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Abstract 

 

The frequency of a genetic variant in a population is crucially important for accurate 

interpretation of known and novel variant effects in medical genetics. Recently, several large allele 

frequency databases, such as Genome Aggregation Database (gnomAD), have been created to 

serve as a global reference for such studies. However, frequencies of many rare alleles vary 

dramatically between populations, and population-specific allele frequency can be more 

informative than the global one. Many countries and regions (including Russia) remain poorly 

studied from the genetic perspective. Here, we report the first successful attempt to integrate 

genetic information between major medical genetic laboratories in Russia. We construct an 

expanded reference set of genetic variants by analyzing 6,096 exome samples collected in two 

major Russian cities of Moscow and St. Petersburg. An approximately tenfold increase in sample 

size compared to previous studies allowed us to identify genetically distinct clusters of individuals 

within an admixed population of Russia. We show that up to 18 known pathogenic variants are 

overrepresented in Russia compared to other European countries. We also identify several dozen 

high-impact variants that are present in healthy donors despite either being annotated as pathogenic 

in ClinVar or falling within genes associated with autosomal dominant disorders. The constructed 

database of genetic variant frequencies in Russia has been made available to the medical genetics 

community through a variant browser available at http://ruseq.ru. 
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Introduction 

 

Next-generation sequencing (NGS) has become a de facto standard tool in molecular 

diagnostics of Mendelian disorders. The advances in the field have been drastic; for example, 

whole genome sequencing (WGS) screening of all newborns is currently deployed in some 

countries (https://www.genomicsengland.co.uk/public-dialogue-genomics-newborn-screening/). 

However, despite rapid introduction of NGS into research and clinical practice, only about 42% of 

all patients with suspected genetic pathology receive a definitive molecular diagnosis from the 

trio-based WGS analysis (reviewed in (Wright, FitzPatrick, and Firth 2018)). There can be many 

explanations for the less-than-perfect diagnostic record of NGS-based approaches. However, most 

researchers agree that our ability to predict the effects of individual variants on human health is 

currently very limited (Biesecker and Green 2014).  

One of the most significant advances of our ability to assess the variant effects came from 

global resequencing projects such as 1000 Genomes project (Auton et al. 2015), the Genome 

Aggregation Database (gnomAD), or National Heart, Blood, and Lung Institute (NHLBI) TopMed 

(Bick et al. 2020). A simple argument that many variants previously listed as pathogenic are found 

in healthy individuals in too high a frequency to cause a Mendelian disorder has become the most 

powerful tool of reducing false positive variant-phenotype associations (Lek et al. 2016). To this 

end, the information about the population allele frequency (AF) is currently broadly used for 

variant interpretation in clinical practice. All of the modern variant interpretation strategies and 

guidelines, such as the American College of Medical Genetics and Genomics (ACMG) guidelines 

(Richards et al. 2015), Russian variant interpretation guidelines (Ryzhkova et al. 2018), or the 

Sherloc guidelines (Nykamp et al. 2017) use AF in healthy populations to classify variant effects, 

which becomes especially critical for autosomal dominant (AD) diseases. 

While global allele frequency databases remain widely useful, the additional value of 

population-specific reference databases was recently highlighted. Even in the original ExAC 

publication, Lek et al. have shown that filtering of candidate variants using the maximum allele 

frequency across populations substantially decreases the number of potentially disease-causing 

variants observed in an individual exome sample. Recently, a substantial effort of the genomic 

community has been directed at the creation of more diverse and inclusive populational reference 

as well as resources covering diverse ethnic and racial groups (e.g. (Wong et al. 2020); for review 

see (Martin et al. 2018)). In many countries, nation-wide sequencing projects have been conducted, 
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including Genome of the Netherlands (GoNL, (Boomsma et al. 2014)) or the Han Genome 

Database (PGG.Han, (Gao et al. 2020)). 

The Russian population, representing over 160 nationalities and many unique sub-

populations, remains one of the biggest white spots on the global map of human genomic diversity 

(Oleksyk, Brukhin, and O’Brien 2015). Several previous studies focused on investigating the 

genome-wide variation of the Russian population. These include the pilot phase of the Genomes 

Russia project (Zhernakova et al. 2020), an exome-based study of monogenic disease prevalence 

in 694 patients (Barbitoff et al. 2019), and a targeted sequencing study of 242 known disease genes 

in 1,658 healthy individuals from the Ivanovo region (Ramensky et al. 2021). In these works, 

several important aspects of the genome variation in Russian patients have been pinpointed. All of 

these studies, however, lack in the comprehensiveness of the analysis due to either low sample size 

(such as in the Genomes Russia project) or narrow set of analyzed genes (Ramensky et al. 2021). 

Centralized creation of a population genomic reference could benefit from funding security 

and uniform approaches to sequencing and analysis; at the same time, it is associated with 

numerous logistical and other difficulties. Most population references were de facto obtained using 

the aggregation of exome and genome data across multiple sequencing centers. The success of 

ExAC and gnomAD has proven the efficiency and scalability of this approach (Lek et al. 2016; 

Karczewski et al. 2020). At the same time, such integration is a challenging task due to differences 

in both sequencing approaches and data analysis methods used in different laboratories. 

In this study, we report the first successful integration of genetic variation data across two 

major Russian genetic laboratories. To enhance the reproducibility of the analysis and allow a 

secure and confidential collaboration between the sequencing centers, we developed a portable 

and reproducible computational pipeline that can be used locally at any future participant 

laboratory, and subsequently integrated into the global reference using a pre-set analytical and 

legal framework. We believe that our approach allows for resource- and time-efficient aggregation 

of data between sequencing centers and will greatly facilitate the construction of a reliable allele 

frequency reference for the Russian or understudied populations. 
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Materials and methods 

 

Samples and ethics statement  

 

The study comprised groups of patients that were subjected to NGS-based assays for 

molecular diagnostics and/or genetic screening at two major private centers located in Moscow 

(Genetico Ltd.) and St. Petersburg (CerbaLab Ltd.). As detailed below, the dataset comprised both 

healthy and diseased individuals, with healthy donors comprising only 12.5% of all study 

participants. The “diseased” subgroup included various Mendelian or likely Mendelian and non-

Mendelian phenotypes (with the majority of samples having neurological and neuro-muscular 

disorders (see Supplementary Figure 1)); the “healthy” subgroup comprised healthy donors who 

were sequenced for carrier screening purposes or patients with multifactorial pathologies, such as 

obesity or type 2 diabetes. Nearly all patients were residents of the Russian Federation or republics 

of the former USSR. All participants signed informed consent for studies and processing of 

personal data, including medical history data. The study was performed in accordance with the 

Declaration of Helsinki. 

 

Exome sequencing 

 

DNA for sequencing was extracted either from peripheral blood samples (in the majority 

of cases) or from tissue samples in FFPE blocks according to the standard protocols. Sequencing 

was performed using either whole exome (4,819 samples; 79.0%) or clinical exome (1,277 

samples, 21.0%) capture kits. The following capture kits were used: Agilent SureSelect Human all 

exon V7, Agilent SureSelect Human all exon V6 + UTR, TruSeq DNA Exome (Illumina) with the 

xGen® Exome Research Panel v1.0 (IDT) exome capture solution, Nimblegen (Roche) SeqCap 

EZ MedExome, Illumina Nextera RapidCapture, Illumina TruSeq DNA Exome, Nimblegen 

(Roche) Inherited Disease Panel (IDP) v2, and Illumina TruSight One. Exome libraries were 

prepared as described previously (Barbitoff et al. 2019; 2020). All libraries were sequenced using 

Illumina HiSeq 2500/4000, Illumina NovaSeq 6000, MiSeq, or MGISEQ 2000. All samples were 

sequenced using paired-end reads with read length varying from 75 bp to 300 bp. 

 

Bioinformatic analysis 
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For bioinformatic analysis of exome sequencing data, we developed a Docker-based 

analysis pipeline to ease data transfer and enable the usage of each laboratory’s own computing 

resources. For read alignment, a faster reimplementation of the BWA mem algorithm, BWA-

MEM2 (Vasimuddin et al. 2019) was used. Aligned reads were sorted and indexed using samtools 

(Li et al. 2009); duplicate read pairs were marked using the Genome Analysis ToolKit (GATK) 

v4.2.1.0 (Van der Auwera et al. 2013; DePristo et al. 2011). Next, base quality score recalibration 

and indel realignment was performed using GATK. Pre-processed alignments were then used for 

variant calling with the GATK HaplotypeCaller in the ERC GVCF mode. The source code of the 

pipeline can be found at https://github.com/bioinf/russian_exome_pipeline/  

GVCF files were then transferred between laboratories and aggregated using the GATK 

GEnomicsDB engine. Aggregated GVCF files were then used for joint genotyping using GATK 

After joint genotyping, all sample-level genotypes with a total depth of less than 10 reads were set 

to missing, and variants with AC=0 were excluded. The variant callset was then annotated using 

the Ensembl Variant Effect Predictor (VEP) v104 with the RefSeq cache file for the corresponding 

reference genome assembly. After variant annotation, Variant Quality Score Recalibration 

(VQSR) filtering approach was applied; variants with truth sensitivity score between 90.0 and 99.6 

(for SNPs) and 90.0 and 99.3 (for indels) were marked as medium confidence; variants with 

sensitivity values > 99.6 (for SNPs) and 99.3 (for indels) were excluded as low-confidence calls. 

The resulting multi-sample VCF file was used for variant quality control, filtering and statistical 

analysis (see below). 

 

Quality control and statistical analysis 

 

Variant quality control and further statistical analysis of allele frequencies was performed 

using the BROAD Institute Hail statistical genetics library v0.2.63-cb767a7507c8 (https://hail.is/). 

First, sample-level quality control was performed using the built-in Hail functionality. Four main 

sample-level metrics were used: heterozygous to non-reference homozygous variant ratio 

(het/hom), transition-to-transversion ratio (Ti/Tv), insertion-to-deletion ratio, and mean per-

sample genotype quality (GQ). The following filtering criteria were applied: 1.3 < het/hom < 2.2, 

2.35 < Ti/Tv < 2.65; 0.7 < i/d < 0.9; GQ > 30. Samples not meeting any of these criteria were 

removed from further analysis. We also excluded samples with less than 80% of common CDS 
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bases covered at least 10x.  In total, 583 samples were removed due to not passing the 

aforementioned filtering criteria. 

After sample-level QC, we went on to filter out relatives and/or individuals with high 

genetic distance from the rest of the population. To do so, we first selected common (MAF > 5%) 

variants that had a high (> 99%) variant call rate across all pass-QC samples. Next, we calculated 

kinship statistic using the built-in Hail functionality. A maximum independent set of unrelated 

samples was computed using the kinship statistic value of 0.250, removing additional 291 samples. 

For principal component analysis of individual genotypes, we performed HWE-normalized 

PCA using the built-in Hail functionality. Samples were clustered into three clusters using k-means 

clustering algorithm in the space of first 10 principal components. Allele frequencies in each 

cluster were determined using Hail built-in aggregation functions. 

The analysis of allele frequency correlations was performed using Python v3.9 with numpy, 

scipy, and pandas packages. Pearson’s correlation coefficient (r2) was computed using a subset of 

variants with high (> 95%) call rate across all samples. 

Variant overrepresentation was evaluated by computing a binomial p-value as follows: 

 

𝑝 ~ 𝐵(𝑛, 𝑁, 𝑞) 

 

where n is the observed alternative allele count in the sample; N is the total allele number at 

a given variant site, q is the alternative allele frequency in the gnomAD non-Finnish European 

population, and B denotes the binomial distribution PDF. Only variants reported as pathogenic in 

ClinVar with no conflicting interpretations were used for overrepresentation testing. All variants 

were annotated with the inheritance pattern associated with the corresponding gene (using the 

OMIM catalog data) and gene-level constraint (loss-of-function variant observed to expected ratio 

upper fraction, LOEUF) values from gnomAD v2.1.1. Lists of variants identified as 

overrepresented and/or uniquely present in the dataset were manually curated to exclude 

misannotated variants. 

 

Data availability 
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The resulting allele frequency dataset is available through an interactive web browser at 

http://ruseq.ru/. To access the full VCF file with variant frequencies please contact the authors 

using the form available on the website.  

 

 

 

Results 

 

Multicenter approach to the creation of Russian coding allele frequency database 

 

To this day, the most common approach of obtaining reliable allele frequency information 

relies on uniform processing of genetic data generated by multiple sequencing centers and genomic 

laboratories. At the same time, to perform such an integration in a centralized manner requires 

collection of a huge amount of data, which is very intensive in terms of both time and computing 

resources, and also potentially requires sharing sensitive or protected information. A possible way 

to circumvent these difficulties is to run the identical initial steps of data analysis in a distributed 

manner, and then aggregate the results at the level of per-sample variant calls. Cohort variant 

calling methods, such as ones provided in the GATK (DePristo et al. 2011) or GLnexus (Yun et 

al. 2021) packages, are streamlined to process large numbers of per-sample variant calls facilitated 

by the usage of specialized GVCF format.  

Given these developments, efficient integration of data between sequencing centres would 

only require a reproducible and transferable implementation of the variant calling pipeline. This 

goal can be met by including all the software dependencies and code into a Docker image that can 

then be distributed across participating laboratories (Figure 1). In this work, we have constructed 

such a containerized version of a bioinformatic pipeline for data analysis based on the BWA and 

GATK HaplotypeCaller software. During the pilot phase of the project, this pipeline was applied 

in two independent sequencing centers located in two major cities of the Russian Federation, 

Moscow (“Lab 1”) and St. Petersburg (“Lab 2”); and overall of 6,096 samples were processed in 

these two laboratories (4,075 - in Lab 1 and 2,021 - in Lab 2). Aggregation of variant calls across 

this set of samples allowed for a nearly ten-fold expansion of a previous exome-level study which 

included 694 samples (Barbitoff et al. 2019). The majority of samples came from patients with 

diagnosed monogenic disorders (5,276), at the same time, as many as 820 samples were healthy 
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donors or patient relatives, a subgroup that would be extensively used for disease allele prevalence 

analysis described below. 

 

 

Figure 1. A cross-laboratory data integration strategy used for creation of an expanded reference 

set of allele frequencies in Russian exomes. The first steps of the data analysis, including read 

alignment and variant calling, are performed using a Docker-based pipeline in each laboratory, 

avoiding the need for raw data transfer and allowing for a distributed computing process. Variant 

calls in GVCF format are then aggregated, and joint genotyping is performed to obtain the final 

variant dataset.  

 

Following initial data aggregation and genotyping, the dataset was subjected to extensive 

sample- and variant-level quality control (see Materials and Methods for more details), leaving 

5,268 samples and 2,092,456 variant sites. Of these, 349,811 variant sites overlapped with the ones 

reported in our previous publication (Barbitoff et al. 2019). Out of all variants, 75.7 % were known 

(found in the latest dbSNP build), and 24.3% (509,409) were novel. In total, 1,459,530 variants 

(69.8%) were either non-coding or silent coding variants, 579,974 (27.7%) were missense 

mutations or other moderate-impact variants, and 52,952 (2.5%) variants were putative loss-of-
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function (pLoF) variants. Similarly to previous findings, rare and protein-damaging variants were 

greatly overrepresented among the novel variants. For example, only 23.6% of non-coding and 

silent coding variants were novel compared to as much as 41.3% of all pLoF variants. Likewise, 

89.6% (1,875,600) of all variant sites were rare (MAF < 1% in the total sample) compared to as 

much as 99.2% (505,427) of novel variants. Finally, allele frequencies of variants in samples of 

each of the participating parties showed a perfect correlation (r2 = 0.999, Supplementary Figure 

S2). 

Analysis of the fine genetic structure of the admixed Russian population 

 

In contrast to all previous genomic studies (Zhernakova et al. 2020; Barbitoff et al. 2019; 

Ramensky et al. 2021), our analysis includes a diverse set of admixed samples that can allow us to 

investigate the fine structure of the present-day Russian population. Indeed, principal component 

analysis of the individual genotypes identified several distinct clusters of samples. Presence of 

these clusters could not be explained by place of sample collection (Figure 2a), sequencing 

platform and/or exome kit (Supplementary Figures S3-S4). Given this observation, we went on to 

group the individuals into three clusters using the unsupervised k-means algorithm. The three 

clusters significantly differed in size and shape. The first cluster that was dubbed “heel” was the 

densest and contained 4,429 (84.1%) samples. The second cluster (“ankle”) was more sparse and 

smaller in size, containing 623 (11.8%) samples. Finally, the third cluster (“toes”) was the smallest 

and the most heterogeneous, spreading over the first principal component axis (Figure 2b), and 

comprising 216 (4.1%) individuals.  
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Figure 2. Analysis of the sub-structure of the admixed Russian population. (a, b) Principal 

component analysis of the genotypes colored by the genetic centre (a) or the results of k-means 

clustering in the space of first 10 principal components (b). (c) A heatmap showing Pearson's 

correlation between common variant allele frequencies in gnomAD ancestral groups and three 

clusters of individuals identified by k-means in (b).  (d) Principal component analysis of allele 

frequencies of common variants in gnomAD and three clusters of individuals identified by k-means 

in (b). 

 

Having identified the three distinct subgroups of samples, we then asked which of the global 

ancestral groups are closest to these clusters. To answer this question, we first analyzed the 

correlation between common variant allele frequencies between each cluster and the main seven 

populations of gnomAD (African (AFR), Ad Mixed American (AMR), Ashkenazi Jewish (ASJ), 

East Asian (EAS), European - Finnish (FIN) and non-Finnish (NFE), and South Asian (SAS)). 

The main cluster of Russian individuals (“heel”) had the greatest correlation with the gnomAD 

NFE group (r2 = 0.991), closely followed by the Finnish population (r2 = 0.988). At the same time, 

the second (“ankle”) cluster had a high degree of AF correlation with the NFE group (r2 = 0.987), 

was closer to Ashkenazi Jews than to the Finnish individuals from gnomAD (r2 = 0.987 and r2 = 

0.980, respectively), and had a much higher AF correlation with both EAS and SAS. Finally, the 
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third (“toes”) cluster showed the greatest correlation with the SAS subpopulation from gnomAD 

(r2 = 0.975), and was equally distinct from EAS and NFE (r2 = 0.964 for both, Figure 2c).  In 

addition to the observations made by the analysis of AF correlation, we performed principal 

component analysis of common variant allele frequencies using data from the three clusters and 

five major gnomAD ancestral groups (AFR, AMR, EAS, NFE, and SAS). This analysis showed 

that, as expected, both the “heel” and “ankle” clusters were close to the NFE group, with the 

“ankle” found to be closer to SAS/EAS. At the same time, the heterogeneous “toes” cluster was 

much more distant and appeared closer to the gnomAD SAS (Figure 2d, Supplementary Figure 

S2).  

Given these observations, we conclude that the first cluster represents the individuals of 

European ancestry, i.e. native residents of the Central and Northwest Russia; the second cluster 

represents Southern Russia and Northern Caucasus populations, while the third cluster corresponds 

to patients originating from the Siberian regions and/or Asian republics of the former USSR.  These 

assumptions were further validated by the available patient information from both sequencing 

centers (data not shown). 

 

 

Identification and validation of overrepresented pathogenic and benign variants 

 

Local allele frequency reference compendia are essential for two major applications: (i) to 

characterize the spectrum of highly prevalent clinically significant variants that can be included 

into early screening programs; and (ii) to identify potentially clinically significant variants that are 

too common in the local population to be interpreted as disease-causing. The expanded set of allele 

frequencies obtained in this study may aid in solving both of these critically important tasks.  

Before identifying overrepresented variants in our data, we examined allele frequencies of 

pathogenic variants that are known to be present at high frequency in Russia. These include (i) 

rs113993960 variant in CFTR leading to the deletion of a crucial F508 residue of the CFTR protein, 

and (ii) rs80338939 variant in GJB2 linked to hearing loss and deafness (Abramov et al. 2016). In 

concordance with previous genetic epidemiology studies, both of these variants were present at a 

very high frequency in our dataset (AF = 0.0052 for rs113993960; AF = 0.0156 for rs80338939). 

These results validate earlier observations and show that the constructed allele frequency reference 

accurately captures some of the known clinically significant genetic variation in Russia. 
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Nearly two dozen prevalent and overrepresented pathogenic variants were reported in the 

two major sequencing-based studies of the Russian population (Barbitoff et al. 2019; Ramensky 

et al. 2021). We first questioned if the variants identified as overrepresented in earlier studies are 

also confirmed in our dataset. Overall, 22 variants that were reported in these two publications: 14 

in Barbitoff et al. and 10 in Ramensky et al., with 2 overlapping variants. Of these, 

overrepresentation of 10 variants was successfully validated using the healthy donor subset, and 

of 15 - in the complete set of 5,268 samples (Supplementary Table S1).  

We next went on to identify all variants that showed overrepresentation in our dataset. To 

this end, we computed the binomial overrepresentation p-value for all variants that were reported 

as pathogenic in ClinVar with no conflicting interpretations. Multiple submissions to ClinVar were 

required to include a variant into the analysis. As a result, 19 disease alleles were identified as 

overrepresented in the healthy donor subset (Table 1). These included both known high-frequency 

variants, such as the rs5030654 variant in PAH and the rs1555287300 in ATP7B linked to 

phenylketonuria and Wilson’s disease respectively, and variants that have not been previously 

reported as overrepresented. The latter category included such variants as rs554847663 in OTOG 

linked to autosomal recessive deafness, and variant rs119473033 in SMARCAL1 causing Schimke 

immuno-osseous dysplasia. High incidence of these variants has not been previously noted, and 

no estimates of the corresponding disease frequency are available for the Russian population. 
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Table 1. Known pathogenic variants present at high frequency in the expanded allele frequency 

reference of the Russian population. 

Variant ID Gene gnomAD 

NFE AF 

Allele 

count 

RUSeq

AF* 

p-value Disease 

rs200482683 NPHS2 0.02% 5 0.35% 2.07E-05 Nephrotic syndrome 

rs549794342 NEB 0.05% 8 0.56% 5.86E-07 Muscular dystrophy 

rs119473033 SMARCAL1 

0.01% 4 0.28% 4.62E-05 Schimke immuno-

osseous dysplasia 

rs775288140 COL7A1 

0.00% 3 0.21% 8.84E-06 Recessive dystrophic 

epidermolysis 

bullosa 

rs777686211 CPLANE1 0.02% 4 0.29% 3.41E-04 Nephronophthisis 

rs104893924 SLC26A2 

0.02% 5 0.35% 2.91E-05 Osteochondrodysplas

ia 

rs386834233 BCKDHB 

0.04% 5 0.35% 2.83E-04 Maple syrup urine 

disease 

rs782316919 SURF1 0.02% 4 0.28% 7.59E-05 Cerebellar ataxia 

rs554847663 OTOG 

0.08% 6 0.46% 5.86E-04 Intellectual disability 

and autosomal 

recessive deafness 

rs371720347 STAC3 

0.01% 3 0.21% 1.06E-04 Bailey-Bloch 

congenital myopathy 

rs5030858 PAH 0.15% 10 0.70% 7.45E-05 Phenylketonuria 

rs76151636 ATP7B 0.13% 9 0.63% 1.26E-04 Wilson disease 

rs36209567 F7 0.10% 7 0.49% 8.87E-04 Abnormal bleeding 

rs200389141 BLM 0.03% 5 0.35% 6.55E-05 Bloom syndrome 

rs375470378 GAA 

0.03% 4 0.28% 7.21E-04 Glycogen storage 

disease 

rs387906455 F8 

0.00% 3 0.21% 9.34E-07 Hereditary factor 

VIII deficiency 

disease 

* - AF is given with reference to the healthy donor subgroup. 
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Having characterized the spectrum of overrepresented pathogenic alleles in our dataset, we 

then went on to identify potentially clinically significant variants that are present in healthy 

patients but are not found in gnomAD. We began by identifying known pathogenic variants 

missing from gnomAD v2.1.1 data that are reported in the ClinVar database. In total, we 

discovered 72 such variants, with 25 of them located in genes with autosomal-dominant disease 

inheritance (Supplementary Table S2). In addition to these variants, we also searched for 

potentially clinically significant variants that are absent from gnomAD but are present in the 

healthy subgroup. In total, more than 100 putative loss-of-function (pLoF) variants present in 

healthy patients were identified. Of these, 27 variants localized in genes with high degree of 

evolutionary conservation according to gnomAD-derived metrics (pLI, LOEUF) and with known 

connection to autosomal dominant phenotypes. Selected variants are listed in Supplementary Table 

S2. Among the known and expected pathogenic variants present in our sample, the most notable 

examples include variant rs397516471 in the TNNT2 gene. This variant is reported as pathogenic 

for left ventricular noncompaction and familial restrictive cardiomyopathy; however, it is present 

in 1 healthy subject in our dataset who has not yet displayed any symptoms of the disease. Another 

notable example is variant rs1064793825 in MSH2 possibly causing hereditary colorectal cancer. 

Similarly to the case of rs397516471 variant in TNNT2, a carrier subject has also not yet displayed 

any symptoms of the disorder. However, in the case of both rs397516471 and rs1064793825, 

family history of variant carriers listed several cases of related disorders (cardiomyopathy or 

cancer, respectively), suggesting that the disease is likely to manifest in the near future. 

Taken together, we described two important categories of genetic variants in our dataset: (i) 

known pathogenic variants that are present at higher frequency in Russia, and (ii) variants with 

presumed pathogenic effects that are too common in Russia and/or are present in the subgroup of 

healthy individuals. Both of these groups of variants can be used in NGS-based assays in Russia 

to assist variant interpretation in clinical practice. All of the variant frequency data presented here 

are available to the community of medical geneticists through a web-based variant portal at 

http://ruseq.ru.  
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Discussion 

 

As shown in multiple studies, population-adjusted allele frequency information is useful 

for efficient filtering of candidate pathogenic variants. For example, filtering of variants by 

maximum allele frequency across populations rather than global allele frequency helps to decrease 

the number of candidate pathogenic variants per individual genome (Lek et al. 2016). Despite the 

great availability of global allele frequency information in such resources as gnomAD, many 

nations and local populations remain poorly represented from a genetic perspective. Russia, being 

the world’s largest country by total land area, has long remained the widest blank spot on the 

genetic map of the world (Oleksyk, Brukhin, and O’Brien 2015). 

Three major studies have addressed the problem of limited genomic information about the 

Russian population. One of the studies included only healthy donors from different ethnic 

backgrounds (Zhernakova et al. 2020); however, this study suffered from a very low sample size 

that was not sufficient for clinical purposes. An earlier study from our group included 694 samples 

and provided the first exome-wide estimates of disease allele prevalence (Barbitoff et al. 2019). 

Finally, a very recent study by Ramensky et al. included 1,658 healthy controls; unfortunately, this 

study was based on a targeted sequencing of only 242 genes (Ramensky et al. 2021). Despite the 

aforementioned limitations, data obtained in previous analyses have already been used for 

interpretation of clinical significance of variants (Glotov et al. 2019; Maksimov et al. 2020) and 

population genetics analyses (e.g., (Shikov et al. 2020; Pinheiro, Sperb‐Ludwig, and Schwartz 

2021)). Exome-based allele frequencies have been included into several databases, including a 

database of BRCA1/BRCA2 gene mutations (https://oncobrca.ru/). A dramatic (nearly tenfold, 

6,096 compared to 694) increase in the sample size achieved in this study brings the available 

allele frequency reference for the Russian population to the level of such a project as ESP6500 (Fu 

et al., 2012), greatly aiding clinical specialists in variant interpretation in NGS-based assays. 

Increase in the sample size allowed us to identify genetically distinct clusters in the admixed 

sample of Russian residents, which were in line with earlier studies (Zhernakova et al. 2020). At 

the same time, existence of distinct clusters imply that different genetic disease risk factors are 

present in different geographical regions of Russia, which is well known to the Russian medical 

genetic community. This finding comes as no surprise, but predicates the need for further 

expansion and diversification of the dataset. 
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As described in the previous section, we have successfully validated some of the earlier 

observations regarding overrepresentation of disease alleles in the Russian population. Out of 22 

disease-associated variants that were identified in (Barbitoff et al. 2019; Ramensky et al. 2021) we 

confirmed overrepresentation of 14 variants (63.7%), and identified 10 novel pathogenic alleles 

that have greater incidence in the Russian Federation compared to other European populations 

(gnomAD NFE group). For several of the identified variants, their increased prevalence in Russia 

has been noted in gene-level studies (Abramov et al. 2015; Balashova et al. 2020). For other 

variants, such as the rs554847663 variant in OTOG, no previous reports were published. Hence, 

these variants represent novel candidates that are worth looking into in further genetic 

epidemiology studies. In addition to the overrepresented variants, we find a limited set of variants 

in AD genes that are annotated as pathogenic in ClinVar and linked to severe disorders but are 

present in healthy control individuals in Russia (Supplementary Table S2). This information is 

important for clinical interpretation of such variants, especially in the Russian population.  

While the current sample size allows for more unbiased conclusions regarding the genetic 

structure of the Russian population, we can still expect a large number of rare genetic variants in 

the rest of the population that were not covered by our analysis. Recent studies have shown that 

mutational saturation can only be achieved by integrating hundreds of thousands of samples 

(Agarwal and Przeworski 2021). Hence, further aggregation of data from sequencing centers 

across Russia, sequencing of more healthy donors, and inclusion of patients from distinct regions 

(such as in the initial design of the Genomes Russia project (Oleksyk, Brukhin, and O’Brien 2015)) 

are all required to fully characterize the genetic variation spectrum of present-day Russia. 
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