
Genetic support of a causal relationship between Iron status and atrial

fibrillation: a Mendelian randomization study

Abstract

Background

Atrial fibrillation is the most common arrhythmia disease.Animal and observational studies

have found a link between iron status and atrial fibrillation. However, the causal relationship

between iron status and the risk of atrial fibrillation may be biased by confounding and

reverse causality.The purpose of this investigation was to use Mendelian randomization

(MR) analysis, which has been widely appied to estimate the causal effect,to reveal whether

systemic iron status was causally related to atrial fibrillation.

Methods

Single nucleotide polymorphisms (SNPs) strongly associated (P < 5×10−8) with four

biomarkers of systemic iron status were obtained from a genome-wide association study

involving 48,972 subjects conducted by the Genetics of Iron Status consortium.

Summary-level data for the genetic associations with atrial fibrillation were acquired from

AFGen (Atrial Fibrillation Genetics) consortium study( including 65,446 atrial fibrillation

cases and 522,744 controls) .We used a two-sample MR analysis to obtain a causal estimate,

and further verified credibility through sensitivity analysis.

Results

Genetically instrumented serum iron [OR:1.09;95%; confidence interval (CI)1.02-1.16;

p=0.01], ferritin [OR:1.16;95%CI:1.02-1.33; p=0.02], and transferrin saturation
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[OR:1.05;95%CI:1.01-1.11; p=0.01] had positive effects on atrial fibrillation. Genetically

instrumented transferrin levels [OR:0.90;95%CI:0.86-0.97; p=0.006] was an inverse

correlation with atrial fibrillation.

Conclusion

In conclusion,our results strongly elucidated a causal link between genetically determined

higher iron status and increased the risk of atrial fibrillation.This provided new ideas for

clinical prevention and treatment of atrial fibrillation.

Keywords: causal association ,iron status,Mendelian randomization, atrial fibrillation ,

Backgroud

Atrial fibrillation is the most common arrhythmia in clinical practice1.It is associated

with 5-fold the risk of stroke and accounts for 15% of all stroke causes2.Besides,it is

associated with 2-fold the risk of all-cause mortality3,affecting the patient's quality of life

and increasing their economic burden. Iron is one of the essential elements for the human

body4.It plays an important role in physiological processes ,such as in oxygen transport,

immune function, electron transfer, energy production, DNA synthesis and so on4.

Furthermore,iron could catalyzes the formation of reactive oxygen species(ROS) and

inflammatory factors, which may affect the occurrence of atrial fibrillation5.

Some researchers have discovered that even if the left ventricle function properly, atrial

fibrillation can occur regardless of the iron status6.On the other hand, there are some

evidences that iron overload significantly increase the chance of atrial fibrillation7,

8.However, inference of observational studies is limited by residual confounding, reverse

causation, and detection bias9. Therefore, the link between iron status and the risk of atrial

fibrillation still needs more attention.

Mendelian randomization uses genetics as an instrumental variable for exposure. While

overcoming the limitations of traditional epidemiological researchs, it also strengthens

causal inferences about the impact of specific exposure factors on the results10. Alleles are

randomly distributed during gametogenesis, and genetic variations are randomly distributed
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in fertilized eggs. The genetic variation precedes the lifestyle and environmental factors

selected by the individual, which minimizing the interference of confounding factors, and

overcoming the influence of reverse causality11. There are no MR-based studies to detect the

relationship between iron status and the risk of atrial fibrillation. Therefore, we use the

public data of genome-wide association studies (GWASs) to investigate whether iron status

may be causally related to the risk of AF.

Methods

Study Design Overview

We conducted a two-sample MR study to investigate whether iron status acts as risk

factors or mediators in the relationship with atrial fibrillation. Summary data comes from

GWAS consortia studies. The original studies were conducted with the informed consent of

the participants, as well as ethical approval. We used SNPs as instrumental variables for the

iron status. Key assumption methods include the following:(1) SNPs are related to the iron

status (the exposure), (2) SNPs are independent of confounding factors, (3) SNPs impact

atrial fibrillation (the outcome) only through the iron status(the exposure)12.The overall

study design is depicted graphically in Figure1.

Figure.1Flowchart of the instrument variables assumptions for MR design. Assumption 1: Genetic variation
(SNPs) are closely related to iron status. Assumption 2: Genetic variation (SNPs) are independent of the
confounding factors. Assumption 3: Genetic variation (SNPs) affects atrial fibrillation only through iron status
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In order to ensure the validity of the instrumental variables for MR analysis, the

selection of instrumental variables needs to observe the following standards: Single

nucleotide polymorphisms (SNPs) are tightly related to the exposure of the genome-wide

significance threshold(p < 5 × 10−8)13；linkage equilibrium is another necessary requirement

for all the SNPS(pairwise r2≤ 0.01)14 .Weak instrumental variables can also be associated

with exposure factors, which can produce an impact on MR research and lead to biases. The

generation of weak instrumental variables are generally caused by insufficient sample size.

In general, some scholars proposed to evaluate the effect of weak instrumental variables

through F statistical variable. From the perspective of traditional experience, it is generally

better to have an F-statistic greater than 10, and it is certainly better to have an F-statistic

greater than 100. When F statistic variables is less than 10, we usually consider that using

genetic variation is weak instrumental variable, which may produce certain bias. Hence，we

need very careful to interpret the results. Although some scholars believe that F statistic may

not be a very good instrument to evaluate the bias of weak instrumental variables, we still

use F statistic at this stage, after all, it is widely used and proved to be a good method, while

other new methods still need to be tested in practice. The formula for calculating F statistic

is as follows: R2× (N − k − 1)/ [(1 – R2) ×k]. Here N for exposing GWAS research sample,

k represents the number of independent variable (IV), R2 is IV explain exposed degree

coefficient of regression equation (decision). In a two-sample Mendelian randomization

study, it is easy to get the specific values of N and K, but R2 is not easy to get, and we often

need to refer to the original literature or the complete GWAS Summary file to get it15.

Genetic associations with systemic iron status

To get the summary-level data on the association between SNPs and iron status, the

Genetics of Iron Status (GIS) consortium conducted a meta-analysis of the largest

genome-wide association studies (GWASs), including 11 discovery cohorts and 8

replication cohorts and a total of 48,972 European desent (46.9% for male participants) were

involved in the meta-analysis. This meta-analysis included a total of 19 cohorts，identified

12 SNPs related to the biomarkers of systemic iron status at genome-wide significance

(p<5×10−8)(Table 1) and no linkage disequilibrium (LD) among them (all pairwise r2≤
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0.01 ).Five single nucleotide polymorphisms (SNPs) associated with serum iron and

transferrin saturation, six SNPs associated with ferritin and eight SNPs associated with

transferrin16.The increasing of systemic iron status loading means concentration of the

transferrin saturation , serum iron and ferritin increasing, while the transferrin

decreased17.Three of these 12 SNPs,rs1800562 and rs1799945 in HFE and rs855791 in

TMPRSS6,showed a concordant change of four biomarkers of systemic iron status at

genome-wide significance and accounted for most of the differences in each iron status

biomarker18. Therefore, these three SNPs have sufficient effects to act as instrumental

variables of iron status19-21.It seems unlikely that there are biases due to the effect of the

weak instrumental variables, because the value calculated by the F statistic variable is from

39 to 3,34022.The relationship between these SNPs and iron status biomarkers was obtained

after the adjustment of covariables, including age and principal component scores, and other

study-specific covariates. The details information of SNPS and iron status are presented in

in Supplemental Table 1and2.

Data sources: outcome

Summary-level data through the largest meta-analysis genome-wide association studies

for AF(atrial flutter, paroxysmal AF, and persistent AF grouped together) were obtained

from the AFGen (Atrial Fibrillation Genetics) consortium study conducted by Roselli C et al

in 201823.To ensure that the effect assessments were consistent with same alleles, they using

the default settings for the harmonize data command in a two sample MR package in R. This

study contained information from more than 50 studies (84.2% European, 12.5% Japanese,

2% African American, and 1.3% Brazilian and Hispanic), including participants from UK

Biobank, Biobank Japan and included 65,446 atrial fibrillation cases and 522,744 controls..

Through these two websites (http://afgen.org) and (http://www.kp4cd.org/datasets/v2f) can

obtain the data summary statistics and download. The three instrumental varibles SNPs

related to iron status were available in the atrial fibrillation outcome GWAS.

MR Estimates

We mainly used the two-sample MR method to infer the causal association between iron

status and AF. Therefore, we needed to use "Two sample MR" in R package (version 0.4.23)
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to conduct MR analysis. Specifically, the inverse-variance-weighted (IVW)24,MR-Egger

regression25, weighted median, simple mode and weighted mode methods26,were used to

estimate the effect value between iron status and AF respectively.Weighted median was the

primary method to assess the association of genetically predicted iron status and AF risk. In

addition, we present the results of different statistical methods in the same chart. The data

we need for exposure and outcome were publicly available and accessible in the GWAS

database. By using different methods, we could finally get the three main results of Beta, SE

and P value through MR analysis. According to these results, we can calculate 95%

confidence interval (CI) and odds ratios(OR) value respectively. The formula required was

as follows: OR = exp (beta); CI = exp (beta ± 1.96× SE). During the analysis, there were

exposures and other potential confounders that make evaluations difficult. We can obtain

limited information through GWAS catalogue database

(https://www.ebi.ac.uk/gwas).Through the retrieval of this website and literature reports, it

was found that rs1799945 (HFE gene) has a certain relationship with high systolic and

diastolic blood pressure27.The link between hypertension and atrial fibrillation is likely to

lead to atrial fibrillation by dilating the left atrial diameter28. But then, we used the

leave-one-out method to test the effect of rs1799945 (HFE gene) on the results.

Sensitivity Analyses

The purposes of our sensitivity analysis were to identify any potential possible pleiotropic

and heterogeneous problems. Because one of the assumptions in the MR analysis was that

the instrumental variables could only influence the result(AF) by selecting the

exposures(iron status) , and not by other confounders29. In order to exclude the

heterogeneity of instrumental variables such as different experiments, platforms and

populations, IVW and MR-Egger methods were used to test the heterogeneity. The value of

each SNP and Cochran's Q statistics under each iron status were displayed through forest

plots30. In addition, leave-one-out analysis were performed to identify SNPS with larger or

non-proportional effects by removing one SNP at a time and recalculating estimates for the

entire pool of instrumental variables. We used MR-Egger statistical sensitivity analysis to

limit the pleiotropic effect of instrumental variables and make MR analysis more reliable. In
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the MR-Egger regression, the intercept, as an indicator of the mean multivariate bias, can be

freely estimated31. Power calculations were based on a method designed for a binary

outcome32. All of the above analysis were conducted by VERSION 4.1.0 of R.

Results

1. Causal effects of iron status on the risk of AF

In the MR analysis results, which were shown as odds ratios (ORs) for AF per standard

deviation (SD) increase in each biomarker of iron status and risk of AF. We found that

serum iron [OR:1.09;95%confidence interval (CI)1.02-1.16; p=0.01], ferritin

[OR:1.16;95%CI:1.02-1.33; p=0.02], and transferrin saturation [OR:1.05;95%CI:1.01-1.11;

p=0.01] had a significant positive effects on AF. However, higher transferrin levels

[OR:0.90;95%CI:0.86-0.97; p=0.006] was associated with a lower probability of AF, which

is indicative of decreased iron status. The relationship between each biomarker of iron

status and the risk of AF were shown graphically in Figure 2.
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Figure 2:Estimates for the effect of Iron status on AF from two-sample Mendelian randomization .（a）Iron-AF.（b）
Log10 Ferritin-AF. (c)Saturation-AF. (d)Transferrin-AF.

2. Sensitivity analyses did not display indication of unknown pleiotropy

The presupposition of Mendelian randomization study for causality inference is that there

is no level of pleiotropy biases. We used PhenoScanner database to examine the biological

pleiotropy of these instruments to evaluate the possible biases33. As expected, three SNPS

affect Red blood cell traits by changing iron status34. The MR-Egger intercepts for the four

biomarkers of iron status for directional horizonal pleiotropy did not differ significantly

from null (p= 0.51, 0.65, 0.55, and 0.79 for serum iron, ferritin, transferrin saturation, and

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. review)

(which was not certified by peerThe copyright holder for this preprint this version posted November 2, 2021. ; https://doi.org/10.1101/2021.11.02.21265752doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.02.21265752
http://creativecommons.org/licenses/by/4.0/


transferrin, respectively). The MR-Egger for the four biomarkers for Heterogeneity test did

not differ significantly from null (p=0.07,0.07,0.09,0.13 and for serum iron, ferritin,

transferrin saturation, and transferrin, respectively) neither. Some articles pointed out that

the iron status raising allele at rs1800562 (HFE gene) and at rs1799945 (HFE gene) were

association with lower low-density lipoprotein levels and higher systolic and diastolic blood

pressures35. By searching a large number of existing literatures, there were no clear

relationship between hypolipidemia and atrial fibrillation. Although one of the alleles was

associated with high blood pressure, which can induce AF,we conducted leave-one-out

sensitivity analysis test and found that there were no changes about the MR estimate. Even

if the direction of estimates varied somewhat (P > 0.05), but did not change the pattern of

results in Figure 3 .
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Figure 3 Plots of“leave-one-out” analyses for MR analyses of the causal effect of Iron status on AF in replicative
practice. A. Iron-AF. B Log10 Ferritin-AF. C .Saturation-AF. D.Transferrin-AF

MR analysis were carried out by five methods.MR Egger, Weighted median, Simple

mode ,Weighted mode produced directionally consistent effects as the IVW estimates. We

compared the five MR analyses in different iron status and charted them in Figure 4.
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Figure 4.Scatter plots for MR analyses of the causal effect of iron status on AF in initial practice. A Iron-AF. B
Log10 Ferritin-AF. C Saturation-AF. D Transferrin-AF. The slope of each line corresponding to the estimated MR
effect per method.

Discussion

Before the time, there have been observational studies of iron status in relation to

arrhythmias and atrial fibrillation36.Excessive or lack of nutrients can lead to many chronic

diseases37.Due to the differences in race, ethnicity, sample size, as well as some

unconsidered confounding factors or unknown risk factors, the observation results are easy

to exist biases. Consequently, we use two-sample MR, which can minimize the interference

of confounders, to estimate the associations between several genetically determined markers

of systemic iron status(serum iron, ferritin, transferrin saturation, and transferrin) and the

risk of AF . The basic assumption about two-sample MR is that the instruments (SNPs)
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should be associated with the outcome (AF) only via the exposure (systemic iron status as

reflected by the four iron biomarkers).Furthermore, we use summary level data generally

mainly from the largest meta-GWASs of European descent to reduce the likelihood of

biases38.The final results showed that iron overload is associated with an increased risk of

AF based on MR analysis. Moreover, the conclusions obtained by different MR analysis

methods are consistent. These results provide a reasonable way for using iron status as a

promising clinic target for AF prevention and treatment39.

The reliability of the results may be not stable due to the pleiotropic effects of MR

analysis method40.We used SNPS in PubMed database to search for the possibility of the

secondary phenotypes. The association of the 3 iron status instruments are well-established

relationship between iron status and anemia16. But if any effect of RBC traits on AF risk was

downstream of iron status, instead of independent of it, this would not bias the MR

analysis41.Our online search identified two SNPS —rs1800562 and rs1799945 in HFE gene.

The former is associated with lower low-density lipoprotein levels, the latter is associated

with higher systolic and diastolic blood pressures. The influence of blood lipids on atrial

fibrillation have not been clearly reported. However, blood pressures have been reported to

increase the risk of AF28. By causing left ventricular hypertrophy, atrial dilatation is more

likely to lead to atrial fibrillation42-44.

Nevertheless, removing the SNP produced no substantive effect in MR analysis results,

suggesting that the MR estimates in the present study were not likely expected to be biased

by blood pressure. Due to the influence of different MR analysis methods, the slight

differences in the confidence interval width and estimates may be explained by accidental,

possibly, or results of a difference measurement errors, rather than indicating distinct real

differences. In addition, using the MR-Egger method to conduct the pleiotropic test did not

detect biases and associationes. Both exposure and outcome in the public genome wide

association study database mainly from European population, thus minimizing the biases of

population stratification. Meanwhile, the leave-one-out MR estimate was parallel to the

primary MR estimates. Generally speaking, it shows that there were unlikely serious biases

in our research methods and conclusions.
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Iron deficiency and systemic iron overload can cause metabolic disorders. About

one-third of patients with heart failure and one-half of patients with pulmonary hypertension

have iron deficiency. Moreover, iron deficiency has an adverse effect on patients with

coronary artery disease, heart failure, pulmonary hypertension, and patients who may

undergo heart surgery45.Systemic iron status increasing means that serum iron, transferrin

saturation and ferritin levels rise, while transferrin levels decreases46.Previous MR studies

have shown that increased iron status reduces the risk of coronary artery related

diseases47and Parkinson's syndrome48 and increased the risk of type 2 diabetes49 and

cardiogenic thrombosis21.As far as we known, no causal relationship have been conducted

previously between instruments iron status and atrial fibrillation using the MR methods.

Hence, we suggested a casual relation between systemic iron status and AF for the first time.

The most important risk factors for the occurrence of atrial fibrillation events are aging,

hypertension diabetes, atrial dilation and left atrial enlargement, stroke, cardiomyopathies,

heart failure and genetics50.In addition, natriuretic peptide levels and volume overload also

increase the probability of atrial dilation and atrial fibrillation51.Our MR study found that

one of the alleles related to iron status at rs1799945(HFE gene) which is related to high

systolic blood pressure and high diastolic blood pressures27, 52.As mentioned above,

hypertension is one of the risk factors for atrial fibrillation, which is as a kind of

confounding factor leading to the effect of iron status on AF. Through leave-one-out

pleiotropic analysis, the results did not change significantly. When iron overload is

determined by the cardiac magnetic resonance (CMR) value, the risk of atrial fibrillation is

significantly increased53.Whether there are potential mechanisms that make the iron

overload directly affect the occurrence of AF. We could get clues from some observations

and basic experimental results.

First of all, in addition to the above-mentioned volume overload is the main reason for

atrial dilation, another major factor is oxidative stress54.For all we know, iron overload is an

important cause of oxidative stress55.Oxidative stress can induce changes in intracellular

calcium ions, lead to delay depolarization, result in atrial focal ectopic action potential56.In

addition, abnormal calcium ion handling and calcium overload could induce cardiac

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. review)

(which was not certified by peerThe copyright holder for this preprint this version posted November 2, 2021. ; https://doi.org/10.1101/2021.11.02.21265752doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.02.21265752
http://creativecommons.org/licenses/by/4.0/


remodeling, resulting in atrial fibrillation57. When the iron overload exceeding the iron

storage capacity, erratic iron enters the circulation58 and can also penetrate into the

myocardial cells55.Iron overload cardiomyocytes have abnormal action potentials comparing

with normal cells. Animal experiments have found that iron toxicity can lead to change in

electrical conduction of the heart and arrhythmia59.Iron toxicity damages cardiomyocytes

conduction still by increasing oxidative stress. Oxidative stress breaks the balance of sodium,

potassium, and calcium channels, resulting in abnormal cell ion flow, insufficient atrial

contraction and atrial fibrillation55.Another mechanism is that oxidative stress activates

Nuclear factor-κB (NF-κB). NF-κB can down-regulates calcium channels and lead to atrial

fibrillation60.There is an experiment on older rats, the result is that iron overload can cause

oxidative stress and activate NF-κB in brain tissue58.Besides,excess free ironions can

participate in the Fenton reaction and produce a large amount of OH-,which is considered to

be the strong activtion of ROS61, 62. In 2012, Dixon et al discovered a new way of

programmed cell death—ferroptosis, the essence of this is the Fenton reaction63.Thus, it can

be fully inferred that iron overload may cause atrial fibrillation through ferroptosis.It had

been proved in animal experiments that ferroptosis occurs in atrial fibrillation , and

inhibiting ferroptosis can effectively control the occurrence of atrial fibrillation64. Finally,

some studies have found that in thalassemia patients, iron overload is caused by ineffective

hematopoiesis and repeated blood transfusions65, 66.In these patients, inflammatory factors

are elevated. By using iron chelating agents, the level of inflammatory factors demonstrate a

downward trend67. So the iron overload can cause changes in the heart through

inflammatory factors, making the heart more prone to atrial fibrillation, and it is one of the

regulators of inflammation57. In summary, iron status can lead to atrial fibrillation through

potential mechanisms: oxidative stress, inflammatory response, and ferroptosis. Our

findings provided the first evidence that four genetically determined systemic iron status

biomarkers (serum iron, ferritin, ferritin saturation, ferritin) were significantly associated

with atrial fibrillation risk.That was consistent with some previous recognized association

between iron and AF based on observational studies.
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Herein, our researches should be interpreted in conbination of some limitations. First, due

to our analyses were conducted at publicly available GWAS databases, they were difficult to

perform stratified analysis such as age and gender in the exposures and out come databases.

Furthermore,even though we used different methods to try to minimize the pleiotropy and

data obtaining from the GWAS database with the largest sample size in the world, biases

caused by unknown biological effects of the SNP on iron status may be inevitable.

Moreover, the datasets used in our research were mainly derived from European races,

which aiming at reducing the bias owing to races. Hence, it is unclear whether the results

certainly appropriate for other races. Finally,this MR study investigated the relationship

between iron states and in the normal range of AF.For this reason,therefore, our results

cannot be used to infer the effects of abnormally high serum iron levels caused by veins,

long-term oral iron supplementation, or hemochrome disease.

Ultimately, some Mendelian Randomization studies used IV-W as the main method of

analysis, while we used weighted median for the following reasons, in order to make the

results more reliable and reasonable.As a valid IV, there are three necessary assumptions：

IV1: the variant is predictive of the exposure;IV2: the variant is independent of any

confounding factors of the exposure-outcome association;IV3: the variant is conditionally

independent of the outcome given the exposure and the confounding factors68. Of these,

only IV1 can be verified（p＜5x10-8）, while the rest depends on all possible confounding

factors of exposure and outcome,both measured and unmeasured.As Mendelian

randomization analysis contains multiple variants, statistical capacity is improved69. But one

of the challenges is that not all included genetic variants are valid IVs70.If all genetic

variants satisfy the IV assumptions, IVW can adequately reflect the real causality. However,

when an invalid IV occurs, the IVW deviates from the true causality, resulting in a bias

outome71. It's like that Voight et al suggested there is not even a moderate causal effect of

HDL-c on CAD risk72. In this study, we found that one of the IV may be an invalid or weak

instrument (it is associated with the confounding factor of hypertension),so using the IVW

method is not appropriate. The weighted median methods generally have more power with a

positive causal effect, especially when the proportion of invalid IVs increases and also have
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less mean standard errors than the IVW method71.Therefore, for this study, weighted median

methods are more statistically close to the real causality.

Conclusion

Through the MR method, we tested the previously assumed hypothesis that there is a

causal relationship between the overload in the iron status of the systematic and the

occurrence of AF. We relied on iron status data measured in 48,972 individuals in the

general population database and the AF Gen (Atrial Fibrillation Genetics) consortium study

including participants from UK Biobank, Biobank Japan and included 65,446 atrial

fibrillation cases and 522,744 controls in the general population to conduct a two-sample

MR experiment. We used the three SNPs as instruments to increase statistical power by

combining their MR estimates and investigate possible pleiotropic effects. Our Mendelian

randomization study first showed that systemic iron status increases AF risk .This has

important clinical significance for the treatment of borderline anemia and the continued iron

therapy of anemia patients after the iron status is corrected, especially for patients with

anemia or continuous supplementation for patients at high risk of atrial fibrillation, careful

consideration may be needed.

supplementary information:The following are available online link.Table S1: iron
status on genome-wide significance level biomarkers related SNPs, and included in all three
main SNPs and secondary analysis of the main analysis;Table S2:Additional information
was amplified for three major SNP.
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