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4

Abstract5

Pre-training lays the foundation for recent successes in radiograph analysis sup-6

ported by deep learning. It learns transferable image representations by conducting7

large-scale fully-supervised or self-supervised learning on a source domain. However,8

supervised pre-training requires a complex and labor intensive two-stage human-assisted9

annotation process while self-supervised learning cannot compete with the supervised10

paradigm. To tackle these issues, we propose a cross-supervised methodology named11

REviewing FreE-text Reports for Supervision (REFERS), which acquires free supervi-12

sion signals from original radiology reports accompanying the radiographs. The pro-13

posed approach employs a vision transformer and is designed to learn joint representa-14

tions from multiple views within every patient study. REFERS outperforms its transfer15

learning and self-supervised learning counterparts on 4 well-known X-ray datasets under16

extremely limited supervision. Moreover, REFERS even surpasses methods based on17

a source domain of radiographs with human-assisted structured labels. Thus REFERS18

has the potential to replace canonical pre-training methodologies.19

1 Introduction20

Medical image analysis has achieved tremendous progress in recent years, thanks to the21

development of deep convolutional neural networks (DCNNs) [1, 2, 3, 4, 5]. At the core of22

DCNNs is visual representation learning [6], where pre-training has been widely adopted23

and become the most dominant approach to obtain transferable representations. Typically,24
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a large-scale dataset, also called the source domain, is first used for model pre-training.25

Transferable representations from the pre-trained model are further fine-tuned on other26

smaller downstream datasets, called target domains.27

As one of the most general forms of medical images, radiographs have a great po-28

tential to be used in widespread applications [7, 8, 9]. In order to achieve (or at least29

approximate) radiologist-level diagnosis performance in these applications, it is common30

to transfer learned representations from natural images to radiographs [10, 11], and Ima-31

geNet [12] based pre-training is most widely adopted in this context. On the other hand,32

self-supervised learning [13, 14, 15, 16] has attracted much attention in the community be-33

cause it is capable of learning transferable radiograph representations without any human34

annotations. Both methodologies have been proven to be effective in solving medical image35

analysis tasks, especially when the amount of labeled data in the target domain is quite36

limited. However, in the first approach, there is an inevitable problem, which is the exis-37

tence of domain shifts between medical and natural images. For instance, it is possible to38

introduce harmful noises from natural images as radiographs have a different pixel intensity39

distribution. As for self-supervised learning, to the best of our knowledge, there still exist40

clear performance gaps between radiograph representations learned through self-supervised41

and label-supervised pre-training. To avoid these problems, building large-scale annotated42

radiograph datasets for label-supervised pre-training becomes an essential and urgent issue43

in radiograph analysis.44

Recently, radiologists and computer scientists have managed to build medical datasets45

for label-supervised pre-training at the size of hundreds of thousands of images, such as46

ChestX-ray [11], MIMIC [17] and CheXpert [18]. To acquire accurate labels for radiographs,47

these datasets often rely on a two-stage human intervention process. A radiology report is48

first prepared by radiologists for every patient study as part of the clinical routine. In the49

second stage, human annotators extract and confirm structured labels from these reports50

using artificial rules and existing natural language processing (NLP) tools. However, there51

are two major limitations of this label extraction workflow. First, it is still complex and52

labor intensive. For example, human annotators have to define a list of alternate spellings,53

synonyms, and abbreviations for every target label. Consequently, the final accuracy of54

extracted labels heavily depends on the quality of human assistance and various NLP tools.55
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A small mistake in a single step or a single tool may give rise to disastrous annotation56

results. Second, those human-defined rules are often severely restricted to application-57

oriented tasks instead of general-purpose tasks. It is difficult for DCNNs to learn universal58

representations from such application-oriented tasks.59

In this paper, we propose REviewing FreE-text Reports for Supervision (REFERS)60

to directly learn radiograph representations from accompanying free-text radiology reports.61

We believe abstract and complex logic reasoning sentences in radiology reports provide62

sufficient information for learning well-transferable visual features. As shown in Figure63

1a, REFERS is realized using a set of transformers, where the most important part is64

a radiograph transformer serving as the backbone. The main reason why we choose the65

transformer as the backbone in REFERS is that it not only exhibits the advantages of66

DCNNs, but also has been shown to be more effective [19] because of the self-attention67

mechanism [20]. Moreover, we have found that, in comparison to features generated from68

DCNNs, features from transformers are more compatible with textual tasks.69

Different from aforementioned representation learning methodologies, REFERS per-70

forms cross-supervised learning and does not need structured labels during the pre-training71

stage. Instead, supervision signals are defined by automatically cross-checking the two72

different data modalities, radiographs and free-text reports. Considering in daily clinical73

routine, there is typically a free-text report associated with every patient study, which74

usually involves more than one radiographs. To fully utilize the study-level information in75

each report, we design a view fusion module based on an attention mechanism to process all76

radiographs in a patient study simultaneously, and fuse the resulting multiple features. In77

this way, the learned representations are able to preserve both study-level and image-level78

information. In contrast, only image-level information is addressed in traditional represen-79

tation learning paradigms [11, 13, 14, 15, 16] that use a single image as input. On top80

of the view fusion module, we conduct two tasks, i.e., report generation and study-report81

representation consistency reinforcement, to extract study-level supervision signals from82

free-text reports. To carry out the first task, we apply a decoder, called report transformer,83

to the fused feature with the goal to reproduce the radiology report associated with the84

study. For the second task, we apply our radiograph transformer and an NLP transformer85

to a study-report pair. These transformers produce a pair of feature representations for the86
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patient study and radiology report in the pair, respectively. The consistency between such a87

pair of feature representations within every study-report pair is reinforced via a contrastive88

loss function. Some previous works [21, 22] tried to learn joint text-image representations89

for single-domain medical image analysis tasks. Compared to them, REFERS focuses on90

learning well-transferable image features from study-level free-text reports on a large-scale91

source domain and fine-tuning them on one or more target domains.92

On four well-known X-ray datasets, REFERS outperforms self-supervised learning and93

transfer learning on natural source images in producing more transferable representations,94

often bringing impressive improvements (more than 5%) under limited supervision from95

target domains. This capability can be extremely important in real-world applications as96

medical data is scarce and their annotations are usually hard to acquire. More surprisingly,97

we found that REFERS clearly surpasses those methods that employ a source domain with98

a large collection of medical images with structured labels. In terms of specific abnormal-99

ities and diseases, REFERS is quite effective under extremely limited supervision (< 1k100

annotated radiographs during fine-tuning). For instance, REFERS brings about 9-percent101

improvements on pneumothorax. Meanwhile, over 7-percent improvements are achieved on102

two common lung diseases (atelectasis and emphysema).103

2 Results104

All self-supervised learning (SSL) and label-supervised pre-training (LSP) baselines as well105

as our REFERS are first pre-trained on a source domain of medical images (i.e., MIMIC-106

CXR-JPG [23]). Then, pre-trained models are fine-tuned on each of four well-established107

datasets (target domains with labels), including NIH ChestX-ray [11], VinBigData Chest108

X-ray Abnormalities Detection [24], Shenzhen Tuberculosis [25] and COVID-19 Image Data109

Collection [26]. During the fine-tuning stage, we always perform fully-supervised learning110

on the target domain, which only consists of radiographs with structured labels. Further-111

more, we verify model performance by varying the percentage of actually used training112

images (sampled from the predefined whole training set) in the target domain, and this113

percentage is called label ratio. When the label ratio is 100%, we use the whole training set114

in the target domain for fine-tuning.115
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116

NIH ChestX-ray. Table 1, Supplementary Figures 1a and 2a present experimental results117

from our REFERS and other approaches under different label ratios. As shown in Table 1118

and Supplementary Figure 1a, our approach significantly outperforms self-supervised base-119

lines and transfer learning on natural source images. To be specific, REFERS achieves120

the highest AUC on all 14 classes using different amounts of training data during the121

fine-tuning stage. Moreover, REFERS shows the largest performance improvements with122

respect to these baselines when only 0.8k training images (1% label ratio) in the target123

domain are utilized. For example, REFERS surpasses the widely adopted ImageNet-based124

pre-training [11] by about 7 percents on average. Even when compared to LSP, our REFERS125

still gives quite competitive results. In Table 2, it is easy to find out that the average perfor-126

mance of REFERS actually surpasses LSP, and consistently maintains an advantage of at127

least 2 percents. Compared to self-supervised baselines [13, 14, 15, 16] and ImageNet-based128

pre-training [11], REFERS achieves the largest improvements on emphysema (7 percents)129

and cardiomegaly (> 10 percents), especially under limited supervision. When compared130

to LSP, our method achieves consistent improvements on mass (> 4 percents).131

132

VinBigData Chest X-ray Abnormalities Detection. Our REFERS exhibits more133

advantage on this target domain dataset than it does on NIH ChestX-ray as VinBigData134

comprises a much smaller number of annotated radiographs (about 1
8 of the NIH dataset).135

This phenomenon again demonstrates the ability of REFERS in dealing with limited su-136

pervision. REFERS consistently maintains large advantages over other methods under dif-137

ferent conditions (see Tables 1, 2, Supplementary Figures 1b and 2b). For instance, when138

we only have 105 annotated radiographs (1% label ratio) as fine-tuning data, REFERS sur-139

passes C2L [16], the best performing self-supervised method, by over 7 percents in AUC.140

The performance of REFERS once again surpasses LSP with human-assisted structured141

labels even when all annotated training data (100% label ratio) in the target domain is142

used. When we check specific abnormalities and diseases, we found REFERS consistently143

improves the diagnosis of atelectasis, lung opacity and pneumothorax in comparison to LSP.144

145

COVID-19 and Shenzhen Tuberculosis Image Collections Both datasets serve as146
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target domains and comprise a small number of labeled images (fewer than 1k X-rays),147

which are employed to test the transferability of the representation learned on the source148

domain. This is because few training images in such small target domains are not capable of149

training powerful models themselves. Thus, the performance of the trained models is more150

dependent on the quality of the learned representation. In Table 1, although separating151

tuberculosis from normal cases is not a hard task, our method still achieves 2.5% improve-152

ments over C2L [16] in AUC. When looking at COVID-19 Image Data Collection which153

includes two harder tasks, we can find that the relative performance improvements over154

self-supervised baselines [13, 14, 15, 16] and transfer learning on natural source images [11]155

become quite clear. For instance, on the “Viral vs. Bacterial” task, REFERS outperforms156

C2L [16] by 7 percents in AUC, demonstrating the effectiveness of REFERS in helping157

achieve better performance over small-scale target datasets. Even if we compare REFERS158

against LSP, the performance advantage is still maintained at more than 1 percent.159

160

3 Discussion161

REFERS outperforms self-supervised learning and transfer learning on natural162

source images by substantial and significant margins. This is the most promi-163

nent observation obtained from our experimental results, which holds on different datasets164

and with different amounts of annotated training data during fine-tuning. Among self-165

supervised baselines [13, 14, 15, 16], C2L [16] and TransVW [15] are the two best per-166

forming methods. Our REFERS outperforms C2L and TransVW by at least 4 percents167

when very limited annotated training data (at most 10% label ratio) from NIH ChestX-168

ray and VinBigData datasets is used. Somewhat interestingly, as the label ratio increases,169

ImageNet-based pre-training [11] gradually narrows its gap with self-supervised learning.170

Nonetheless, our REFERS still surpasses it by a large margin (4 percents at least). Similar171

results can also be observed on Shenzhen Tuberculosis and COVID Image Collection. Since172

our REFERS employs a cross-supervised learning manner, it does not require structured173

labels as conventional fully-supervised learning approaches. As radiographs and radiology174

reports are readily available medical data, we believe our approach is as practical as self-175
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supervised learning methodologies in real-world scenarios.176

177

REFERS consistently surpasses label-supervised pre-training with human-assisted178

structured labels. This is another clear observation obtained from our experimental179

results. Even though our approach does not use any structured labels in the source do-180

main, over all four target domain datasets, our pre-trained model exhibits clear advantages.181

Specifically, REFERS outperforms the most competitive LSP method, LSP (Transformer),182

which is based on Transformer and human-assisted structured labels in the source domain.183

In particular, our method shows more advantages at small label ratios. For instance, when184

NIH ChestX-ray and VinBigData are used as target domain datasets, REFERS achieves185

about 2.5% improvements when the number of training images is smaller than 10k. Sim-186

ilarly, on Shenzhen Tuberculosis and COVID-19 Data Collection, REFERS consistently187

surpasses LSP by significant margins. It is worth mentioning that when a classification188

problem is difficult to solve and has limited supervision, REFERS becomes more advan-189

tageous and achieves impressive improvements. For example, on the “Viral vs. Bacterial”190

task (Table 2), REFERS surpasses label-supervised pre-training methods based on two-191

stage human intervention by approximately 4 percents. These improvements demonstrate192

that raw radiology reports contain more useful information than human-assisted structured193

labels. In other words, the advantages exhibited by our approach on small-scale target194

domain training data can be attributed to the rich information carried by radiology re-195

ports in the source domain. Such information provides additional supervision to help learn196

transferable representations for radiographs while the supervision signals from structured197

labels have less information. We believe this is an important step towards directly using198

natural language descriptions as supervision signals for image representation learning. As199

an example, our REFERS can be used to learn natural image representations from text200

descriptions at corresponding websites.201

202

REFERS significantly reduces the need of annotated data in target domains.203

Figures 2a and 2b present the performance of our approach under various label ratios. On204

NIH ChestX-ray, REFERS needs 90% fewer annotated target domain data (10% label ratio)205

to deliver a performance comparable to those of Model Genesis [14] and ImageNet-based206
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pre-training [11]. Similarly, on VinBigData, our method only needs 10% annotated train-207

ing data to achieve much better results than those of Model Genesis and ImageNet-based208

pre-training under 100% label ratio. This phenomenon shows the potential of REFERS in209

providing high-quality pre-trained representations for downstream fine-tuning tasks with210

limited annotations. Due to the difficulty to acquire reliable annotations for medical image211

analysis, the ability to achieve good performance with limited annotations means much to212

the community.213

214

Improvements on specific abnormalities and diseases. In Supplementary Figures 1215

and 2, REFERS brings 5-percent performance gains on emphysema and mass even when216

compared to LSP with limited supervision in the target domain (< 10k training images).217

Since both abnormalities have a dispersed spatial distribution in the lung area, the consider-218

able improvements demonstrate that REFERS is able to handle elusive chest abnormalities219

in radiographs well. When the amount of supervision in the target domain becomes ex-220

tremely limited, such as using 105 training images from VinBigData, REFERS becomes221

more advantageous. For instance, REFERS outperforms LSP on atelectasis and pneumoth-222

orax by over 7 and 9 percents, respectively. Different from emphysema, mass and atelectasis,223

pneumothorax maintains a concentrated spatial distribution and is often located around224

the pleura. These successes imply that REFERS can deal with the diagnosis of both elusive225

and regular abnormalities and diseases well using a small number of training radiographs226

in the target domain. A similar phenomenon can be observed when REFERS is used for227

distinguishing viral pneumonia cases from bacterial ones in Tables 1 and 2.228

229

Transformer is more effective under limited supervision. In Tables 1 and 2, we230

observe a trend of CNNs (i.e., ResNet series [4]): LSP (ConvNet) shows mediocre perfor-231

mance when a relatively small number of training images in the target domain are used.232

However, when all training data (100% label ratio) is used, ConvNet shows competitive233

results. It seems that LSP (ConvNet) cannot well handle little amount of supervision. In234

contrast, LSP (Transformer) exhibits much better performance at small label ratios. This235

comparison demonstrates that pre-trained transformers generate more transferable repre-236

sentations than pre-trained CNNs. The underlying reason might be that the self-attention237
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mechanism in transformers makes the learned representations more transferable due to cap-238

tured long-distance dependencies.239

240

REFERS provides reliable evidences for clinical decisions. Figure 3 presents ran-241

domly chosen radiographs and their corresponding class activation maps (CAMs) [27]. We242

can find that REFERS generates reliable attention regions, on top of which we can apply243

a fixed confidence threshold to further identify the location of different types of lesions244

(green boxes in Figure 3). The overall IoUs (Intersection over Unions) between green and245

red boxes (drawn by radiologists) are mostly higher than 0.5, indicating that the generated246

attention regions can well match radiologists’ diagnoses. When lesions have a large size247

(such as the fifth image from NIH ChestX-ray), our method captures well-aligned lesion248

areas. Even when lesions are quite small and thus hard to detect (such as the last image249

from NIH ChestX-ray and the first image from VinBigData), REFERS can still identify250

the right locations.251

252

Replication of experimental results and their statistical significance. There are a253

number of factors that influence pre-training results exhibit a certain level of randomness.254

These factors include, but are not limited to network initialization, training strategy (e.g.,255

how to randomly crop images and perform mini-batch gradient descent) and even non-256

deterministic characteristics in computational tools (e.g., cuDNN [28] would choose differ-257

ent algorithms in different runs due to benchmarking noise and hardware configuration). A258

good pre-training methodology should be able to produce relatively stable pre-trained rep-259

resentations when randomness in these factors is controlled within an acceptable limit. To260

take into account the influence of such randomness on experimental results, when REFERS261

and baseline pre-trained models are fine-tuned, we independently repeat each experiment262

three times and report their average results in Tables 1 and 2. Then, we calculate p-values263

between mean class AUCs of our REFERS and the best performing baseline model ac-264

cording to their fine-tuned performance using independent two-sample t-test. According to265

Tables 1 and 2, nearly all p-values are much smaller than 0.01, indicating that our REFERS266

is significantly better than its counterparts when various amounts of labeled training data267

in the target domain is used. In contrast, making the number of times (repeating each268
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experiment) smaller than three would give rise to less stable mean AUCs while simply269

repeating more times would produce meaninglessly smaller p-values.270

4 Methods271

Dataset for pre-training (source domain). MIMIC-CXR-JPG [23] contains over 370k272

radiographs organized into patient studies, each of which may have one or more radiographs273

taken from different views or at different times for the same patient. Each patient study274

has one free-text radiology report, and each radiograph is associated with a set of abnor-275

mality/disease labels obtained from two-stage human-assisted intervention as mentioned276

above. There are two major sections in each report: Findings and Impressions. The Find-277

ings section includes detailed descriptions of important aspects in the radiographs while278

the Impressions section summarizes most immediately relevant findings.279

To acquire human-assisted structured labels for radiographs (i.e., two-stage human in-280

tervention), annotators need to first define a list of labels for abnormalities and diseases,281

including alternate spellings, synonyms, and abbreviations. On the basis of local contexts282

and existing NLP tools, mentions of labels in reports are classified as positive, uncertain,283

or negative. An aggregation procedure is further applied to aggregate multiple mentions of284

a single label. Uncertain labels need to be double-checked by radiologists.285

As radiology reports were originally prepared by radiologists as part of the daily clinical286

routine, they can be regarded as freely available information that does not require extra287

human efforts in contrast to structured labels. In practice, we only keep the Findings and288

Impressions sections in the reports. Also, we remove all study-report pairs, where the text289

section has less than 3 tokens (words and phrases), from the dataset. This screening pro-290

cedure produces 217k patient studies.291

292

Datasets for fine-tuning (target domains). We do not require these datasets adopted293

for fine-tuning to have radiology reports. Instead, only human-assisted annotations are294

used during the fine-tuning stage. We follow the official split of NIH ChestX-ray, where the295

percentages of training, validation and testing sets are 70%, 10% and 20%, respectively. The296

same set of ratios are also employed for VinBigData Chest X-ray, Shenzhen Tuberculosis297
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and COVID-19 Image Data Collection to build randomly split training, validation and298

testing sets.299

• NIH ChestX-ray is a dataset for multi-label classification of 14 chest abnormalities300

(i.e., Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, Fibro-301

sis, Hernia, Infiltration, Mass, Nodule, Pleural Thickening, Pneumonia and Pneu-302

mothorax). There are over 100k frontal-view X-ray images of about 32k patients in303

NIH ChestX-ray, where labels of radiographs were extracted from associated reports304

following a similar procedure as that for MIMIC-CXR-JPG.305

• VinBigData Chest X-ray provides labels of 14 chest diseases (i.e., Aortic enlargement,306

Atelectasis, Pneumothorax, Lung Opacity, Pleural thickening, ILD, Pulmonary fibro-307

sis, Calcification, Pleural effusion, Consolidation, Cardiomegaly, Other lesion, Nodule-308

Mass and Infiltration), and consists of 15k postero-anterior chest X-ray images. Here309

we did not use the test set in Kaggle, which does not provide any annotations. All310

images were labeled by a panel of experienced radiologists.311

• Shenzhen Tuberculosis is a small dataset containing 662 frontal chest X-ray images312

primarily from hospital clinical routine. 336 abnormal X-rays show various manifes-313

tations of tuberculosis, and the remaining 326 images are normal. We simply perform314

binary classification on this dataset.315

• COVID-19 Image Data Collection is a dataset involving more than 900 pneumonia316

cases with chest X-rays, which was built to improve the identification of COVID-19.317

We conduct experiments on two tasks, which are a) distinguishing COVID-19 from318

the rest and b) separating viral pneumonia cases from bacterial ones.319

Baselines and label-supervised pre-training. Since our method does not need struc-320

tured labels required by traditional fully-supervised learning, we compare it against four re-321

cent self-supervised learning methods [13, 14, 15, 16] and ImageNet-based pre-training [11]:322

• Context Restoration [13] repeats the operation of swapping two randomly chosen small323

X-ray patches for a fixed number of times, and the neural network is asked to restore324

each altered image back to its original version.325
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• Model Genesis [14] applies multiple types of distortions to the input X-ray, including326

local shuffling, non-linear transformation, in- and out-painting. Similar to Context327

Restoration, Model Genesis asks the model to reconstruct the original image from the328

distorted one.329

• TransVW [15] contrasts local X-ray patches to exploit the semantics of anatomical330

patterns while restoring distorted image contents.331

• C2L [16] proposes to construct homogeneous and heterogeneous data pairs by mixing332

both images and features on top of MoCo [29]. C2L outperforms MoCo by observable333

margins on multiple X-ray benchmarks.334

• ImageNet-based pre-training [11] is taken as a representative method that sets a large-335

scale dataset of annotated natural images as the source domain.336

Note that all above baselines are implemented using the same transformer-based network337

architecture as our REFERS (i.e, a ViT architecture plus the proposed recurrent concate-338

nation module). Such an implementation arrangement is meant to rule out the influence of339

network architectures on final performance and maintain fairness in experimental compar-340

isons.341

Finally, our approach is compared against label-supervised pre-training (LSP) that di-342

rectly sets a large collection of X-ray images with human-assisted structured labels as343

the source domain. For better comparison, we implement LSP on top of both CNN and344

Transformer based backbone networks. Specifically, LSP (Transformer) adopts the same345

Transformer based network architecture as REFERS and the aforementioned self-supervised346

and ImageNet-based pre-training baselines. LSP (ConvNet) stands for the best performing347

residual network among ResNet-18, ResNet-50 and ResNet-101 [4].348

349

Data augmentation and image resizing. During the pre-training stage, we resize each350

radiograph in the source domain to 256×256 pixels, and then apply random cropping to351

produce 224×224 images. Random horizontal flip, random rotation (-10 to 10 degrees)352

and random grayscale (brightness and contrast) are also applied to generate augmented353

images. When using random horizontal flip, we change the words ‘left’ and ‘right’ in the354

accompanying radiology report accordingly. During the fine-tuning stage, we apply the355
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same set of data augmentation strategies, which are random cropping, random rotation,356

random grayscale and random horizontal flip, to all four target domain datasets. As in357

the pre-training stage, we resize each radiograph in a target domain to 256×256, and then358

generate 224×224 cropped and augmented radiographs as input images.359

360

Algorithm Overview. REFERS performs cross-supervised learning on top of a trans-361

former based backbone, called radiograph transformer. Given a patient study, we first362

forward its views to the radiograph transformer for extracting view-dependent feature rep-363

resentations. Next, we perform cross-supervised learning that acquires study-level supervi-364

sion signals from free-text radiology reports. To this aim, it is necessary and essential to365

use view fusion to obtain a unified visual representation for an entire patient study because366

each radiology report is associated with a patient study but not individual radiographs367

within the patient study. Such fused representations are then used in two tasks during368

the pre-training stage: report generation and study-report representation consistency rein-369

forcement. The first task takes the free texts in original radiology reports to supervise the370

training process of the radiograph transformer. The second task reinforces the consistency371

between the visual representations of patient studies and the textual representations of372

their corresponding reports.373

4.1 Radiograph Transformer374

The radiograph transformer accepts image patches as inputs. We divide each image into a375

grid of 14×14 cells, each of which has 16×16 pixels. We then flatten each image patch to376

form a 1D vector of pixels, and feed it to the transformer. At the beginning of the trans-377

former, a patch embedding layer linearly transforms each 1D pixel vector into a feature378

vector. This vector is concatenated with a position feature produced from a learnable posi-379

tion embedding to help clarify the relative location of each patch in the whole input patch380

sequence. The concatenated feature is then passed through another linear transformation381

layer to make its dimensionality the same as that of the final radiograph feature. At the382

core part of the radiograph transformer, we stack twelve self-attention blocks, which have383

the same architecture but independent parameters (Figure 1b). We first follow the practice384

in [20] to build a single self-attention block and then repeat its operations multiple times.385
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In each block, we apply layer normalization [30] before the multi-head attention and per-386

ceptron layers, after which residual connections are added to stabilize the training process.387

In the perceptron layer, we employ a two-layer perceptron with the Rectified Linear Unit388

(ReLU) [31] as the activation function. Moreover, we add an aggregation embedding, which389

is responsible for gathering the information from different input features. As shown in Fig-390

ure 1b, in the last layer, recurrent concatenation is performed to repeatedly concatenates391

the learned aggregation embedding with the learned representation of every patch. This is392

different from the operation in vision transformer (ViT) [19], which only concatenates the393

aggregation embedding with patch features once.394

4.2 Cross-supervised Learning395

There are two major components in cross-supervised learning: the view fusion module for396

producing study-level representations and two report-related tasks exploiting study-level397

information from associated free-text reports.398

As aforementioned, we forward all radiographs in a patient study through the radio-399

graph transformer simultaneously to obtain their individual representations. We further400

employ an attention mechanism to fuse these individual representations to obtain an over-401

all representation of the given study. Supposing a study has three radiographs (i.e., views),402

as shown in Figure 1c. We first concatenate the features of all views, and then feed the403

concatenated features to a multi-layer perceptron to compute an attention value for each404

view. Next, we apply the softmax function to normalize these attention values, which are405

used as weights to produce a weighted version of the individual representations. Finally,406

these weighted representations are concatenated to form a unified visual feature for de-407

scribing the whole study. Note that for studies that contain few than three radiographs,408

we randomly select one of the radiographs, and then repeat it once or twice to have a total409

of three views. For studies that contain more than three radiographs, we randomly select410

three of them from each study as input views.411

We design two report-related tasks that acquire cross-supervision signals from free-text412

reports: report generation and study-report representation consistency reinforcement. In413

practice, these two tasks exploit study-level free-text information for better training study-414

level visual representations produced from the view fusion module. The first task applies415
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a decoder, called report transformer, to the unified visual feature vk of the k-th patient416

study to reproduce its associated radiology report denoted as ck1:T . Here, ck1 represents417

the start-of-sequence token and ckT the end-of-sequence token. As a result, the report418

transformer generates a sequence of token-level predictions, ĉk1:T , for the k-th patient study.419

The prediction of the t-th token in this sequence depends on the predicted subsequence ĉk1:t−1420

and the visual feature vk. The network architecture of the report transformer follows the421

architecture of the decoder in [20]. We wish the predicted token sequence (ĉk1:T ) resembles422

the sequence (ck1:T ) representing the original report of the k-th patient study. Therefore, as423

shown in Figure 1d, we apply a language modeling loss to both ĉk1:T and ck1:T to maximize424

the following log-likelihood of the tokens in the original report.425

Lk
language =

T∑
t=2

logP
(
ckt | ĉk1:t−1,v

k;ϕv, ϕt

)
, (1)

where ĉk1 is a special symbol indicating the start of the predicted sequence, ϕv and ϕt stand426

for the parameters of the radiograph transformer and report transformer, respectively.427

For the second task on study-report representation consistency reinforcement, we employ428

a contrastive loss [32] to align cross-modal representations. Here, we use tk to stand for the429

textual feature vector of the k-th radiology report. In practice, we obtain tk by forwarding430

the sequence of tokens in the k-th report (i.e., ck1:T ) to a BERT (i.e., Bidirectional Encoder431

Representations from Transformer) model [33]. BERT is built on top of the encoder in432

[20] using large-scale pre-training on a great number of corpus resources. Thus, BERT can433

help produce a generalized textual representation for the input report. Suppose we have B434

patient studies in each training mini-batch, as shown in Figure 1d. The contrastive loss for435

the k-th study can be formulated as436

Lk
contrast = − log

ecos(v
k,tk)/τ∑B

i=1 e
cos(vk,ti)/τ

, (2)

where cos(·, ·) means the cosine similarity, cos(vk, tk) = (vk)⊤tk

∥vk∥∥tk∥ , ⊤ denotes the transpose437

operation, ∥ · ∥ stands for L2 normalization, and τ is the temperature factor. Finally, for438

each patient study, we simply sum up Lk
contrast and Lk

language as the overall loss. During the439

fine-tuning stage, we typically use the cross entropy loss for model tuning.440

441

Training and testing methodologies. We first pre-train the radiograph transformer442
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on the source domain and then fine-tune it on downstream target domain datasets to443

verify the quality of pre-training. During the pre-training stage, we sample 4.6k studies to444

form a held-out validation set according to the official division of the MIMIC-CXR-JPG445

dataset [23]. We train the entire network using stochastic gradient descent (SGD) while446

setting the momentum value to 0.9 [34] and the weight decay to 1e-4. Following [33], we447

do not apply weight decay to layer normalization and the bias terms in all layers. We use448

a fixed batch size of 32 for 300k iterations (about 45 epochs). We calculate the validation449

loss after each epoch and save the checkpoint that achieves the lowest validation loss. We450

adopt the linear learning rate warm-up strategy [35] for the first 10k iterations, and then451

switch to cosine decay [36] until the end. Empirically, we found that training the radiograph452

transformer requires a large learning rate for fast convergence. Thus, its learning rate is453

set to 3e-3 while the learning rate for the report transformer and BERT is set to 3e-4.454

We initialize the aggregation embedding to all zeros while randomly initializing all position455

embeddings. We use PyTorch [37] and NVIDIA Apex for mixed-precision training [38].456

The complete pre-training process on the MIMIC-CXR dataset takes about 2 days on a457

single RTX 3090 GPU.458

During the fine-tuning stage, we fine-tune all transformer based models (including trans-459

former based baselines) using SGD with the momentum set to 0.9 and the initial learning460

rate set to 3e-3 for all datasets. We fine-tune ResNet models using Adam [39] instead of461

SGD, and set the initial learning rate to 1e-4. All downstream models use the same learning462

rate decay strategy as that used in the pre-training stage, and are trained with a batch size463

of 128.464

4.3 Ablation Study465

We conduct a thorough ablation study of REFERS by removing or replacing individual466

modules, and the results are shown in Table 3.467

First, we investigate the impact of replacing the radiograph transformer (rows 1-2 in468

Table 3). If we replace the radiograph transformer with ResNet-101 [4] (row 1), the overall469

performance of REFERS on COVID-19 Image Data Collection would drop by about 7 per-470

cents (compared to row 0). This comparison demonstrates that the radiograph transformer471

is more effective in dealing with limited annotations, which is also verified with results472
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in Tables 1 and 2. Next, when we replace the radiograph transformer with the original473

ViT architecture (row 2), which does not have the recurrent concatenation operator, the474

overall performance would drop by 3.3 percents. This result verifies the helpfulness of re-475

currently concatenating the learned aggregation embedding with patch representations. We476

also note that there exists a 3.8-percent performance difference between ResNet and ViT477

based architectures (rows 1&2), showing the advantage of a transformer-like architecture.478

In addition to the radiograph transformer, we also investigate the impact of cross-479

supervised learning. First of all, we remove the view fusion module so that different radio-480

graphs within a patient study become associated with the same study-level radiology report481

(row 3). Such an operation is counter-intuitive as each individual radiograph alone cannot482

provide enough information to produce a study-level report. By comparing row 3 with row483

0, we found that dropping the view fusion module would reduce the performance by nearly484

2 percents on COVID-19 Image Data Collection. This result implies that learning study-485

level pre-trained representation is better than image-level pre-training as the former includes486

more patient-level information. Next, we completely replace cross-supervised learning with487

label-supervised learning (row 4), and REFERS deteriorates into LSP (Transformer) in488

Table 2. We found that dropping the two report-related tasks would adversely affect the489

performance by 2 percents. Last but not the least, we study the two report-related learning490

tasks individually. By comparing row 0 with row 5 and row 6, respectively, we observed491

that dropping either of them would not affect the overall performance too much (about 1492

percent). This result implies that the effects of both tasks may partially overlap to some493

extent. Nonetheless, either of them along with the view fusion module can still outperform494

LSP (Transformer) (row 4). In addition, we found that although both of them improve the495

overall performance, reinforcing the consistency between representations of each patient496

study and its associated report (i.e., the second task) is more crucial than report genera-497

tion (i.e., the first task). We believe the reason behind is that the representation learned498

in the second task can be regarded as a summary of each report, and thus provides more499

global information than token-level predictions in the first task. Such advantages make500

it more beneficial for the second task to include more study-level information for learning501

better study-level radiograph features.502
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Code Availability503

All codes are available at https://github.com/funnyzhou/REFERS [40].504

Data Availability505

MIMIC-CXR-JPG: https://physionet.org/content/mimic-cxr-jpg/2.0.0/.506

507

NIH ChestX-ray: https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345.508

509

VinBigData Chest X-ray Abnormalities Detection: https://www.kaggle.com/c/510

vinbigdata-chest-xray-abnormalities-detection.511

512

Shenzhen Tuberculosis: https://www.kaggle.com/raddar/tuberculosis-chest-xrays-shenzhen.513

514

COVID-19 Image Data Collection: https://github.com/ieee8023/covid-chestxray-dataset.515
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Tables525

NIH NIH NIH VBD VBD VBD SZ C-T1 C-T2

Method 0.8k (1%) 8k (10%) 80k (100%) 0.1k (1%) 1k (10%) 10k (100%) All All All

Our REFERS 76.7 80.9 84.7 83.0 88.2 90.1 98.0 82.1 80.4

Model Genesis 70.3 75.7 81.0 70.7 82.7 85.8 94.9 76.0 71.8

C2L 71.0 76.6 82.2 75.3 83.3 85.9 95.5 77.8 73.0

Context Restoration 67.8 73.9 78.7 67.9 82.4 83.8 92.7 74.6 69.8

TransVW 71.2 74.3 81.7 73.6 83.8 86.2 94.2 76.1 71.5

ImageNet Pre-training 69.8 74.4 80.0 69.7 82.9 84.5 94.5 74.1 70.3

p-value 8.35e-4 8.72e-4 1.94e-3 8.72e-5 4.34e-4 9.33e-4 1.73e-3 5.88e-4 3.59e-4

Table 1: Comparison with self-supervised learning and transfer learning baselines. NIH,

VBD and SZ stand for NIH ChestX-ray, VinBigData Chest X-ray Abnormalities Detection

and Shenzhen Tuberculosis datasets, respectively. C-T1 and C-T2 denote the two tasks

in COVID-19 Image Data Collection, where one task is to distinguish COVID-19 from the

rest (C-T1) and the other task is to separate viral pneumonia cases from bacterial ones

(C-T2). Note that for the sake of fairness, all baselines use the same transformer-based

backbone as the radiograph transformer of REFERS (i.e., a ViT-like architecture plus the

recurrent concatenation operator). Each p-value is calculated between our REFERS and

the best performing baseline. The evaluation metric is Area under the ROC Curve (AUC).

Best results are bolded.
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NIH NIH NIH VBD VBD VBD SZ C-T1 C-T2

Method 0.8k (1%) 8k (10%) 80k (100%) 0.1k (1%) 1k (10%) 10k (100%) All All All

Our REFERS 76.7 80.9 84.7 83.0 88.2 90.1 98.0 82.1 80.4

LSP (Transformer) 74.2 78.2 82.1 78.5 85.8 87.6 96.4 80.2 76.6

LSP (ConvNet) 65.8 74.5 81.9 76.0 85.2 87.2 96.7 80.1 76.2

p-value 3.25e-3 2.89e-3 5.23e-3 3.56e-4 8.69e-4 1.05e-3 9.65e-3 7.61e-3 1.47e-3

Table 2: Comparison with methods using human-assisted structured labels. NIH, VBD

and SZ stand for NIH ChestX-ray, VinBigData Chest X-ray Abnormalities Detection and

Shenzhen Tuberculosis datasets, respectively. C-T1 and C-T2 denote the two tasks in

COVID-19 Image Data Collection, where one task is to distinguish COVID-19 from the

rest (C-T1) and the other task is to separate viral pneumonia cases from bacterial ones

(C-T2). Note that for fairness, both LSP (Transformer) and REFERS share the same

transformer-based backbone (i.e., the ViT architecture plus the recurrent concatenation

operator). Each p-value is calculated between the results from our REFERS and LSP

(Transformer). The evaluation metric is Area under the ROC Curve (AUC). Best results

are bolded.
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Row ViT RecConcate View Fusion Task1 Task2 Viral vs. Bacterial

0 ✓ ✓ ✓ ✓ ✓ 80.4

1 ✓ ✓ ✓ 73.3

2 ✓ ✓ ✓ ✓ 77.1

3 ✓ ✓ ✓ ✓ 78.6

4 ✓ ✓ 76.6

5 ✓ ✓ ✓ ✓ 79.1

6 ✓ ✓ ✓ ✓ 79.3

Table 3: An ablation study of REFERS by removing or replacing individual modules. Rec-

Concate stands for the recurrent concatenation operation in the radiograph transformer.

Task1 and Task2 refer to the two tasks in cross-supervised learning. Row 1 corresponds to

the result of a convolutional neural network while row 4 corresponds to LSP (Transformer).
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* “B” stands for the batch size during the pre-training stage.
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Overall workflow of REFERS

Figure 1: Workflow of REFERS: forwarding radiographs of the k-th patient study through

the radiograph transformer, fusing representations of different views using an attention

mechanism, and utilizing report generation and study-report representation consistency

reinforcement to exploit the information in radiology reports. Part a provides an overview of

the whole pipeline. Part b shows the architecture of the radiograph transformer. Attention

for view fusion is elaborated in Part c. Part d presents two supervision tasks, report

generation and study-report representation consistency reinforcement. In Part d, vk and

tk denote the visual and textual features of the k-th patient study, respectively. ĉk1:T and

ck1:T stand for the token-level prediction and ground truth of the k-th radiology report whose

length is T .
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90% Fewer Labels

90% Fewer Labels

a.

b.

Performance under different label ratios

Figure 2: Performance obtained with different amounts of annotated training data in the

target domain (a. NIH ChestX-ray and b. VinBigData Chest X-ray Abnormalities De-

tection). We also denote the percentage of annotated training data in the target domain

that our REFERS requires to achieve comparable results with those of Model Genesis and

ImageNet pre-training. Note that all three methods share the same transformer-based

backbone.
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Figure 3: Visualization of twelve randomly chosen samples from NIH ChestX-ray (a-f)

and VinBigData (i-vi) (fine-tuned with all annotated training data). For each sample, we

present both the original image (left) and an attention map generated from REFERS. In

each original image, red boxes denote lesion areas annotated by radiologists. In attention

maps, fuchsia color stands for attention values generated from REFERS. The darker the

fuchsia color, the higher the confidence of a specific disease. Green boxes in original images

are our predicted lesion areas generated by applying a fixed confidence threshold to attention

maps.

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.21265838doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.02.21265838
http://creativecommons.org/licenses/by-nc-nd/4.0/


References527

[1] Krizhevsky, A., Sutskever, I. & Hinton, G.E. ImageNet classification with deep convo-528

lutional neural networks. In Proc. Advances in Neural Information Processing Systems,529

1097-1105 (2012).530

[2] Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image531

recognition. In International Conference on Learning Representations (2014).532

[3] Szegedy, C. et al. Going deeper with convolutions. In Proc. IEEE Conference on Com-533

puter Vision and Pattern Recognition, 1-9 (IEEE, 2015).534

[4] He, K.M., Zhang, X.Y., Ren, S.Q. & Sun, J. Deep residual learning for image recogni-535

tion. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 770-778536

(IEEE, 2016).537

[5] Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K.Q. Densely connected convo-538

lutional networks. In Proc. IEEE Conference on Computer Vision and Pattern Recog-539

nition, 4700-4708 (IEEE, 2017).540

[6] Bengio, Y., Courville, A. & Vincent, P. Representation learning: A review and new541

perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798-1828 (IEEE, 2013).542

[7] Phillips, N.A. et al. CheXphoto: 10,000+ photos and transformations of chest x-rays543

for benchmarking deep learning robustness. In Proc. Machine Learning for Health,544

318-327 (PMLR, 2020).545

[8] Taylor, A.G., Mielke, C. & Mongan, J. Automated detection of moderate and large546

pneumothorax on frontal chest x-rays using deep convolutional neural networks: a547

retrospective study. PLoS medicine 15, e1002697 (Public Library of Science San Fran-548

cisco, 2018).549

[9] Carlile, M. et al. Deployment of artificial intelligence for radiographic diagnosis of550

COVID-19 pneumonia in the emergency department. Jour. of the Amer. Coll. of Emer.551

Phys. Open 1, 1459-1464 (Wiley Online Library, 2018).552

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.21265838doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.02.21265838
http://creativecommons.org/licenses/by-nc-nd/4.0/


[10] Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep553

neural networks? In Advances in Neural Information Processing Systems, 3320-3328554

(2014).555

[11] Wang, X.S. et al. ChestX-ray8: Hospital-scale chest x-ray database and benchmarks on556

weakly-supervised classification and localization of common thorax diseases. In Proc.557

IEEE Conference on Computer Vision and Pattern Recognition, 2097-2106 (IEEE,558

2017).559

[12] Deng, J. et al. ImageNet: A large-scale hierarchical image database. In Proc. IEEE560

Conference on Computer Vision and Pattern Recognition, 248-255 (IEEE, 2009).561

[13] Chen, L. et al. Self-supervised learning for medical image analysis using image context562

restoration. Med. Image Anal. 58, 101539 (Elsevier, 2019).563

[14] Zhou, Z.W., Sodha, V., Pang, J.X., Gotway, M.B. & Liang, J.M. Model genesis. Med.564

Image Anal. 67, 101840 (Elsevier, 2021).565

[15] Haghighi, F., Taher, M.R.H., Zhou, Z.W., Gotway, M.B. & Liang, J.M. Transfer-566

able visual words: Exploiting the semantics of anatomical patterns for self-supervised567

learning. IEEE Trans. Med. Imag., early access (IEEE, 2021).568

[16] Zhou, H.-Y. et al. Comparing to learn: Surpassing ImageNet pretraining on radio-569

graphs by comparing image representations. In Proc. International Conference on Med-570

ical Image Computing and Computer-Assisted Intervention, 398-407 (Springer, 2020).571

[17] Johnson, A.E.W. et al. MIMIC-CXR, a de-identified publicly available database of572

chest radiographs with free-text reports. Sci. Data 6, 1-8 (NPG, 2019).573

[18] Irvin, J. et al. CheXpert: A large chest radiograph dataset with uncertainty labels and574

expert comparison. In Proc. the AAAI Conference on Artificial Intelligence, 590-597575

(AAAI, 2019).576

[19] Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recog-577

nition at scale. In International Conference on Learning Representations (2021).578

[20] Vaswani, A. et al. Attention is all you need. In Proc. Advances in Neural Information579

Processing Systems, 5998-6008 (2017).580

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.21265838doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.02.21265838
http://creativecommons.org/licenses/by-nc-nd/4.0/


[21] Shin, H.-C. et al. Interleaved text/image deep mining on a very large-scale radiology581

database. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,582

1090-1099 (IEEE, 2015).583

[22] Wang, X.S., Peng, Y.F., Lu, L., Lu, Z.Y & Summers, R.M. Tienet: Text-image embed-584

ding network for common thorax disease classification and reporting in chest x-rays.585

In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 9049-9058586

(IEEE, 2018).587

[23] Johnson, A.E.W. et al. MIMIC-CXR-JPG, a large publicly available database of la-588

beled chest radiographs. Preprint at https://arxiv.org/abs/1901.07042 (2019).589

[24] Nguyen, H.Q. et al. VinDr-CXR: An open dataset of chest x-rays with radiologist’s590

annotations. Preprint at https://arxiv.org/abs/2012.15029 (2021).591

[25] Jaeger, S. et al. Two public chest x-ray datasets for computer-aided screening of pul-592

monary diseases. Quantitative Imaging in Medicine and Surgery 4, 475 (AME Publi-593

cations, 2014).594

[26] Joseph, P.C. et al. COVID-19 image data collection: prospective predictions are the595

future. Journal of Machine Learning for Biomedical Imaging, early access (2020).596

[27] Zhou, B.L., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features597

for discriminative localization. In Proc. IEEE Conference on Computer Vision and598

Pattern Recognition, 2921-2929 (IEEE, 2016).599

[28] Chetlur, S. et al. cuDNN: Efficient primitives for deep learning. Preprint at600

https://arxiv.org/abs/1410.0759 (2014).601

[29] He, K.M., Fan, H.Q., Wu, Y.X., Xie, S.N., & Girshick, R. Momentum contrast for602

unsupervised visual representation learning. In Proc. IEEE Conference on Computer603

Vision and Pattern Recognition, 9729–9738 (IEEE, 2020).604

[30] Ba, J.L., Kiros, J.R. & Hinton, G.E. Layer normalization. In International Conference605

on Learning Representations (2016).606

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.21265838doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.02.21265838
http://creativecommons.org/licenses/by-nc-nd/4.0/


[31] Dahl, G.E., Sainath, T.N. & Hinton, G.E. Improving deep neural networks for LVCSR607

using rectified linear units and dropout. In Proc. International Conference on Acous-608

tics, Speech and Signal Processing, 8609-8613 (IEEE, 2013).609

[32] Gutmann, M. & Hyvärinen, A. Noise-contrastive estimation: A new estimation prin-610

ciple for unnormalized statistical models. In Proc. the Thirteenth International Con-611

ference on Artificial Intelligence and Statistics, 297-304 (JMLR, 2010).612

[33] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of deep bidi-613

rectional transformers for language understanding. In Proc. the North American Chap-614

ter of the Association for Computational Linguistics: Human Language Technologies,615

4171-4186 (ACL, 2019).616

[34] Sutskever, I., Martens, J., Dahl, G. & Hinton, G.E. On the importance of initializa-617

tion and momentum in deep learning. In Proc. International Conference on Machine618

Learning, 1139-1147 (PMLR, 2013).619

[35] Goyal, P., Mahajan, D., Gupta, A. & Misra, I. Scaling and benchmarking self-620

supervised visual representation learning. In Proc. International Conference on Com-621

puter Vision, 6391-6400 (IEEE, 2019).622

[36] Loshchilov, I. & Hutter, F. SGDR: Stochastic gradient descent with warm restarts. In623

International Conference on Learning Representations (2017).624

[37] Paszke, A. et al. PyTorch: An imperative style, high-performance deep learning library.625

In Proc. Advances in Neural Information Processing Systems, 8024-8035 (2019).626

[38] Micikevicius, P. et al. Mixed precision training. In International Conference on Learn-627

ing Representations (2018).628

[39] Kingma, D.P. & Ba, J.L. Adam: A method for stochastic optimization. In International629

Conference on Learning Representations (2014).630

[40] Zhou, H.Y., Chen, X.Y., Zhang, Y.H., Luo, R.B., Wang, L.S., & Yu, Y. Generalized631

Radiograph Representation Learning via Cross-supervision between Images and Free-632

text Radiology Reports. Zenodo https://doi.org/10.5281/zenodo.5624117 (2021).633

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.21265838doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.02.21265838
http://creativecommons.org/licenses/by-nc-nd/4.0/

