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Abstract 53 

Objective: Autism spectrum disorder (ASD) is associated with altered brain development, 54 

but it is unclear which specific structural changes may serve as potential diagnostic markers. 55 

This study aimed to identify and model brain-wide differences in structural connectivity 56 

using MRI diffusion tensor imaging (DTI) in young ASD and typically developing (TD) 57 

children (3·5-6 years old). 58 

Methods: Ninety-three ASD and 26 TD children were included in a discovery dataset and 12 59 

ASD and 9 TD children from different sites included as independent validation datasets. 60 

Brain-wide (294 regions) structural connectivity was measured using DTI (fractional 61 

anisotropy, FA) under sedation together with symptom severity and behavioral and cognitive 62 

development. A connection matrix was constructed for each child for comparisons between 63 

ASD and TD groups. Pattern classification was performed and the resulting model tested on 64 

two independent datasets. 65 

Results: Thirty-three structural connections showed increased FA in ASD compared to TD 66 

children and associated with both symptom severity and general cognitive development. The 67 

majority (29/33) involved the frontal lobe and comprised five different networks with 68 

functional relevance to default mode, motor control, social recognition, language and reward. 69 

Overall, classification accuracy is very high in the discovery dataset 96.77%, and 91·67% and 70 

88·89% in the two independent validation datasets. 71 

Conclusions: Identified structural connectivity differences primarily involving the frontal 72 

cortex can very accurately distinguish individual ASD from TD children and may therefore 73 

represent a robust early brain biomarker. 74 

 75 

Keywords 76 

autism; neuroimaging; diffusion tensor imaging; fractional anisotropy; brain structural 77 

connectivity; diagnosis; early childhood  78 
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Introduction 79 

There is an increasing consensus that children with autism spectrum disorder (ASD) have an 80 

abberant pattern of brain development.1-2 A number of structural magnetic resonance imaging 81 

studies using diffusion tensor imaging (DTI) have identified altered fractional anisotropy 82 

(FA), which is a widely used index in DTI to reflect axonal density and myelination, in 83 

individuals with ASD, particularly in the frontal,3-5 occipital lobes,6 and corpus callosum.4,7 84 

Developmental changes in FA occur with increases in fiber tracts during the first few years, 85 

followed by decreases in later childhood and adolescence, through into adulthood.3,5 86 

However, the discrimination accuracies between ASD and typically developing (TD) 87 

individuals reported by a small number of studies to date following machine learning 88 

classification approaches only found modest effects and have not been validated using 89 

independent validation datasets (75-80%6-7).  Analysis of large fiber tracts connecting many 90 

different brain regions may also obscure changes in altered structural connectivity between 91 

specific brain regions. 92 

 93 

In the current study we have therefore used DTI to identify differences in inter-regional 94 

structural connectivity at the whole-brain level in ASD compared to TD children in 294 95 

different brain regions. We chose to restrict the age range of children to 3·5-6 years old since 96 

this corresponds to the period when ASD symptoms have become robustly established.8 97 

Previous tractography-based research also suggests that at this age overall structural 98 

connectivity differences between ASD and TD children may be less pronounced.4 99 

 100 

Based on previous studies, we firstly hypothesized that ASD children would exhibit 101 

significantly greater FA in structural connections at the whole brain level and particularly 102 

involving frontal regions compared to TD children. Secondly, we hypothesized that altered 103 

structural connections would be in networks associated with ASD symptoms and cognitive 104 

and behavioral development. Finally, we hypothesized that the structural connectivity 105 

changes identified would accurately predict ASD diagnosis at the individual level not only 106 

within the original discovery dataset but also in two independent validation datasets.  107 

 108 

Methods 109 

Participants 110 
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The present study included three independent datasets: a discovery and two validation 111 

datasets.   112 

 113 

Discovery dataset (Beijing). The experiment was approved by the ethics committee of the 114 

Peking University Institutional Review Board (approval no. IRB00001052-13079).  A total of 115 

119 pre-school children either diagnosed with ASD (n = 93) or TD children (n = 26) were 116 

recruited. The age range of participants was 3·5 to 6 years, which is regarded as the time of 117 

the most severe emerging symptoms of autism.8 Children with ASD were recruited through 118 

pediatric psychiatric clinics and autism rehabilitation training centers in Beijing. Age and 119 

gender matched TD children were also recruited through online social platforms or day care 120 

centers in Beijing. 121 

 122 

ASD validation dataset (Chengdu). The experiment was approved by the ethics committee 123 

of the University of Electronic Science and Technology of China (approval no. 1420190601). 124 

A total of 12 ASD children were recruited aged 3 to 8 years through the child healthcare 125 

department of Chengdu Women’s and Children’s Central Hospital. 126 

 127 

TD validation dataset (Nanjing). The experiment was approved by the medical ethics 128 

committee of the Brain Hospital affiliated to Nanjing Medical University (approval no. 129 

KY043). A total of 9 TD children were recruited aged 4 to 6 years either through the Nanjing 130 

child mental health research center, online social platforms or day care centers.   131 

 132 

All the participants’ parents in the three datasets were informed in detail of the research 133 

objectives and procedures, and provided written informed consents. Exclusion criteria were: 134 

(1) neurological complications, such as epilepsy, cerebral palsy, Fragile X syndrome etc.; (2) 135 

medical intervention, such as antipsychotic drugs, transcranial magnetic stimulation, 136 

acupuncture etc.; (3) diagnostic imaging anomalies or craniocerebral trauma; (4) other 137 

contraindications to MRI; (5) TD children had no family histories of any mental disorders 138 

and exhibited no evidence of developmental delay. 139 

 140 

Clinical Diagnosis 141 

Participants in ASD groups were diagnosed at either Peking University Sixth Hospital or 142 

Beijing Children’s Hospital, Beijing, China for Beijing dataset, or at Chengdu Women’s and 143 

Children’s Central Hospital, Chengdu, China for Chengdu dataset. All children in the ASD 144 
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group met the diagnostic criteria of Diagnostic and Statistical Manual of Mental Disorders 145 

IV-Text Revision (DSM-IV-TR)9 or Fifth Edition (DSM-5)10 and International Statistical 146 

Classification of Diseases and Related Health Problems 10th revision (ICD-10)11. In addition, 147 

ASD diagnosis was confirmed in the Beijing dataset using the Autism Diagnostic 148 

Observation Schedule (ADOS)12 Traditional Mandarin version, module 1 or module 2 based 149 

on the child’s language ability. For children in the Chengdu dataset, diagnosis was confirmed 150 

using ADOS-2.13 Moreover, in the Beijing ASD and TD cohorts, cognitive ability was also 151 

assessed using the Gesell Developmental Scale (GDS)14 administered by an experienced 152 

pediatrician. This is a measure of cognitive and behavioral development and adaptability 153 

including five components (gross motor, fine motor, adaptive, language and personal social 154 

behaviors). 155 

 156 

MRI Acquisition and Preprocessing 157 

Children in both ASD and TD groups of the three datasets were sedated by oral 158 

administration of chloral hydrate at the 50 mg/kg body weight (1 g maximum dose), 159 

commonly used for pediatric clinical imaging. During the MRI scan, children wore earplugs 160 

and de-noising headsets to reduce the noise, and parents were encouraged to remain in the 161 

scanning room to ensure safety in case the child awoke. In all sites, brain images were 162 

reviewed by neuroradiologists to confirm absence of neurological abnormalities. 163 

 164 

For the discovery dataset MRI images were acquired on a GE 3T MR750 scanner with a 12-165 

channel head coil at the Peking University Third Hospital. DTI data were obtained with an 166 

echo-planar imaging sequence: TR = 9,000 ms, TE = 89·4 ms, FOV = 256 mm, matrix size = 167 

128 × 128, voxel size = 2 mm isotropic, 75 slices covering the whole brain with no gap, 32 168 

diffusion directions, b-value = 1000 s/mm2. For independent ASD and TD validation datasets 169 

see supplementary methods. Pre-processing methods for DTI raw data are described in the 170 

supplementary methods. 171 

 172 

Overview of analysis 173 

The flow chart of ASD identification framework is illustrated in Fig. 1. Based on the pre-174 

processed DTI FA map (Fig. 1(A)), the whole-brain streamline fibers were reconstructed (Fig. 175 

1(B)) and adopted to the brain atlas (Fig. 1(C)). To construct the structural connection matrix 176 

for each subject (Fig. 1(D)), we calculated the pair-wise FA value between every two brain 177 

regions. The constructed structural connection matrix was further projected into the brain for 178 
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each participant (Fig. 1(E)). Group comparisons were then performed based on all structural 179 

connection networks between ASD and TD groups (Fig. 1(F)) to obtain the between-group 180 

differences (Fig. 1(G)). The resulting connections were finally adopted as features to perform 181 

pattern classification between ASD and TD groups (Fig. 1(H)). The details of each step are 182 

demonstrated in the following sections.   183 

 184 

Construction of Structural Connection Network 185 

The brain atlas used in this study included 294 non-overlapping brain regions consisting of 186 

246 cortical and subcortical regions, 34 cerebellar regions, and 14 brainstem regions (Fig. 187 

1(C)). The cortical and subcortical regions were from the Brainnetome Atlas15 with 123 188 

homotopic regions in each hemisphere; cerebellar regions were from the Human Cerebellar 189 

Probabilistic Magnetic Resonance Atlas16 and brainstem regions were from the Human 190 

Brainstem Standard Neuroanatomy Atlas17. Since the three atlases were originally defined in 191 

the adult MNI152 standard space, we first performed linear registration to warp the T1-192 

weighted adult MNI152 image to the space of T1-weighted template image of children aged 193 

4·5-8·5 years (https://www.mcgill.ca/bic/software/tools-data-analysis/anatomical-194 

mri/atlases/nihpd),18 and then applied the linear transformation to the brain atlas to warp it to 195 

the children’s template image space as well in order to obtain the young children’s brain atlas.     196 

 197 

The reconstructed whole-brain streamline fibers in each child (Fig. 1(B)) were then aligned to 198 

the young children’s brain atlas space via DSI Studio19. The structural connection matrix for 199 

each child (Fig. 1(D)) was obtained by calculating the pair-wise mean FA value between 200 

every two brain regions via DSI Studio19, and further represented as a structural connection 201 

network (Fig. 1(E)) in which the nodes were the brain regions and edges were the mean FA 202 

values between two nodes. 203 

 204 

Identification of Structural Connections Showing Differences between ASD and TD 205 

Based on the structural connection networks of all children in the ASD and TD groups (Fig. 206 

1(F)), we adopted the widely used Network-based Statistic (NBS) approach20 to identify the 207 

structural connections and associated networks showing between-group differences (Fig. 208 

1(G)). As a non-parametric statistical method, NBS first performs a large number of 209 

univariate hypothesis tests on all edges in the network, then clustering-based statistics, and 210 

finally permutation tests to calculate the family-wise error rate (FWER) corrected p-values 211 

for each sub-network consisting of edges with group differences. We adopted the NBS 212 
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Connectome toolbox implemented in Matlab20 to perform the analysis. The structural 213 

connection networks of all participants in ASD and TD groups were the inputs with gender 214 

and age as covariates. Next we performed the NBS analysis to identify both increased and 215 

decreased FA values of structural connections and associated networks in ASD compared to 216 

TD. 217 

 218 

Pattern Classification between ASD and TD Children 219 

Based on the identified structural connections showing between-group differences (Fig. 1(G)), 220 

we further adopted FA values of those connections as features to perform pattern 221 

classification between the ASD and TD groups. We used the discovery dataset as the training 222 

dataset to establish the classification model. For training and leave-one-out cross-validation, 223 

we employed the widely used support vector machine (SVM) approach. The training model 224 

was then applied to the two independent validation datasets to validate its generalizability. 225 

Specifically, we adopted the widely used cost-support vector classification (C-SVC), and 226 

the radial basis function (RBF) as the kernel function in SVM. The optimal values of 227 

parameters c (i.e., cost, c ranged from 15 to 16) and g (i.e., gamma, g ranged from 0·08 228 

to 1) in RBF were obtained by a hyperparameter optimization framework of optuna.21 229 

 230 

Potential Effect of Imbalanced Sample Size between ASD and TD  231 

In view of the imbalanced group sample sizes in the discovery dataset (93 ASD and 26 TD), 232 

we adopted both up-sampling and down-sampling approaches to alleviate the potential model 233 

overfitting as well as classification bias problem (see supplementary methods). Both 234 

approaches confirmed that our classification model was not influenced by the imbalanced 235 

sample sizes. 236 

 237 

Statistical Analysis 238 

Independent two-sample t-tests were utilized to identify the different structural connections 239 

between ASD and TD (n=10,000 permutation times, significance level p<0·05, FWE 240 

corrected) in NBS. Independent sample t-tests were used for continuous variables including 241 

age, BMI, head circumference, GDS total score, and FA between ASD and TD. Chi-square 242 

tests were used for categorical variables including gender and handedness between ASD and 243 

TD. Pearson’s linear correlation coefficients were computed between the averaged FA value 244 

and ADOS and GDS scores (one-sample t-tests, significance level at p<0·05, FDR corrected). 245 

A mediation model was conducted (PROCESS)22 using bootstrap analysis to investigate the 246 
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relationship between the averaged FA value, ADOS total and GDS total scores (bootstrap = 247 

1000). 248 

 249 

Results 250 

Subject Demographics and Behavioral Measures 251 

Table 1 summarizes demographic and other information for ASD and TD groups in the 252 

different datasets and ADOS scores for ASD children. There were no group differences in 253 

age, gender, BMI, handedness, and head circumference in the discovery dataset, although as 254 

expected the total GDS score was significantly less in the ASD group indicating impaired 255 

cognitive and behavioral development. 256 

 257 

Increased FA Connections and Networks in ASD Compared to TD Children 258 

We identified 33 increased but no decreased FA values of structural connections in ASD 259 

compared to TD children (Figs. 2(A) and 2(C), Table 2). Notably, 29 out of 33 connections 260 

were associated with the frontal lobe. Moreover, 30 out of 33 connections were intra-261 

hemispheric. Fig. 2(B) illustrates the locations of 33 connections on the cortical surface. In 262 

the ASD group averaged FA values were significantly negatively correlated (FDR corrected) 263 

with ADOS total and ‘social interaction’ sub-scale scores (Fig. 2(D)) and positively 264 

correlated with the GDS total score (Fig. 2(E)). In the TD group there was a slight but not 265 

significant negative correlation between averaged FA values and GDS score (Fig. 2(E)). A 266 

mediation analysis indicated that within the ASD group the ADOS total score was the main 267 

mediator of the effects on the averaged FA value and GDS total score (Fig. 2(F)).  268 

 269 

Connections with increased FA were further categorized into 5 structural networks via NBS 270 

(Fig. 2(G) and Table 2) together with a functional characterization using the Neurosynth 271 

platform, and visualized as a word cloud. Network 1: default mode function and memory 272 

retrieval, including: left superior temporal gyrus, precuneus, inferior parietal lobule, superior 273 

frontal gyrus, and medioventral occipital cortex; Network 2: motor function, including: right 274 

superior and inferior frontal gyri, right cerebellum lobe IX and left postcentral gyrus; 275 

Network 3 visual and facial recognition function, including: right inferior and superior frontal 276 

gyri, lateral occipital cortex, pre-motor thalamus, middle frontal gyrus, medioventral occipital 277 

cortex, basal ganglia, superior temporal gyrus and insula; Network 4 language and cognitive 278 

function, including: left middle and inferior frontal gyri, thalamus, cingulate gyrus, basal 279 
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ganglia and cerebellum lobe IX; Network 5: social and general reward functions, including: 280 

bilateral orbitofrontal and cingulate gyri and basal ganglia. 281 

 282 

Classification Accuracy between ASD and TD Children 283 

We first up-sampled the discovery dataset to 186 subjects with 93 ASD and 93 TD and 284 

trained the classification model in a 33-dimensional feature space based on the 33 285 

connections using a leave-one-out cross-validation strategy. Fig. 3(A) shows the 286 

classification model in a 3-dimensional feature space after performing dimensionality 287 

reduction using the t-distributed stochastic neighbor embedding (t-SNE) algorithm.23 The 288 

Receiver Operating Characteristic (ROC) curve of the training model is shown in Fig. 3(B). 289 

The area under the ROC curve (AUC) was 0·981, indicating the robustness of the training 290 

model. The confusion matrix of the training model is shown in Fig. 3(C). Accuracy, 291 

sensitivity, specificity, precision, and F measure in both discovery and validation datasets are 292 

reported in Fig. 3(D) with the proposed model achieving high classification accuracy in both 293 

discovery (96·77%) and independent validation datasets (91·67% and 88·89%). The 294 

alternative down-sampling strategy of the discovery dataset by 1,000 times also achieved 295 

high classification accuracy in both discovery (94·85±1·30%) and independent validation 296 

datasets (91·63±5·55% and 80·04±5·52%). Thus overall, the classification model showed 297 

both high accuracy and generalizability for ASD identification across different datasets 298 

without being influenced by the imbalanced sample sizes of the discovery dataset. 299 

  300 

Discussion 301 

Our findings have revealed the presence of a small number of inter-regional structural 302 

connections within the brains of young children with ASD which exhibit increased FA 303 

compared to TD and negatively associated with symptom severity. The majority of affected 304 

regional connections involve the frontal cortex and overall they achieved a classification 305 

accuracy of 96·77% for discriminating between ASD and TD individuals in the discovery 306 

dataset and 91·67% and 88·89% in two small independent datasets. The 33 inter-regional 307 

structural connections could be clustered into 5 independent networks with relevance to a 308 

range of behavioral functions influenced in ASD.  309 

 310 

In support of our original hypothesis, the majority of the 33 structural connections showing 311 

increased FA in children with ASD in the current study involved the frontal lobe including 312 
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intrinsic short range frontal-frontal connections and longer range frontal-occipital, frontal-313 

thalamic and frontal-limbic ones. This is in agreement with findings from other studies3-4,24-26 314 

and supports the conclusion that alterations in both intrinsic and extrinsic frontal lobe 315 

structural connectivity contribute fundamentally to ASD.  316 

 317 

The altered structural connections in children with ASD could be clustered into 5 individual 318 

networks encompassing default mode, motor, visual and facial recognition, language and 319 

memory and reward functions. The largest single frontal lobe cluster involved orbitofrontal 320 

regions and their connections with the basal ganglia. These intrinsic frontal connections are 321 

strongly associated with social and other types of reward processing as well as decision 322 

making27 and these functions are known to be impaired in ASD.28-29 Three other clusters 323 

involved inferior, medial and superior frontal gyri connections with thalamus, basal ganglia, 324 

cingulate, insula, occipital cortex, post-central gyrus and cerebellum associated with social 325 

cognition, language comprehension, sensory and motor processing functions,30-32 all of which 326 

are impaired in ASD.33-36 The remaining cluster primarily involved connections between the 327 

superior temporal gyrus and inferior parietal lobule with the precuneus in the default mode 328 

network, associated with self-processing, experience of agency, autobiographic and episodic 329 

memory retrieval and visuospatial imagery. Default mode dysfunction has been consistently 330 

reported in ASD37 as well as impaired self-processing, sense of agency, autobiographical and 331 

episodic memory.38-39 332 

 333 

A previous study using DTI measures and classification techniques to identify ASD 334 

compared to TD children employed shape representations of white matter fiber tracts as 335 

features, and achieved 75·34% discrimination accuracy using a leave-one-out cross-validation 336 

approach.7 Another study adopted the anisotropy scores of regions of interest as features, and 337 

achieved 80% accuracy using leave-one-out cross-validation.6 In our current study, we 338 

adopted the DTI-derived FA values of structural connections as features, and achieved a 339 

much higher classification accuracy in both the discovery dataset (96·77%) and, importantly, 340 

in independent validation datasets (91·67% and 88·89%), demonstrating satisfying 341 

classification and generalization ability of our model across different datasets. 342 

 343 

Unexpectedly, we found a significant negative correlation between the averaged FA values of 344 

the 33 altered connections in children with ASD and ADOS total and social sub-scale scores, 345 

indicating that symptom severity was actually lower in children with greater FA. Scores on 346 
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GDS were also positively correlated with FA values in the ASD group but slightly negatively 347 

correlated in the TD group. A mediation analysis identified that ADOS scores were primarily 348 

mediating both FA values and GDS scores in the ASD group. This may indicate an 349 

experience-dependent compensatory effect is occurring in children with ASD whereby 350 

increased FA contributes to reduced symptom severity and enhanced cognitive and 351 

behavioral development. A social experience compensation effect has previously been 352 

described in behavioral studies of autism.40 Interestingly, a tractography study has reported a 353 

positive association between increased frontal lobe FA and symptom severity in very young 354 

children but a negative one in older children in the age-range of the current study.4 Thus, 355 

children who experience more severe symptoms at the age of 3.5-6 years may have reduced 356 

FA in these neural circuits compared to when they were younger, whereas those with milder 357 

symptoms may instead have maintained or even increased their FA. A longitudinal study 358 

would clearly be required to confirm this possibility. 359 

 360 

Limitations 361 

A limitation of the current study is its cross-sectional nature and restricted age range (3·5-6 362 

years old). Patterns of structural differences may differ in both younger and older individuals 363 

and only a longitudinal design study can address this. A second limitation is we did not 364 

determine whether observed changes are specific to ASD or might also occur in children with 365 

developmental delay, for example. A final limitation is that we could only obtain two small 366 

datasets for independent analysis of discrimination accuracy although the findings were very 367 

encouraging. 368 

 369 

Conclusion 370 

By employing a fine-grained, brain-wide analysis of structural differences for regional 371 

connections in the brains of young (3·5-6 years old) autistic compared with typically 372 

developing children we have identified a number of structural connections mainly involving 373 

the frontal lobe exhibiting increased FA but negatively associated with symptom severity. 374 

Differences in these structural connections show high accuracy (>96%) in discriminating 375 

autistic children from TD children which generalizes to independent novel datasets. These 376 

new findings suggest that differences in structural connections primarily involving the frontal 377 

cortex of young autistic children are a potential reliable and generalizable biomarker for ASD 378 

diagnosis and for assessing the efficacy of therapeutic interventions.  379 
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Table 1. Subject demographics and behavioral measures of the three datasets. 520 
 

TD  ASD Statistics 
(t or χ2) 

Significance 
(p)  

N Mean (SD)  N Mean (SD) 

Discovery (Beijing) dataset 

Age, years 26 4·70 (0·46)  93 4·58 (0·55) -1·07a 0·29 

Gender (boys: girls) 26 20:6  93 85:8 2·83b 0·09 

BMI 26 15·64 (1·68)  76 16·03 (1·77) 0·87a 0·39 

Handedness (R: D: L) 26 20:6:0  90 78:9:3 3·76b 0·15 

Head Circumference, cm 26 51·24 (1·48)  90 51·79 (1·72) 1·49a 0·14 

ADOS social interaction 
sub-scale score 

·· ··  86 9·88 (2·54) ·· ·· 

ADOS communication 
sub-scale score 

·· ··  86 5·57 (1·87) ·· ·· 

ADOS total score (social 
interaction + communication) 

·· ··  86 15·45 (4·02) ·· 
 

·· 
 

GDS total score 26 94·39 (10·1)  82 64·34 (17·1) 8·50a <0·001 

ASD validation (Chengdu) dataset 

Age, years ·· ··  12 4·98 (1·22) ·· ·· 

Gender (boys: girls) ·· ··  12 11:1 ·· ·· 

ADOS-2 total score (social affect + 
restricted and repetitive behavior) 

·· ··  12 18·58 (4·46) ·· ·· 

TD validation (Nanjing) dataset 

Age, years 9 5·44 (0·84)  ·· ·· ·· ·· 

Gender (boys: girls) 9 6:3  ·· ·· ·· ·· 

TD: typically developing; ASD: autism spectrum disorder; BMI: body mass index; R: right handed; D: 521 

double handed; L: left handed; ADOS: Autism Diagnostic Observation Schedule; ADOS-2: 522 

Second Edition of ADOS; GDS: Gesell Developmental Scale; a Independent two-sample t test, t 523 

score; b Chi-square test, χ2. SD: standard deviations. 524 
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Table 2. Profiles of the 33 structural connections with increased FA in children with ASD. 526 

No. Network Region name 
MNI coordinates 

Region name 
MNI coordinates 

X Y Z X Y Z 

1 

1 

STG_L -55 -3 -10 PCun_L -12 -67 25 

2 IPL_L -47 -65 26 PCun_L -12 -67 25 

3 SFG_L -18 24 53 MVOcC _L -13 -68 12 

4 STG_L -55 -3 -10 MVOcC _L -13 -68 12 

5 

2 

SFG_R 20 4 64 IFG_R 45 16 25 

6 SFG_R 20 4 64 PoG_L -21 -35 68 

7 SFG_R 20 4 64 Right_IX 6 -54 -50 

8 

3 

IFG_R 48 35 13 LOcC_R 32 -85 -12 

9 IFG_R 54 24 12 LOcC_R 32 -85 -12 

10 MFG_R 42 44 14 MVOcC_R 10 -85 -9 

11 IFG_R 48 35 13 MVOcC_R 10 -85 -9 

12 IFG_R 51 36 -1 MVOcC_R 10 -85 -9 

13 IFG_R 51 36 -1 BG_R 22 8 -1 

14 IFG_R 51 36 -1 BG_R 14 5 14 

15 IFG_R 48 35 13 STG_R 47 12 -20 

16 IFG_R 54 24 12 INS_R 36 18 1 

17 SFG_R 7 -4 60 Tha_R 12 -14 1 

18 IFG_R 48 35 13 Tha_R 12 -14 1 

19 

4 

MFG_L -41 41 16 BG_L -14 2 16 

20 MFG_L -41 41 16 Tha_L -7 -12 5 

21 IFG_L -53 23 11 BG_L -14 2 16 

22 MFG_L -41 41 16 CG_R 5 41 6 

23 MFG_L -26 60 -6 Tha_L -7 -12 5 

24 Tha_L -7 -12 5 Left_IX -8 -54 -48 

25 

5 

OrG_R 23 36 -18 OrG_R 6 57 -16 

26 OrG_R 23 36 -18 OrG_R 9 20 -19 

27 OrG_L -6 52 -19 OrG_L -10 18 -19 

28 OrG_R 6 47  -7 OrG_R 9 20  -19 

29 OrG_L -7 54 -7 CG_L -4 39 -2 

30 OrG_R 6 47 -7 CG_L -4 39 -2 

31 OrG_L -10 18 -19 CG_L -4 39 -2 

32 OrG_R 6 47 -7 BG_R 15 14 -2 

33 OrG_R 6 57 -16 BG_R 15 14 -2 

Abbreviations: L, left; R, right; STG, superior temporal gyrus; PCun, precuneus; IPL, inferior parietal 527 

lobule; SFG, superior frontal gyrus; MVOcC, medioventral occipital cortex; IFG, inferior frontal 528 

gyrus; PoG, postcentral gyrus; LOcC, lateral occipital cortex; Tha, thalamus; MFG, middle 529 

frontal gyrus; OrG, orbitofrontal gyrus; CG, cingulate gyrus; BG, basal ganglia; INS, insula. 530 
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 532 
Figure 1 Flow chart of ASD identification framework. (A) The pre-processed DTI FA map. (B) 533 

Reconstructed whole-brain streamline fibers. (C) Young children’s brain atlas. (D) Structural 534 

connection matrix for each participant. (E) The individual structural connection network. (F) All 535 

individual structural connection networks in ASD and TD groups. (G) The structural connections and 536 

associated networks showing differences between ASD and TD groups. (H) Pattern classification 537 

between ASD and TD using all structural connections showing between-group differences. 538 
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 540 
Figure 2 Increased FA connections and networks in ASD compared to TD children. (A) The 33 541 

increased FA values of structural connections in ASD in circos plot. Abbreviations: L, left hemisphere; 542 

R, right hemisphere; FRO, frontal lobe; TEM, temporal lobe; PAR, parietal lobe; INS, insular lobe; 543 

LIM, limbic lobe; OCC, occipital lobe; SUB, subcortical nuclei; CERE, cerebellum; BS, brain stem. 544 

(B) Locations of 33 connections on the cortical surface. (C) Averaged FA value of 33 connections in 545 

ASD and TD groups. (D) Correlations between averaged FA value of the 33 connections in ASD and 546 

ADOS ‘social interaction’ sub-scale score and total (‘communication’ + ‘social interaction’) score. (E) 547 

Correlations between averaged FA value of the 33 connections and ADOS social communication and 548 

total scores and GDS total score. (F) Mediation analysis between averaged FA, GDS total score and 549 
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ADOS total score (path a=-0·27, p=0·018; path b=-0·66, p<0·001; path c=0·22, p=0·047; path 550 

c
, =0·049, p=0·58). (G) The 33 increased connections were further categorized into 5 structural 551 

networks. In each network, row 1-3 shows the structural connections in circos plot, locations of the 552 

connections on cortical surface, and the word cloud of functional annotation via meta-analysis 553 

respectively. 554 
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 556 

Figure 3 Classification Accuracy between ASD and TD. (A) Classification model in a 3-557 

dimensional feature space after performing dimensionality reduction using the t-distributed stochastic 558 

neighbor embedding (t-SNE) algorithm. Red and blue dots represent ASD and TD subjects, 559 

respectively. (B) The Receiver Operating Characteristic (ROC) curve of the training model. (C) The 560 

confusion matrix of the training model. The colorbar represents the proportion of correctly classified 561 

subjects among all subjects. (D) The detailed classification accuracy metrics including accuracy, 562 

sensitivity, specificity, precision, and F measure in both discovery and validation datasets. 563 

 564 
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