 1, γ2 = 1, γ3 = 0.9, δ v

1 = 1/40,
δ v

2 = 1/52, δ v
3 = 1/40, and w̄ = w̄c for each data set. For each country, β is scaled such that R0 = 2.5 in the absence of

vaccinated individuals.
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(a) Belgium (b) Germany

(c) Italy (d) Netherlands

(e) Peru (f) Zimbabwe

Figure 4. Contour levels of R∗0(w̄1, w̄2) at the DFE of system (1) with pi = 1 (i = 1,2,3) and for w̄ = w̄0, a value for which
R0 ≈ 0.996. Black level curve corresponds to R∗0 = 1. Blue point: Minimum of R∗0. Red point: R∗0 under uniformly random
vaccination: w̄1 = w̄2 = w̄c. Green point: R∗0 at the disease-free equilibrium with the maximum vaccination coverage.
Parameters: γ1 = 1, γ2 = 1, γ3 = 0.9, δ v

1 = 1/40, δ v
2 = 1/52, δ v

3 = 1/40. For each country, β is scaled such that R0 = 2.5 in
the absence of vaccinated individuals.
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(a) Belgium (b) Germany

(c) Italy (d) Netherlands

(e) Peru (f) Zimbabwe

Figure 5. Contour levels of R∗0(w̄1, w̄2) at the DFE of system (1) with p1 = 1, p2 = 0.95, and p3 = 0.9. Black level curve
corresponds to R∗0 = 1. Blue point: Minimum of R∗0. Red point: R∗0 under uniformly random vaccination: w̄1 = w̄2 = w̄c. Green
point: R∗0 at the disease-free equilibrium with the maximum vaccination coverage. Parameters: γ1 = 1, γ2 = 1, γ3 = 0.9,
δ v

1 = 1/26, δ v
2 = 1/52, δ v

3 = 1/26. For each country, β is scaled such that R0 = 2.5 in the absence of vaccinated individuals.
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