
 

 

Whole-Blood DNA Methylation Analysis Reveals Respiratory Environmental 1 

Traits Involved in COVID-19 Severity Following SARS-CoV-2 Infection 2 

Guillermo Barturen
1
, Elena Carnero-Montoro

1
, Manuel Martínez-Bueno

1
, Silvia Rojo-Rello

2
, Beatriz 3 

Sobrino
3
, Clara Alcántara-Domínguez

4
, David Bernardo

5,6
 and Marta E. Alarcón-Riquelme

1,7
 4 

1
GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian 5 

Regional Government. Granada, Spain. 6 

2 
Servicio de Microbiología e Inmunología. Hospital Clínico Universitario de Valladolid. Valladolid, 7 

Spain. 8 

3
 Servicio de Enfermedades Infecciosas. Hospital Regional de Málaga. Málaga, Spain. 9 

4
Lorgen G.P., S.L., Business Innovation Center - BIC/CEEL, Technological Area of Health Science, 10 

Granada, Spain. 11 

5
Mucosal Immunology Lab. Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de 12 

Valladolid (IBGM, Universidad de Valladolid-CSIC). Valladolid, Spain. 13 

6
Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas 14 

(CIBERehd). Madrid, Spain. 15 

7
Unit of Inflammatory Chronic Diseases, Institute of Environmental Medicine, Karolinska Institutet, 16 

Stockholm, Sweden. 17 

Correspondence: Guillermo Barturen and Marta E. Alarcón-Riquelme: GENYO. Center for 18 
Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional 19 
Government, Av de la Ilustración 114, Parque Tecnológico de la Salud, 18016, Granada, Spain. 20 
guillermo.barturen@genyo.es and marta.alarcon@genyo.es 21 

Abstract 22 

SARS-CoV-2 causes a severe inflammatory syndrome (COVID-19) leading, in many cases, to 23 

bilateral pneumonia, severe dyspnea and in ~5% of these, death. DNA methylation is known to 24 

play an important role in the regulation of the immune processes behind COVID-19 progression, 25 

however it has not been studied in depth, yet. In this study, we aim to evaluate the implication of 26 

DNA methylation in COVID-19 progression by means of a genome-wide DNA methylation analysis 27 

combined with DNA genotyping. 28 

The results reveal the existence of epigenomic regulation of functional pathways associated with 29 

COVID-19 progression and mediated by genetic loci. We found an environmental trait-related 30 
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signature that discriminates mild from severe cases, and regulates IL-6 expression via the 31 

transcription factor CEBP. The analyses suggest that an interaction between environmental 32 

contribution, genetics and epigenetics might be playing a role in triggering the cytokine storm 33 

described in the most severe cases. 34 
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Introduction 37 

SARS-CoV-2 virus infection has affected millions of people during the last year worldwide. Most 38 

infected SARS-CoV-2 individuals remain asymptomatic or with mild symptoms that do not require 39 

hospitalization (~81%), while in other, the virus cause a severe inflammatory syndrome called 40 

COVID-19 that primarily affects the lungs leading, in many cases, to bilateral pneumonia, severe 41 

dyspnea and in ~5% of the cases, death
1,2

.  42 

Several genetics, transcriptomics, and proteomics molecular studies have been performed to date, 43 

disentangling important pathogenic molecular mechanisms of the disease (3-14). In summary, 44 

SARS-CoV-2 infects the cells expressing surface receptors ACE2 and TMPRSS2
3
 causing cell damage 45 

due to its replication and release from the host cell. Then, this process triggers in the surrounding 46 

cells the production of pro-inflammatory cytokines and chemokines (including IL-1, IL-6, IL-8, IL-10, 47 

TNF and interferon inducible molecules, among others), which establish a pro-inflammatory 48 

response mediated by the accumulation of specific immune cells
4
. In severe cases, an 49 

overexpression of cytokines is produced in lung tissues, known as cytokine storm, thus provoking 50 

an over-response of the immune system and causing tissue damage. In the most critical cases, the 51 

cytokine storm is spread to other organs leading to multi-organ failure and death. Currently, the 52 

molecular mechanisms and the pathophysiology behind COVID-19 progression are largely studied 53 
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and well established, but it is still unclear what makes some individuals develop the severe illness. 54 

In this sense, underlying genetic variation
5
 and different comorbidities have been identified as risk 55 

factors, such as diabetes, hypertension, chronic lung disease or even neurological disorders
6,7

. Also 56 

life style habits, that might be causing the previous conditions have been also related to COVID-19 57 

illness as obesity or smoking, as well as age, gender or ethnicity
8,9

. However, it is unclear how 58 

these comorbidities, environmental and demographic conditions together with genetics, 59 

predispose and regulate the molecular mechanisms behind COVID-19 severity. 60 

In order to shed light into the molecular relationship between risk factors and the regulation of 61 

the mechanisms behind the COVID-19 severity, here we present a DNA methylation EWAS 62 

(epigenome wide association analysis) combined with DNA genotyping for 473 and 101 SARS-CoV-63 

2 lab positive and negative tested individuals recruited in two independent clinical centers. In 64 

addition to the study of the epigenetic regulation of COVID-19 pathogenic mechanisms, the DNA 65 

methylation changes associated with COVID-19 progression, and its genetic regulation were put in 66 

context by comparing the results with DNA methylation changes occurring in systemic 67 

autoimmune diseases (SADs), and with GWAS (genome wide association analysis) and EWAS 68 

catalogs that collect multiple traits described as potential COVID-19 severity risk factors. 69 
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Results 70 

COVID-19 severity relates to impaired blood cell proportions and epigenetic activation of the 71 

innate immune response 72 

Main blood cell type proportions were deconvoluted from the methylomes, showing a significant 73 

increase of neutrophil proportions associated with severity of the disease (Figure 1A and 74 

Supplementary Figures 1A and 1B). This imbalanced neutrophil proportion has been already 75 

shown to be related to COVID-19 severity progression 
10

, and proposed as an early prognostic 76 

signature 
1
. Besides cell proportion differences, significant differences in age and gender between 77 

groups were found in the discovery dataset (Wilcoxon test p-value < 0.05 for age in severe group 78 

compared to mild and negative individuals, and Fisher’s exact test p-value < 0.05 for gender 79 

proportion in severe group compared with mild group). Methylation plates did not show batch 80 

bias, being the largest bias between cohorts (Supplementary figures 1B and 1D). Based on these 81 

results, differential methylation analyses included as covariates: gender, age and the six major 82 

deconvoluted cell proportions. 83 

Differential analyses were performed by pairs and longitudinally, after translating groups’ severity 84 

to a numerical scale (severity analysis, hereafter). We identified 530 CpGs differentially 85 

methylated in at least one regression model, and replicated in the validation cohort. Out of these, 86 

43 DMCs were found in the severe-negative comparison, 347 in the mild-negative, 20 in severe-87 

mild and 257 in the severity analysis (significant DMCs can be consulted in the Supplementary 88 

Files). We observed high degree of sharing between DMCs obtained in different comparisons 89 

(Figure 1B), except for the severe-mild DMCs which did not overlap with any of the other analyses 90 

results’. These specific DMCs from the severe-mild analysis were hypermethylated in the severe 91 

condition. Overall, 24 DMCs, annotated into 17 different genes were shared between severe-92 

negative, mild-negative and with the severity analyses (Figure 1B and 1C), which give a general 93 
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idea of the epigenetic contribution to the progression of COVID-19. Most of the shared signatures 94 

are related to the activation of the viral defense type I interferon inducible genes (OAS1-OAS2 95 

hypermethylated and PARP9-DTX3L, IFIT3, IRF7, TRIM22, MX1 hypomethylated), the 96 

hyperactivation of B and T lymphocytes (CD38, EPSTI1, LAT hypomethylated), and others, as EDC3, 97 

known to interact with ACE2 
11

. 98 

DMCs localization enrichment analysis showed that hypermethylated changes related to SARS-99 

CoV-2 infection are more prone to occur outside CGIs and in introns and in enhancers for the 100 

hypomethylated sites (Supplementary Figure 2A). These genomic regions are known to be hot-101 

spots of DNA methylation changes 
12

. However, most of the DMCs found in these analyses 102 

colocalize around the TSS (Transcription Start Site) and/or in the 5’-UTR of the nearest gene 103 

(Supplementary Figure 2B), due to the EPIC array probe selection. This probe’s preferential 104 

location facilitates the interpretation of the results, as hypermethylation and hypomethylation in 105 

5’-end regions of the genes is directly related to the inactivation and activation of gene expression, 106 

respectively 
13

. 107 

COVID19 disease DNA methylation changes in neutrophils, B-lymphocytes and CD8+ T-108 

lymphocytes regulate autoimmune and viral defense related functional pathways 109 

Functional enrichment analyses based on Reactome pathway database was performed taking into 110 

consideration the groups compared and the direction of the effects. An enrichment of 111 

hypomethylated signals at interferon-inducible genes, herein called IFN signature, and enrichment 112 

of hypermethylated signals at genes involved in FCGR phagocytosis and CD209 signaling (DC-SIGN) 113 

was observed when positive SARS-CoV-2 are compared to negative SARS-CoV-2 individuals (Figure 114 

2A). The activation of IFN signature genes is related with an active viral infection and in particular 115 

with SARS-Cov-2 infection 
10

. However, at DNA methylation level the impaired interferon response 116 
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between mild and severe cases found at the transcriptional level 
14

 cannot be observed 117 

(Supplementary Figure 3). This suggests that the exhaustion of the interferon signature might be 118 

controlled at a different regulatory level.  119 

We performed interaction analysis between deconvoluted cell proportions and severity groups to 120 

identify which blood cell type is contributing to the epigenetic signatures. Our results suggest that 121 

interferon associated hypomethylation changes were mainly due to neutrophils and CD8+ T-122 

lymphocytes (Figure 2B), while hypermethylation changes are primarily related to B-lymphocytes 123 

(Figure 2B) which in turn, might be related with the inactivation of CD209 signaling (Figure 2A). 124 

CD8+ T-lymphocytes also showed a number of significant hypermethylated interactions (Figure 2B) 125 

that may be related with the inactivation of FCGR3A phagocytosis-related genes in these cells 126 

(Figure 2A). Lastly, in the severe-mild analysis, methylation changes of the PIP3 activated AKT 127 

signaling pathway differentiate severe from mild COVID-19 patients (Figure 2A). Genes related 128 

with this pathway are hypermethylated in severe cases compared with mild COVID-19 cases, being 129 

CD8+ T-lymphocytes the major contributors to these changes (Figure 2B). 130 

Finally, enrichment analyses were performed to assess to which other phenotypes or diseases the 131 

COVID-19 DMCs had been associated. For that, we used the information gathered in the EWAS 132 

Atlas catalog 
15

. Except for severe-mild DMCs, the other 3 comparisons showed DNA methylation 133 

changes in CpGs that were previously associated with different autoimmune conditions, allergy 134 

conditions, and an asthma related trait (as fractional exhaled nitric oxide test), but also with 135 

differential respiratory related environmental exposures (air pollution and polybrominated 136 

biphenyl exposure) and/or comorbidities that reflect lifestyle habits as body mass index, smoking 137 

or alcohol consumption (Figure 2C). 138 
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Respiratory environmental related epigenetic changes differentiate severe and mild COVID-139 

19 patients and mild COVID-19 cases from systemic autoimmune disorders 140 

Significant DMCs from all the differential analyses performed were clustered together based on 141 

their methylation profile grouped by COVID-19 severity and divided into the two recruited cohorts 142 

(Figure 3A). Hierarchical clustering reveals that, aside from the significant values obtained in the 143 

linear regression models, not all trends of DMCs methylation changes are exactly replicated in 144 

both cohorts. Thus, 4 DMC modules were obtained based on the hierarchical clustering where 145 

DNA methylation changes were stable: S.Ho, composed by CpGs with a hypomethylation profile 146 

along COVID-19 severity; S.He, characterized by a hypermethylation profile along COVID-19 147 

severity; M.Ho, in which hypomethylation events are observed in mild as compared with severe 148 

cases; and M.He, in which hypermethylation occurs in mild as compared with severe cases. 149 

In summary, Reactome pathway enrichment analysis done on the 4 modules (Figure 3B) replicated 150 

the previous enrichments found for the DMCs grouped in the linear regression analysis (Figure 151 

2A). Interestingly, a new additional pathway appeared to be enriched in the S.He module, related 152 

with potential therapeutics for SARS, which suggests that several of the proposed therapeutic 153 

targets for SARS infection are based on the activation of hypermethylated molecular pathways 154 

during the course of the COVID-19 disease. In order to validate the activation or inactivation of the 155 

enriched pathways revealed by means of the DNA methylation changes, Reactome pathways 156 

activity was estimated based on single-cell RNA-Seq information from publicly available analyses 157 

16,17
. The analysis was focused on the cell-types that mostly contribute to the DNA methylation 158 

changes: CD8+ T-lymphocytes, B-lymphocytes and neutrophils, as revealed from the interaction 159 

results (Figure 2B). In general, molecular pathway activities follow the DNA methylation changes at 160 

early sampling time points, which correspond to our recruited cohorts. This is, that pathways that 161 

show hypomethylation in certain group(s) of individuals coincide with a higher transcriptome 162 
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activity compared with the hypermethylated groups, at least in the cell-types in which the change 163 

has been predicted to be occurring (Supplementary Figure 4). For example, the FCGR3A 164 

phagocytosis pathway (enriched in S.He module) activity is decreased with the severity of the 165 

disease in CD8+ T-lymphocytes, while the interferon signaling (enriched in S.Ho module) activity is 166 

increased with the severity. Certainly, at the transcriptome level, the interferon exhaustion 167 

signature associated with severe cases, not previously seen at the DNA methylation level 168 

(Supplementary Figure 3), can be appreciated for B-lymphocytes and CD8+ T-lymphocytes. 169 

On the other hand, EWAS Atlas catalog enrichments were performed by modules, revealing that 170 

autoimmune and asthma related traits are mostly enriched in S.Ho and S.He modules, while the 171 

differential respiratory environmental related traits were mostly enriched in the M.He module. 172 

This M.He module differentiates severe and mild COVID-19 cases, suggesting an important 173 

contribution of the respiratory environmental exposure to the progression of COVID-19 disease, at 174 

least at the DNA methylation level. 175 

TFBS motif analysis reveals specific TFBS motifs enriched for the different modules (Figure 3D). 176 

S.Ho module was mainly enriched in interferon regulatory TFBSs, in line with the Reactome 177 

pathway enrichment results, and among the other results stands out the enrichment of the CEBP 178 

motif in M.He module. CEBP is a transcription factor related with the inflammatory immune 179 

response by cooperating with and stimulating the transcription of different pro-inflammatory 180 

cytokines 
18

, among others, IL-6. 181 

Given the potential relationship of COVID-19 affected molecular pathways and autoimmune 182 

disorders, DNA methylation profiles were compared between COVID-19 and the PRECISESADS 183 

collection 
19

, which includes DNA methylation information from seven SADs (Figure 3E). Both, 184 

severe and mild related DNA methylation changes correlate with systemic autoimmune disorders 185 
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for S.He module, with a slightly higher intensity in severe COVID-19 patients. S.Ho module 186 

correlations are also significantly positive, except for RA and SSc comparison with mild cases, 187 

which present no significant correlations. RA and SSc patients are known not to be frequently 188 

expressing the IFN signature, enriched in S.Ho module 
20

. Thus, this result might be related with 189 

the presence of two signatures contributing to this module, one related with the interferon, which 190 

highly correlates with most interferon related SADs, and another one that correlates between 191 

severe, RA and SSc. In order to further investigate the differential correlation between SADs in this 192 

particular module, strongest hypomethylated CpGs in interferon related SADs and COVID patients 193 

(logFC < -0.25) corresponding with IFN signature genes, were removed from the correlation 194 

analyses (annotated in TRIM22-TRIM5, PARP9-DTXL3, RUNX1, IFIT3, IRF7, EPSTI1, MX1 and ADAR 195 

genes). The correlation without these CpGs shows a dramatic reduction for interferon related 196 

SADs, while RA and SSc correlations with severe cases are preserved (Supplementary Figure 5). 197 

This means that the remaining CpGs (annotated in genes as CCDC61, CD38, FAM38A, LAT, TREX1 198 

or NFAT5, among others) differentially contribute to COVID19 progression similarities with SADs, 199 

some of them regulating the activation and differentiation of T and B lymphocytes. On the other 200 

hand, M.He module shows a strong correlation for severe and a strong anti-correlation with mild 201 

cases, thus differentiating mild cases from SADs. Lastly, M.Ho correlation results do not show 202 

significant correlation values. 203 

DNA methylation changes that differentiate mild and severe COVID19 cases show low 204 

genetic contribution and mQTLs enriched in SNPs associated with environmental traits 205 

As the DNA methylation modules that mostly differentiate severe and mild cases (M.He) were 206 

mainly associated with environmental traits, we next interrogated whether there is genetic 207 

contribution behind these epigenetic changes, and how genetics contribute to the DNA 208 

methylation modules. In this sense, DNA methylation heritability was calculated for each CpG in 209 
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the modules. Two independent methods showed high agreement in heritability calculation 210 

(Supplementary Figure 6A), so for the subsequent analysis variance decomposition model was 211 

selected. Genetic contribution to methylation variability was shown to contribute differentially 212 

between modules, being larger in S.Ho and S.He than in M.Ho and M.He modules (Figure 4A). This 213 

is in agreement with the higher environmental contribution to M.He shown by EWAS traits 214 

enrichments. Additionally, covariates as SARS-CoV-2 infection, age and gender were shown not to 215 

modify the genetic contribution to DNA methylation changes (Supplementary Figure 6B). S.Ho and 216 

S.He modules were the most affected by SARS-CoV-2 infection, while M.Ho and M.He variation 217 

might be driven by other covariates or environmental factors that, unfortunately, were not 218 

recorded in these cohorts (Supplementary Figure 6C). 219 

In order to further investigate the genetic contribution to the DNA methylation changes observed 220 

during COVID-19 progression, cis-mQTLs (methylation quantitative trait loci) were assessed 221 

(significant results can be consulted in Supplementary Files). Linear regression models were fit 222 

independently for each severity group (FDR < 0.05 for at least one group), showing that around 223 

50% of the CpGs in each module were associated with at least one SNP (Supplementary Figure 6D). 224 

In total, 7899 unique mQTLs were found to be significant for at least one of the severity groups, 225 

composed of 7548 SNPs and 175 CpGs (out of 352 DMCs) with an average of 45±84 SNPs by CpG, 226 

what indicates that almost half of the DNA methylation changes found are being regulated by 227 

large blocks of SNPs in cis. mQTLs were classified according to the SNP-CpG association 228 

significance by severity groups, then labeling for example: a mQTL as mild specific, when the 229 

significant association (p-value < 0.05) was only found in COVID-19 mild cases, or positive specific, 230 

when both mild and severe cases showed a significant association (Figure 4B). mQTLs classification 231 

showed a differential genetic regulation by module (Figure 4C), where methylation changes, which 232 

follows COVID-19 progression (S.Ho and S.He modules), were enriched in mQTLs shared by all the 233 
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severity groups (common mQTLs), which means that the genetic regulation of these DNA 234 

methylation changes does not depend on the severity of the disease but are a general regulatory 235 

mechanism. On the other hand, mQTLs in M.Ho and M.He modules were mostly identified as 236 

group-specific mQTLs, with a large fraction of mild and positive specific in M.He module, and mild, 237 

severe and severe/negative specific in M.Ho module. The genetic regulation specificity of M.He is 238 

also supported by significant differences of the normalized MAF (each group minor allele 239 

frequency divided by all groups’ minor allele frequency) for the mild and positive specific mQTLs 240 

(Figure 4D). MAF in positive specific mQTLs showed a higher frequency in mild and severe groups 241 

compared to negative individuals, while the mild specific mQTLs showed a higher MAF in mild 242 

cases. Surprisingly, MAF differences were found between mild compared to severe and negative 243 

individuals for common and positive specific mQTLs in S.Ho modules, which might indicate a 244 

differential genetic regulation also for mild individuals for the S.Ho signature (Figure 4D). 245 

The enrichment of the significant mQTLs by module were tested for SNPs previously known to be 246 

associated with different traits. In this sense, mQTLs trait enrichments were performed 247 

considering the GWAS catalog database 
21

 and the COVID-19 associated SNPs from the COVID-19 248 

Host Genetics Initiative 
5,22

. The results showed a strong enrichment of SNPs associated with 249 

COVID-19 and interferon related autoimmune diseases (Systemic Lupus Erythematosus) in the 250 

mQTLs regulating the S.Ho module and SNPs associated with non-interferon related autoimmune 251 

diseases in the S.He module (Figure 4E). On the other hand, M.He mQTLs were enriched with 252 

environmental related SNPs (Figure 4E), mimicking the enrichments shown above for the EWAS 253 

catalog. Interestingly, two different COVID-19 GWAS regions are regulating the S.Ho and S.He 254 

modules. In the case of the S.Ho module, its cis-mQTLs are composed of SNPs at 3p21.31 GWAS 255 

peak 
22,23

, found to be associated in severe, hospitalized and in general SARS-CoV-2 lab positive 256 

tested patients compared with the general population. While S.He module is enriched in SNPs 257 
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located at 8q24.13 GWAS peak 
22

, only found to be statistically significant in hospitalized COVID-19 258 

patients compared to general population 
22

. 259 

Discussion 260 

The EWAS of SARS-CoV-2 infection reveals a DNA methylation regulation of important functional 261 

pathways related with COVID-19 progression and specific epigenetic differences between severe 262 

and mild patients. Differentially methylated CpG sites were shared between severe and mild cases, 263 

mainly associated with the activation of interferon signaling pathway and the hyper-activation of B 264 

and T lymphocytes. These pathways have been previously associated with COVID-19 severity in 265 

transcriptome studies 
10,24

, showing in this study that the regulation of these pathways is being 266 

mediated by epigenetic changes at the promoter level of the implicated genes (Figure 1). 267 

Apart from the DMCs shared between the differential analyses, the pathways enrichment analysis 268 

for the individual regression models showed the epigenetic deregulation of specific pathways as 269 

CD209 signaling (DC-SIGN), FCGR phagocytosis pathway and AKT signaling in specific blood cell-270 

types (Figure 2). CD209 is primarily expressed in dendritic cells and B-lymphocytes, and its 271 

interaction with CD209L, expressed in SARS-CoV-2 target tissue endothelial cells, has been shown 272 

to facilitate the virus entry 
25

. Thus, CD209 signaling hypermethylation might be playing a 273 

protective role during SARS-CoV-2 infection. Additionally, CD209 activation has been shown to 274 

promote B-lymphocyte survival 
26

. However, this process does not seem to be occurring in SARS-275 

CoV-2 infection as shown by the B-lymphocyte depletion observed in the deconvolution analysis 276 

(Figure 1A). FCGR phagocytosis pathway is involved in the antibody-antigen complex clearance and 277 

the antibody dependent cellular mediated cytotoxicity. CD8+ T-lymphocytes expressing FCGR3A 278 

(CD16) have been described to acquire natural killer (NK) cell-like functional properties, thus 279 

contributing to their cytotoxic functionality, increased in chronic hepatitis C virus infections 
27

.  280 
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Recently, suppression of cytotoxic activity has been described on CD8+ T-lymphocytes and NK-cells 281 

from severe COVID-19 patients 
28

, which in the light of our DNA methylation results might be 282 

impaired because of the DNA hypermethylation of genes of the FCGR3A phagocytosis pathway. 283 

Based on our results, these two pathways seem to be associated with the progression of the 284 

disease, showing significant DNA methylation changes along its course. On the other hand, gene 285 

promoters related with the AKT signaling pathway were specifically found to be differentially 286 

methylated when compared severe and mild cases (hypomethylated in mild), thus differentiating 287 

at the epigenome level severe from mild SARS-CoV-2 infected patients. AKT signaling in CD8+ T-288 

lymphocytes is critical for the effector-memory transition of this cell-type 
29

, thus impairing the 289 

protective immune secondary response and potentially contributing to the worst outcome. Other 290 

important genes, not annotated in these pathways, were found to show methylation differences, 291 

as for example EDC3. Interestingly, hypermethylation of EDC3 in severe cases might be mediating 292 

the overexpression of ACE2 protein in SARS-CoV-2 patients, thus favoring infection 
3
. EDC3 is a 293 

component of a decapping complex that promotes removal of the monomethylguanosine (m7G) 294 

cap from mRNAs, being an important protein during mRNA degradation, and its interaction with 295 

ACE2 has been experimentally validated and shown with STRING interaction network 
30

. 296 

In addition to the COVID-19 EWAS results, DMCs were grouped by hierarchical clustering and 297 

filtered by cohorts’ similarity (Figure 3). Four modules of co-regulated CpGs were found, where 298 

three of them are enriched in the functional pathways previously described. CD209 and FCGR 299 

phagocytosis pathways (S.He module) are hypermethylated with the severity of the disease, and 300 

both severe and mild cases, perfectly correlate with DNA methylation changes observed in SADs. 301 

Hypomethylation along COVID-19 severity module (S.Ho) was found to be composed by two 302 

signatures, an interferon related signature which correlates with interferon related systemic 303 

autoimmune diseases (as MCTD, SLE or pSjS) at both severe and mild cases, and a T and B 304 
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lymphocyte activation signature, which correlates mainly with non-interferon related SADs (RA 305 

and SSc) for severe cases. The AKT signaling pathway was also represented in the mild 306 

hypomethylated module (M.Ho). The fourth module, hypermethylated in mild cases (M.He), is of 307 

particular interest. It perfectly discriminates between severe and mild COVID-19 cases, and severe 308 

DNA methylation changes are highly correlated with autoimmune conditions. Additionally, and in 309 

contrast to the other CpG modules, its CpGs have not been related with autoimmune conditions 310 

but with respiratory environmental conditions. Further analyses on this module revealed an 311 

enrichment in CEBP binding sites (Supplementary Figure 6C). CEBP transcription factor has an 312 

important role regulating IL-6 and IL-1 expression, whose elevated levels have been associated 313 

with severe complications of COVID-19 disease 
4
. This result shows a reduced activity of CEBP 314 

binding sites in mild cases compared with the severe ones, in a module where DMCs are enriched 315 

in respiratory environmental traits. Altogether, our results suggest the existence of a relationship 316 

between environmental exposure and the cytokine storm associated with the most critical 317 

outcomes of COVID-19 disease. 318 

The genetic regulation of COVID19 associated DNA methylation changes were also studied, finding 319 

important differences between modules (Figure 4). In addition to a lesser genetic contribution to 320 

the DNA methylation changes in M.Ho and M.He modules, the mQTLs associated to these modules 321 

showed more group specificity than S.Ho and S.He modules. Importantly, GWAS catalog 322 

enrichments for the mQTLs showed again a predominance of environmental traits related SNPs for 323 

the M.He module, which reinforces the idea of the importance of the environmental exposure 324 

during the regulation of the DNA methylation changes in this module. 325 

This study is the first in depth large EWAS comparing SARS-CoV-2 RT-PCR positive and negative 326 

individuals. The results show a large epigenetic regulation of autoimmune related functional 327 

pathways during COVID-19 progression that differentiate severe from mild COVID-19 cases. Some 328 
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of these autoimmune related pathways presented DNA methylation differences between severe 329 

and mild cases with less genetic contribution, but with higher genetic specificity than changes that 330 

progress with the severity of the disease. Interestingly, these specific epigenetic changes were 331 

mainly related, in terms of DNA methylation sites and SNPs regulating these sites, with 332 

environmental traits. Thus, in the light of the results, the interaction between specific genetic 333 

changes and different environmental exposure or life habits might be deregulating, via DNA 334 

methylation changes, autoimmune related functional pathways which are related with the 335 

worsening of SARS-CoV-2 infection. Despite the relationship between environmental exposure and 336 

COVID-19 severity has been suggested in previous epidemiological studies, this is the first time 337 

that this relationship is supported by genetic and epigenetic molecular information, thus, 338 

contributing to the understanding of the disease at the molecular level. Of special importance is 339 

the association of these environmental related DNA methylation changes with the cytokine storm 340 

typical of the most severe COVID-19 cases. 341 

Methods 342 

Study design and cohorts 343 

Whole blood samples from SARS-CoV-2 RT-PCR negative (101) and positive lab tested individuals 344 

(473) were obtained from two clinical centers (Hospital Clínico Universitario de Valladolid, 345 

discovery cohort and Hospital Regional Universitario de Málaga, validation cohort). The regional 346 

ethical committees from Andalucía (Comité Coordinador de Ética de la Investigación Biomédica de 347 

Andalucía) and from Valladolid (COMITÉ DE ÉTICA DE LA INVESTIGACIÓN CON MEDICAMENTOS 348 

ÁREA DE SALUD VALLADOLID) approved the protocols and gave their ethical approval for this 349 

study and all recruited individuals signed the informed consent prior to recruitment. Whole blood 350 

was sampled upon arrival to the emergency ward, within a week after first symptoms. Discovery 351 
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and validation cohorts were recruited between March-April 2020 and August-October 2020, 352 

respectively. Positive individuals were divided into: severe (WHO 5-7), if they needed invasive 353 

respiratory support, ICU admission and/or died due to SARS-CoV-2 complications, and mild (WHO 354 

2-4), if patients did not develop severe COVID-19 related symptoms. Severity groups between 355 

cohorts were gender balanced, but slightly significant differences were found in terms of age 356 

(Table 1). 357 

Genomic Analysis 358 

DNA extraction 359 

DNA was extracted from whole blood samples by means of the QIAamp DNA Blood Mini kit and 360 

the automatic platform QIAcube Connect. Afterwards, DNA quality was validated and normalized 361 

using the NanoDrop 2000c and the Qubit4. 362 

Genotyping 363 

DNA was normalized to 200-400ng and genotyped with Illumina's Infinium GSA-24.v3.0 BeadChip, 364 

following manufacturer’s recommendations. Markers with genotyping rate > 99%, minor allele 365 

frequency > 1% and a p-value for Hardy-Weinberg Equilibrium > 1e-6 were selected. Samples 366 

showing genotyping rate < 98%, inconsistencies between reported and genetic sex and extreme 367 

heterozygosity values (-0.2 < Fhet < 0.2) were eliminated. The kinship coefficient was calculated 368 

for each pair of samples and one member of each pair with a value >= 0.2 was removed. Based on 369 

a set of Ancestry Informative Markers (markers which maximize the allelic frequencies across 370 

1000Genomes populations), individuals with non-European ancestry components were 371 

eliminated. The resulting dataset from this quality control process was imputed in the Michigan 372 

Imputation Server 
31

, using Minimac4 and 1000Genomes as reference panel 
32

. After subsequent 373 

filtering of the imputation result we obtained a working dataset consisting of 504 samples and 374 
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more than 9.5 million markers. Quality control of the genotyped data was performed with Plink2.0 375 

33
. 376 

Methylome profiling 377 

DNA methylation information was profiled with the Illumina's Infinium MethylationEPIC BeadChip, 378 

after sample normalization to 500ng and bisulfite conversion with EZ-96 DNA Methylation Kit, as 379 

recommended by the manufacturer. Methylomes were quality controlled by genotype 380 

concordance (>= 0.8) using shared SNP probes between platforms (genotypes were extracted after 381 

imputation but without post filtering), gender prediction agreement (outliers > 5 standard 382 

deviations), signal from noise detection p-value < 0.1 and minimum number of beads (>3) that 383 

passed the detection p-value, the last two criteria were applied for both probes and samples. 384 

Additionally, sexual chromosomes, cross-reactive probes and probes with overlapping SNPs from 385 

dbSNP v.147 
34

 were discarded. Methylation beta values were normalized by means of functional 386 

normalization. After quality control, 574 samples and 768,067 probes were selected. The entire 387 

process was performed with minfi and meffil R packages 35,36. 388 

Statistical Analysis 389 

Deconvolution of cell proportions 390 

Iterative hierarchical procedure implemented in EpiDISH R package 37 was used to estimate the 391 

main blood cell type proportions from methylome information with the robust partial correlation 392 

method 
38

. Whole blood cell type reference panel includes: neutrophils, monocytes, B-393 

lymphocytes, CD4+ T-Lymphocytes, CD8+ T-Lymphocytes and natural killer cells. 394 

Differential and interaction analysis 395 

Differential methylation analyses were performed by linear regression models, including gender, 396 

sex and deconvoluted cell-proportions as covariates. Linear regression models including 397 
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interaction terms between the groups of interest and deconvoluted cell proportions, were used to 398 

estimate the specific cell type(s) where the methylation changes occur, as proposed by Zheng et al 399 

39
. Methylation changes and interactions were considered significant at nominal p-values below 400 

0.01 in discovery and validation datasets, and below a genome wide significant level of 5e-8 in the 401 

meta-analysis of both cohorts. Meta-analyses were performed with the restricted maximum 402 

likelihood (REML) method and fixed effects implemented in metafor R package 
40

. 403 

Enrichment, correlation and co-localization analysis 404 

DMCs (Differentially methylated CpGs) and/or genes that co-localized with them, based on the 405 

Illumina annotation (ilm10b4.hg19 R package), were analyzed. Functional pathway analysis were 406 

performed against Reactome Pathway Database 41 using ReactomePA R package 42. EWAS trait 407 

enrichments were tested within the EWAS Atlas database 
15

. PRECISESADS methylomes 
19

 from 408 

seven SADs (SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; pSjS, primary Sjögren’s 409 

syndrome; SSc, systemic sclerosis; MCTD, mixed connective tissue disease; PAPS, primary anti-410 

phospholipids syndrome and UCTD, undifferentiated connective tissue disease) and healthy 411 

controls were used to compare with COVID-19 epigenetic changes. TFBS (transcription factor 412 

binding site) motif enrichment analysis was performed with HOMER software 43 using a size of 200 413 

nucleotides and including as background the CpGs interrogated with the EPIC array. 414 

Molecular pathway activity analysis 415 

Single-cell RNA-Seq datasets were obtained from Schulte-Schrepping et al. 17
 (BD Rhapsody system 416 

dataset, including neutrophils) and Ren et al. 16
 (10x Genomics chromium dataset, not including 417 

neutrophils). Cells from both datasets were selected based on: mitochondrial read percentage < 418 

5%, hemoglobin read percentage < 1%, number of reads > 500 and < 6000, and number of genes 419 

profiled between 200 and 2000. After the quality criteria filtering, almost all non-neutrophil cells 420 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.03.21260184doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.03.21260184
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

were lost from Schulte-Schrepping et al. dataset. Thus, CD8+ T-lymphocytes and B-lymphocytes 421 

were analyzed from the Ren et al. dataset and neutrophils from the Schulte-Schrepping et al.. 422 

Individuals were classified as early or late based on Schulte-Schrepping et al. definition (late, 423 

sampling >11 days after first symptoms) and authors ’defined cell-type annotation was used to 424 

select two subsamples of 2500 cells for each cell-type (500 cells per severity group and onset 425 

category). Molecular pathway activity values were estimated by means of ssgsea algorithm 426 

implemented in escape R package 44. HLA and Immunoglobulin genes were removed from the 427 

Reactome pathways before activity calculation. 428 

Genetic statistical analyses 429 

Overall genetic contribution to DNA methylation changes (heritability, h2) was estimated by 430 

means of two models: one based on variance decomposition analysis from a linear mixed-model 
45

 431 

and the other one using the diagonalization trick 
46

. The kinship matrix for the former model was 432 

calculated by means of popkin R package 
47

, while for the diagonalization trick estimation, gaston 433 

R package recommendations were followed 
46

. Methylation quantitative trait loci (mQTLs) 434 

analyses were performed using the matrix-eQTL R package 
48

. We applied a linear regression 435 

model that tests the additive effects of allele dosages for each genetic variant on the DNA 436 

methylation levels, while correcting for age, sex, the deconvoluted cell proportions and the first 437 

two genetic principal components. We restricted analysis to cis-mQTL mapping (maximum 438 

distance between CpG and SNPs of 1Mb) and SNPs with minor allele frequencies (MAF) > 0.05. cis-439 

mQTL analyses were performed independently on the different severity groups, using a FDR < 0.05 440 

as significance threshold. Significant mQTLs were classified as common or specific QTLs based on 441 

whether the association nominal p-values were below 0.05 for all the severity groups or not. Then 442 

classifying non-common QTLs based on the severity groups that pass the threshold (QTL effects 443 

were took into consideration what might result on shared significant QTLs between groups but 444 
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with opposite effects). mQTLs enrichments were tested against SNP associated traits from the 445 

GWAS catalog database 
21

 expanded with COVID-19 Host Genetics Initiative results 
5,22

. GWAS 446 

catalog traits were selected based on studies with a replication cohort and at least 50 SNPs below 447 

the genomic significant threshold (p-value < 5e-8). Traits annotation into mQTLs were performed 448 

based on linkage-disequilibrium blocks by means of PLINK1.9 software 
33,49

, applying blocks 449 

function 
50

 default parameters in a maximum window size of 1MB. 450 

Data availability 451 
Genotypes summary statistics can be accessed through COVID-19 Host Genetic Initiative web page 452 

(https://www.covid19hg.org/), included in project “Determining the Molecular Pathways and 453 

Genetic Predisposition of the Acute Inflammatory Process Caused by SARS-CoV-2 (SPGRX)”. 454 

Methylation data are available from Gene Expression Omnibus (GEO) at XXXXXXXX. 455 
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Figure 1: COVID19 severity correlates with an increase in blood neutrophil proportion and 624 
epigenetic changes in genes related with the innate immune response. (A) Methylome 625 
deconvoluted blood cell proportions are plotted by cohort (left panel discovery, right panel 626 
validation) and severity group (blue, negative SARS-CoV2 lab tested individuals; yellow, positive 627 
individuals with mild symptoms and red, positive individuals with severe symptoms). Paired 628 
differences were assessed by means of linear regression analysis (age and gender were included as 629 
covariates) and significance values plotted by pairs (

.p-value < 0.05, 
*p-value < 0.01 and 

**p-value < 630 
1e-5). (B) Venn diagram with the number of significant shared DMCs across the differential 631 
analysis performed (the number of annotated genes are included in parentheses). (C) Combined 632 
manhattan plots are shown for the differential analysis that share DMCs, hypermethylated and 633 
hypomethylated DMCs are divided into upper and lower side of the manhattan plot respectively. 634 
Genes annotated for the shared DMCs are depicted, including, in parentheses their co-localization 635 
with the annotated gene (TSS, Transcription Start Site: Body, gene body). Severe vs negative 636 
(blue), mild vs negative (green), severe vs mild (yellow) and pseudotime longitudinal analysis (red). 637 

 638 

Figure 2: COVID19 DNA methylation changes regulate autoimmune related functional pathways 639 
and associate with environmental respiratory related traits. (A) Top 10 significant reactome 640 
database pathways (p-value < 0.01) are shown by differential analysis. (B) Number of DMCs with 641 
significant interactions for each deconvoluted cell-type proportion (red, B-cells; blue, CD4+ T-cells; 642 
orange, CD8+ T-cells; purple, monocytes; blue, neutrophils and green, NK-cells) are split into 643 
hypermethylated (upper panels) and hypomethylated (lower panel) and divided into the 644 
differential analysis. (C) EWAS traits enrichments (p-value < 1e-10) for each differential analysis 645 
are shown (MethBank database). 646 
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 647 

Figure 3: Epigenetic changes in CpGs associated with environmental respiratory traits 648 
differentiate COVID19 progression and mild cases from autoimmune disorders. (A) Hyerarchical 649 
clustering of methylation DMCs for both discovery and validation cohorts (Ward’s hierarchical 650 
agglomerative clustering with Pearson correlation as distance is used). Individual methylation 651 
values are averaged by severity from severe cases (top), mild cases (middle) to negative lab tested 652 
SARS-CoV2 (bottom). The annotations in the upper part of the plot refer to the analysis to which 653 
each CpG is differentially methylated (black). Four CpG modules highly replicated between 654 
cohorts, were selected from the hierarchical clustering: S.Ho (Hypomethylated with the severity), 655 
S.He (Hypermethylated with the severity), M.Ho (Hypomethylated in mild compared with severe 656 
patients) and M.He (Hypermethylated in mild compared with severe patients and healthy 657 
controls). (B) Reactome significant pathways by CpG module (p-value < 0.01) are shown. (C) 658 
MethBank EWAS trait enrichment by CpG module (p-value < 1e-10) are shown. (D) Significant 659 
overrepresentation of transcription factor binding site prediction (HOMER, p-value < 0.001) is 660 
depicted by CpG module. (E) Average log2FC Pearson correlations between COVID19 severity 661 
groups and seven different systemic autoimmune conditions (SLE, systemic lupus erythematosus; 662 
RA, rheumatoid arthritis; pSjS, primary Sjögren’s syndrome; SSc, systemic sclerosis; MCTD, mixed 663 
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connective tissue disease; PAPs, primary antiphospholipid syndrome and UCTD, undifferentiated 664 
connective tissue disease). DMCs are grouped by CpG modules. 665 

 666 

Figure 4: Genetics contributes differentially to progressive and mild specific DNA methylation 667 
changes. (A) Genetic contribution in terms of the fraction of the variance explained (heritability, 668 
h2) of individual CpG methylation changes is shown by DNA methylation module. Statistical 669 
differences are assessed by means of Wilcoxon test p-values. (B) Three significant mQTLs 670 
regulating DNA methylation levels are shown divided by severity group and genotype. From left to 671 
right, a common mQTL for all three severity groups in the S.Ho module, a positive specific mQTL 672 
and a mild specific mQTL for M.He module are depicted. (C) Fraction of mQTL categories are 673 
plotted by module and for all significant DMCs together. (D) Normalized MAFs for the largest 674 
mQTL categories (common mQTLs, positive specific mQTLs and mild specific mQTLs) represented 675 
in at least three modules (S.Ho, S.He and M.He) are shown divided by severity group. Wilcoxon 676 
test p-values were calculated between severity groups. (E) Enrichment of GWAS catalog and 677 
COVID-19 Host Genetics Initiative associated SNPs are shown by CpG module (p-value < 1e-10). 678 
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Supplementary Figures 679 

 680 

Supplementary Figure 1: Technical batch effect does not bias the methylation profiles. t-SNE 681 
analysis of the 10.000 most variable CpGs (based on the DNA methylation absolute deviation 682 
mean) is shown colored by different variables: (A) severity groups, (B) neutrophil proportion, (C) 683 
cohorts and (D) technical batch. 684 

 685 

Supplementary Figure 2: Hypomethylated and hypermethylated DMCs are mostly enriched and 686 
colocalized with gene regulatory elements, which tend to activate and inactivate in cis gene 687 
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expression levels. (A) Significant DMCs enrichment from each differential analysis across different 688 
regulatory elements (annotatr R package). Hypermethylated and hypomethylated DMCs are 689 
divided into left and right panels, respectively. Each DMC is allowed to be annotated in more than 690 
one of the following features: 1 to 5kb, region between 1-5kb upstream from the TSS; promoters, 691 
region at less than 1kb upstream, from the TSS; 5’ UTR region; first exon; CDS, protein coding 692 
regions; exon; intron; exon-intron boundaries; intron-exon boundaries; 3’ UTR region; intergenic, 693 
not colocalized with any gene annotation; CGI, CpG island; CGI shores, at less than 2kb of a CGI; 694 
CGI shelves, at 2-4kb of a CGI; interCGI, not colocalized with any CGI annotion; lncRNA genes, 695 
GENCODE long non-coding gene annotation and enhancer, colocalized with FANTOM5 enhancer 696 
database annotation. Enrichment score is defined as the log2FC between the fraction of 697 
colocalized DMCs and the CpGs in the EPIC array. Significance was calculated by means of a Fisher 698 
exact test (

.p-value < 0.05, 
*p-value < 0.01 and 

**p-value < 1e-5). (B) Fraction of colocalized DMCs 699 
by differential analysis for ranked gene features obtained from the EPIC array annotation (each 700 
DMC is assigned to one feature according to: TSS, transcriptions start site > 5’ UTR > 3’ UTR > Body, 701 
gene body not in the previous features > Intergenic, not assigned to any gene). 702 

 703 

Supplementary Figure 3: Interferon exhaustion in severe COVID-19 patients is not regulated by 704 
DNA methylation changes. (A-F) DNA methylation z-scored levels for CpGs colocalized with 705 
interferon gene signature promoters are shown by COVID severity group in discovery and 706 
validation cohorts. Wilcoxon test p-values are depicted by pairs. 707 
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 708 

Supplementary Figure 4: Enriched pathway activity in the CpG modules follow DNA methylation 709 
changes at early SARS-CoV-2 samplings in the cell-types with significant interactions. Reactome 710 
CD209 signaling (A), interferon alpha/beta signaling (B), FCGR3A-mediated phagocytosis (C) and 711 
PIP3 activates AKT signaling (D) activities were calculated per individual with ssgsea R package and 712 
grouped by COVID-19 severity groups at early and late samplings (>11 days after first symptoms) 713 
for B-cells, CD8+ T-cells and Neutrophils. Activities were plotted for two randomly selected subsets 714 
of 2500 cells, 500 cells per group. Wilcoxon test p-values are depicted against healthy controls. 715 
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 716 

Supplementary Figure 5: Progressive hypomethylation during COVID-19 severity CpG module 717 
(S.Ho) is composed of two different functional signatures. (A) logFC correlation plots for severe 718 
and mild COVID-19 cases against two interferon related diseases (MCTD and pSjS) and two non-719 
interferon related diseases (RA and SSc) are shown. Correlation coefficients and p-values are 720 
shown by pairs. (B) logFC correlation plots without strongest hypomethylated CpGs are shown. 721 

 722 

Supplementary Figure 6: Genetic and non-genetic DNA methylation explained variance analyses. 723 
(A) Genetic heritability correlation between two independent methods is shown by CpG module 724 
(Linear mixed-model variance decomposition and Linear mixed-model fitting with the 725 
diagonalization trick were used). Correlation coefficients and p-values are depicted by module. (B) 726 
Genetic heritability correlation between linear mixed-model variance decomposition with and 727 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.03.21260184doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.03.21260184
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

without fixed effect covariates (SARS-CoV-2 infection, gender and age) is plotted. Correlation 728 
coefficients and p-values are depicted by module. (C) Fraction of DNA methylation variance 729 
explained by fixed effect covariates is shown for each CpG module. (D) Fraction of CpGs by module 730 
associated with at least one SNP is shown. 731 

Tables 732 

 
Discovery  

(10 Technical Batches) 

Validation 

(3 Technical Batches) 

 # Age Gender Hospitalized Deceased # Age Gender Hospitalized Deceased 

Negative 47 63 ± 21 20 (43%) - - 54 67 ± 20 27 (50%) - - 

Mild 269 67 ± 15
*

 126 (47%) 216 (80%)
*

 - 91 61 ± 18
*

 48 (53%) 87 (96%)
*

 - 

Severe 98 76 ± 14
*

 126 (47%) 98 (100%) 84 (86%) 15 64 ± 18
*

 126 (47%) 15 (100%) 10 (67%) 

 733 

Table 1: Cohorts’ demographic and clinical information. Number of individuals (#), age average ± standard deviation 734 
(Age), number and percentage of males (Gender), hospitalized individuals (Hospitalized) and deceased individuals 735 
(Deceased) are shown by severity group and cohort. (*) Discovery and validation cohorts showed significant differences 736 
in terms of age in mild and severe groups (Mann-Whitney U test p-value < 0.05) and also in terms of numbers of 737 
hospitalized mild symptoms patients (Fisher exact test < p-value 0.05). 738 
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