
 1 

Heart-brain connections: phenotypic and genetic insights from 40,000 cardiac and 1 

brain magnetic resonance images  2 

 3 

Running title: Heart-brain connections 4 

 5 

Bingxin Zhao1, Tengfei Li2,3, Zirui Fan1, Yue Yang4, Xifeng Wang4, Tianyou Luo4, Jiarui Tang4, 6 

Di Xiong4, Zhenyi Wu1, Jie Chen4, Yue Shan4, Chalmer Tomlinson4, Ziliang Zhu4, Yun Li4,5, 7 

Jason L. Stein5,6, and Hongtu Zhu3,4,5,7* 8 

 9 
1Department of Statistics, Purdue University, West Lafayette, IN 47907, USA. 10 
2Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 11 
3Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, 12 

Chapel Hill, NC 27599, USA. 13 
4Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 14 
5Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 15 
6UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 16 
7Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, 17 

USA. 18 

 19 

*Corresponding author: 20 

Hongtu Zhu 21 

3105C McGavran-Greenberg Hall, 135 Dauer Drive, Chapel Hill, NC 27599.  22 

E-mail address: htzhu@email.unc.edu Phone: (919) 966-7250 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2021. ; https://doi.org/10.1101/2021.11.01.21265779doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.11.01.21265779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 1 

Cardiovascular health interacts with cognitive and psychological health in complex ways.  2 

Yet, little is known about the phenotypic and genetic links of heart-brain systems. Using 3 

cardiac and brain magnetic resonance imaging (CMR and brain MRI) data from over 4 

40,000 UK Biobank subjects, we developed detailed analyses of the structural and 5 

functional connections between the heart and the brain. CMR measures of the 6 

cardiovascular system were strongly correlated with brain basic morphometry, structural 7 

connectivity, and functional connectivity after controlling for body size and body mass 8 

index. The effects of cardiovascular risk factors on the brain were partially mediated by 9 

cardiac structures and functions. Using 82 CMR traits, genome-wide association study 10 

identified 80 CMR-associated genomic loci (P < 6.09 × 10-10), which were colocalized with 11 

a wide spectrum of heart and brain diseases. Genetic correlations were observed 12 

between CMR traits and brain-related complex traits and disorders, including 13 

schizophrenia, bipolar disorder, anorexia nervosa, stroke, cognitive function, and 14 

neuroticism. Our results reveal a strong heart-brain connection and the shared genetic 15 

influences at play, advancing a multi-organ perspective on human health and clinical 16 

outcomes.  17 

 18 
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 3 

A growing amount of evidence suggests close interplays between heart heath and brain 1 

health (Fig. 1A). Cardiovascular diseases may provide a pathophysiological background 2 

for several brain diseases, such as stroke1, dementia2, and cognitive impairment3-5. For 3 

example, atrial fibrillation has been linked to increased incidence of dementia6 and silent 4 

cerebral damage7, even in stroke-free cohorts8. It is consistently observed that heart 5 

failure is associated with cognitive impairment and eventually dementia9, likely due to 6 

the reduced cerebral perfusion caused by the failing heart10. Mental disorders and 7 

negative psychological factors, on the other hand, contribute substantially to the 8 

initiation and progression of cardiovascular diseases11,12. Patients with mental illnesses 9 

(such as schizophrenia, bipolar disorder, or depression) show an increased incidence of 10 

cardiovascular diseases13-16. Acute mental stress may cause a higher incidence of 11 

atherosclerosis due to stress-induced vascular inflammation and leucocytes migration17. 12 

In part due to the lack of data, almost all prior studies on heart-brain interactions focused 13 

on one (or a few) specific diseases or used small samples. The overall picture of structural 14 

and functional links between the heart and the brain remains unclear. 15 

 16 

In heart and brain diseases, magnetic resonance imaging (MRI) traits are well-established 17 

endophenotypes. Cardiovascular magnetic resonance imaging (CMR) is used to assess 18 

cardiac structure and function, yielding insights into the risk and pathological status of 19 

cardiovascular diseases18-20. Brain MRI provides detailed information about brain 20 

structure and function21. Clinical applications of brain MRI have revealed the associated 21 

abnormalities that accompany multiple neurological and neuropsychiatric disorders22-24. 22 

Moreover, twin and family studies have shown that CMR and brain MRI traits are 23 

moderately to highly heritable25-28. For example, the left ventricular mass (LVM) has a 24 

heritability greater than 0.827. The majority of brain structural MRI traits are highly 25 

heritable (heritability ranges from 0.6 to 0.8)29 and the heritability of brain functional 26 

connectivity is largely between 0.2 and 0.630. A few recent genome-wide association study 27 

(GWAS) have been separately conducted on CMR31-36 and brain MRI traits37-42. Although 28 

MRI is widely used in clinical research and genetic mapping, few studies have used multi-29 

organ MRI to examine heart-brain connections and identify the heart's and brain's shared 30 

genetic signatures. 31 

 32 
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 4 

In this paper, we investigated heart-brain connections using multi-organ imaging data 1 

obtained from over 40,000 subjects in the UK Biobank (UKB) study. By using a newly 2 

developed heart segmentation and feature extraction pipeline43, we generated 82 CMR 3 

traits from the raw short-axis, long-axis, and aortic cine images. These CMR traits included 4 

global measures of 4 cardiac chambers (the left ventricle (LV), right ventricle (RV), left 5 

atrium (LA), and right atrium (RA)) and 2 aortic sections (the ascending aorta (AAo) and 6 

descending aorta (DAo)), as well as regional phenotypes of the LV myocardial-wall 7 

thickness and strain (Table S1 and Supplementary Note). Then we identified the 8 

relationships between the 82 CMR traits and a large number of the brain MRI traits 9 

discovered from multi-modality images, including T1 structural MRI (sMRI), diffusion 10 

brain MRI (dMRI), resting functional MRI (resting fMRI), and task functional MRI (task 11 

fMRI). These brain MRI traits provided fine details of basic brain morphometry38 (regional 12 

brain volumes and cortical thickness traits), brain structural connectivity44 (diffusion 13 

tensor imaging (DTI) parameters of white matter tracts), and brain intrinsic and extrinsic 14 

functional organizations42 (functional activity and connectivity at rest and during a task) 15 

(Table S2). To evaluate the genetic determinates underlying heart-brain connections, we 16 

performed GWAS for the 82 CMR traits to uncover the genetic architecture of heart and 17 

aorta. In comparison to existing GWAS of CMR traits31-36, our study used a much broader 18 

group of cardiac and aortic traits, which allowed us to identify the shared genetic 19 

components with a wide variety of brain-related complex traits and disorders. For 20 

example, Pirruccello, et al. 35 mainly focused on 9 measures of the right heart, Aung, et al. 21 
31 analyzed 6 LV traits, and Thanaj, et al. 36 studied 3 traits of diastolic function. Our study 22 

design is summarized in Fig. S1. The GWAS results of 82 CMR traits can be explored and 23 

are freely available through the heart imaging genetics knowledge portal (Heart-KP) 24 

http://heartkp.org/.   25 

 26 

RESULTS 27 

Phenotypic heart-brain connections 28 

To verify that the 82 CMR traits are well-defined and biologically meaningful, we first 29 

examined their reproducibility using the repeat scans obtained from the UKB repeat 30 

imaging visit (n = 2,903, average time between visits = 2 years). For each trait, we 31 

calculated the correlation between two observations from all revisited individuals. The 32 
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 5 

average reproducibility was 0.652 (range = (0.369, 0.970), Table S1). A few volumetric 1 

traits had very high reproducibility (> 0.9), including the LV end-diastolic volume (LVEDV), 2 

LV myocardial mass (LVM), RV end-diastolic volume (RVEDV), RV end-systolic volume 3 

(RVESV), AAo maximum area, AAo minimum area, DAo maximum area, and DAo minimum 4 

area. The ejection fraction (such as the LV ejection fraction (LVEF)) and distensibility traits 5 

(such as the descending aorta distensibility (DAo aorta distensibility)) had the lowest 6 

reproducibility among all volumetric traits (mean = 0.573 and 0.537, respectively). In 7 

addition, the average reproducibility was 0.758 for the 17 wall thickness traits, 0.530 for 8 

the 7 longitudinal peak strains, 0.568 for the 17 circumferential strains, and 0.514 for the 9 

17 radial strains. Overall, these results suggest that the extracted CMR traits have 10 

moderate to high within subject reliability and can consistently annotate the cardiac and 11 

aortic structure and function.  12 

 13 

With the control of a large number of covariates, we examined the associations between 14 

the CMR traits and brain MRI traits in UKB individuals of white British ancestry (n = 31,875, 15 

Methods). Particularly, we adjusted for body size (height and weight) and body mass 16 

index in all our analyses. At the Bonferroni significance level (P < 1.33 × 10-6), CMR traits 17 

were associated with a wide variety of brain MRI traits, including regional brain volumes, 18 

cortical thickness, DTI parameters, and resting and task fMRI traits (Fig. 2A and Fig. S2). 19 

For example, the total brain volume had strong positive associations with volumetric 20 

measures of right and left heart as well as aortic sections, with the top ranked traits being 21 

the AAo maximum area, RA stroke volume (RASV), DAo minimum area, RVESV, RVEDV, 22 

and right atrium maximum volume (RAV max) (b > 0.112, P < 1.60 × 10-61, Fig. S3). These 23 

volumetric traits were also widely associated with regional brain volumes, after adjusting 24 

for the total brain volume. A large proportion of these associations were positive, and the 25 

negative ones were specifically observed in the cerebrospinal fluid (CSF) and ventricle 26 

volumes (e.g., the lateral ventricle and third ventricle). The wall thickness traits were 27 

positively associated with subcortical structures (e.g., the putamen, caudate, and 28 

hippocampus) and negatively associated with the lateral occipital and rostral middle 29 

frontal. In addition, cortical thickness measures were associated with multiple CMR traits, 30 

and the strongest associations were observed in the left ventricular cardiac output (LVCO) 31 
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 6 

and DAo aorta distensibility (Fig. S4). These results uncover that heart structure and 1 

function have close relationships with basic brain morphometry.  2 

 3 

CMR traits were also strongly correlated with brain structural and functional connectivity. 4 

For example, fractional anisotropy (FA) was a robust measure of brain structural 5 

connectivity and white matter microstructure. The average FA was positively associated 6 

with the LV ejection fraction (LVEF), DAo aorta distensibility, and AAo aorta distensibility 7 

(b > 0.035, P < 1.69 × 10-8, Fig. S5), and had negative correlations with many other CMR 8 

traits, including the LVM, LVEDV, left ventricular end-systolic volume (LVESV), global wall 9 

thickness, AAo maximum area, and DAo maximum area. For resting fMRI, both mean 10 

functional connectivity and mean amplitude (functional activity) were negatively 11 

associated with volumetric measures of 4 cardiac chambers, such as the LVCO, RV ejection 12 

fraction (RVEF), LA stroke volume (LASV), and RA ejection fraction (RAEF) (b < -0.062, P < 13 

4.87 × 10-24, Fig. S6). Positive correlations were mainly located in the AAo aorta 14 

distensibility, DAo aorta distensibility, longitudinal strain, and peak circumferential strain. 15 

Similar patterns were observed for task fMRI traits (Fig. S7). 16 

 17 

Brain functional traits could be more directly related to human behavioral and cognitive 18 

differences than brain structural traits45. To further discover fine details of CMR-19 

connections with brain functions, we examined pairwise associations between 82 CMR 20 

traits and 64,620 high-resolution functional connectivity traits42 in resting fMRI. 21 

Significant associations (P < 7.15 × 10-8) were observed across the functional connectivity 22 

of the whole brain, with enrichment in specific brain functional areas and networks (Fig. 23 

2B and Fig. S8). For example, the somatomotor network and its connectivity with the 24 

secondary visual network had strong associations with multiple CMR traits. Specifically, 25 

positive somatomotor-associations were observed in the LVM, LVESV, RVEDV, RVESV, 26 

RAV min, AAo aorta distensibility, DAo aorta distensibility, global peak circumferential 27 

strain, and global longitudinal peak strain (Fig. 2C and Figs. S9-S16), and negative 28 

correlations were observed in all the 4 ejection fraction traits (RVEF, LAEF, RAEF, and 29 

LVEF), LVCO, and global radial strain (Fig. 2D and Figs. S17-S22). Furthermore, the 30 

auditory network had strong negative associations with volumetric measures of heart, 31 

including all the 4 stroke volumes (LVSV, RVSV, LASV, and RASV), LVCO, LVEDV, RVEF, left 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2021. ; https://doi.org/10.1101/2021.11.01.21265779doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.01.21265779
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

atrium maximum volume (LAV max), and RAEF (Figs. S17, S19, S21, and S23-S28). On the 1 

other hand, the AAo aorta distensibility and DAo aorta distensibility were positivity 2 

correlated with the auditory network (Figs. S13-S14). There were also significant 3 

correlations with cognitive networks, including the default mode, cingulo-opercular, 4 

dorsal attention, and frontoparietal networks. For example, the default mode network 5 

was associated with the 4 ejection fraction traits, most of the associations were positive 6 

(Fig. S29). The default mode network was also negatively associated with other 7 

volumetric heart measures (such as the LVESV, LVSV, LVM, LASV, RVEDV, RVESV, RVSV, 8 

and RASV), whose associations were enriched in the hippocampal and visual areas of the 9 

default model network (Figs. S30-S31). For aortic measures, the associations were mainly 10 

located in the hippocampal areas of the default model network (Fig. S32). In summary, 11 

MRI-based endophenotype analysis reveals substantial neuro-cardiac interactions. Our 12 

results show the specific pattern of heart-brain connections and highlight important brain 13 

areas and networks that might be strongly related to heart health.   14 

 15 

Mediation analysis with cardiovascular risk factors and biomarkers  16 

Environmental factors and biomarkers may play an important role in the underlying 17 

mechanisms of heart-brain interactions. Clear evidence from clinical and epidemiological 18 

studies exists that cardiovascular risk factors (such as hypertension, high cholesterol, high 19 

fasting glucose, metabolic syndrome, and chronic kidney disease) negatively influence 20 

brain health and neurocognitive performance1,3,46,47. However, it remains challenging to 21 

understand how these cardiac risk factors cause brain damages. To bridge this gap, we 22 

performed mediation analysis by using the 82 CMR traits as intermediate variables48. 23 

Specifically, we investigated whether cardiovascular risk factors could influence brain 24 

structure and function indirectly through heart conditions captured by the 82 CMR traits 25 

(Methods). We examined cardiovascular risk factors, including diastolic blood pressure, 26 

systolic blood pressure, diabetes mellitus, smoking, drinking, and basal metabolic rate, as 27 

well as 34 biomarkers collected in the UKB study.  28 

 29 

Significant CMR-mediation effects were observed for 1,148 pairs between 34 30 

cardiovascular risk factors/ biomarkers and 235 brain MRI traits (P < 2.21 × 10-6, Table S3). 31 

These results suggest that associations between cardiovascular risk factors and brain 32 
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 8 

health were partially mediated by cardiac structure and function. For example, the 1 

diastolic blood pressure was widely associated with cortical thickness, regional brain 2 

volumes, DTI parameters, and functional connectivity (Fig. 3A). On average, 40.3% of 3 

diastolic blood pressure’s effects on DTI parameters were indirect and mediated through 4 

CMR traits (Fig. 3B). The other diastolic blood pressure’ effects (59.7%) could be direct 5 

effects on DTI parameters or indirect effects through non-cardiac mechanisms. The 6 

average proportion of mediated effects was 56.2% for cortical thickness, 38.6% for 7 

regional brain volumes, 37.5% for resting fMRI traits, and 33.6% for task fMRI traits. 8 

Similar meditation patterns were also observed on systolic blood pressure and 9 

hypertension (Fig. S33). Hypertension has been reported to be associated with cognitive 10 

dysfunction49 and brain white matter hyperintensities, which might be a consequence of 11 

chronic ischaemia caused by cerebral small vessel disease50. Mediation effects were also 12 

observed on multiple cardiovascular biomarkers, such as low-density lipoprotein (LDL) 13 

cholesterol, high-density lipoprotein (HDL) cholesterol, and triglyceride (Fig. S34). 14 

 15 

CMR-mediated effects of type 2 diabetes (T2D) on the brain were observed (Fig. 3C). 16 

Insulin signaling plays a critical role in brain health and patients with diabetes are at higher 17 

risk of cognitive impairment and dementia51. The average proportion of CMR-mediated 18 

T2D effects was 16.8% for DTI parameters, 10.3% for cortical thickness, and 13.1% for 19 

regional brain volumes. For example, T2D was negatively related to total brain volume (b 20 

= -0.025, P = 9.64 × 10-9). After adjusting for the CMR traits, the effect became smaller (b 21 

= -0.017, P = 5.80 × 10-5), suggesting that 32% (0.008/0.025) of the T2D effects were 22 

mediated through CMR traits. In addition, mediation effects were observed on glycated 23 

hemoglobin A (HbA1c) and glucose, which were biomarkers of diabetes. High HbA1c level 24 

(hyperglycaemia) is associated with worse brain health and cognitive functions52, such as 25 

memory loss, poorer processing speed, attention, concentration, and executive 26 

functions53,54. As the primary source of energy for the brain, glucose metabolism plays an 27 

important role in the physiological and pathological functioning of the brain55. About 28 

15.5% of HbA1c’s effects on DTI parameters and 14.1% of glucose’s effects on cortical 29 

thickness were CMR-mediated (Fig. 3D and Fig. S35). Other biomarkers whose effects on 30 

brain MRI were mediated by CMR included creatinine, urate, total protein, and gamma-31 

glutamyl transpeptidase (GGT) (Figs. S36-S37). Creatinine, total protein, and urate are 32 
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 9 

kidney biomarkers of renal function, which have been consistently associated with white 1 

matter brain deficits56 and neurodegenerative diseases57. GGT is a liver biomarker of 2 

potential hepatic or biliary diseases and has been reported to be associated with cognitive 3 

decline and increased risk of dementia58. In summary, multiple categories of factors and 4 

biomarkers strongly influence brain health, and their influences are partly mediated by 5 

cardiovascular conditions. Understanding these mediation mechanisms underlying heart-6 

brain connections might assist in preventing and detecting brain diseases. 7 

 8 

Heritability and the associated genetic loci of 82 CMR traits  9 

We estimated the single-nucleotide polymorphism (SNP) heritability for the 82 CMR traits 10 

using UKB individuals of white British ancestry59 (n = 31,875, Methods). The mean 11 

heritability (h2) was 23.0% for the 82 traits (range = (7.06%, 70.3%), Fig. 4A), all of which 12 

remained significant adjusting for multiple testing using the Benjamini-Hochberg 13 

procedure to control the false discovery rate (FDR) at 0.05 level (Table S4). The h2 of the 14 

AAo maximum area, AAo minimum area, DAo maximum area, and DAo minimum area 15 

was larger than 50%. Among cardiac traits, the global wall thickness, RVESV, RVEDV, 16 

LVESV, LVEDV, and LVM had the highest heritability (h2 > 37.7%). As expected, more 17 

reproducible CMR traits show higher heritability (correlation = 0.88, P < 2.2 × 10-16, Fig. 18 

S38). To identify reliable genetic signals for these CMR traits, large-scale samples from a 19 

homogeneous cohort are needed, especially for CMR traits with relatively low heritability. 20 

 21 

We next performed GWAS for the 82 CMR traits using this white British cohort (n = 31,875, 22 

Methods). All Manhattan and QQ plots can be browsed through the server on Heart-KP 23 

(http://67.205.180.40:443/). The intercepts of linkage disequilibrium (LD) score 24 

regression (LDSC)60 were all close to one, suggesting no genomic inflation of test statistics 25 

due to confounding factors (mean intercept = 1.0002, range = (0.987, 1.019)). At the 26 

significance level 6.09 × 10-10 (5 × 10-8/82, that is, the standard GWAS significance 27 

threshold, additionally Bonferroni-adjusted for the 82 traits), we identified independent 28 

(LD r2 < 0.1) significant associations in 80 genomic regions (cytogenetic bands) for 49 CMR 29 

traits, including 35 for left ventricular, 35 for ascending aorta, 14 for descending aorta, 10 30 

for right ventricular, and 1 for left atrium (Fig. 4B and Table S5, Methods). Detailed 31 

interpretations of these identified regions can be found in next Section. When relaxing 32 
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the significance level to 5 × 10-8, there were 156 significant genomic regions (76 more) for 1 

72 CMR traits.  2 

 3 

On average, the 80 (covering 12.3% of genetic variants) and 76 (10.9% variants) CMR-4 

associated genetic regions separately explained 20.5% (that is, 4.7%/23%) and 12.6% 5 

(2.9%/23%) of the heritability of CMR traits, indicating that about 66.9% (15.4%/23%) of 6 

the heritability remained unexplained by these significant regions (Fig. S39). These results 7 

illustrate a highly polygenic genetic architecture for CMR traits61. In addition, the 80 CMR-8 

associated regions explained 14.3% (6.8%/47.6%) of the SNP heritability of DTI 9 

parameters, suggesting that the genetic effects on white matter microstructure were 10 

enriched in these CMR-associated regions. We next used the previously identified DTI-11 

associated genes as an annotation40 to perform partitioned heritability enrichment 12 

analysis62 for the 82 CMR traits. At FDR 5% level, heritability of 26 CMR traits was 13 

significantly (P range = (6.89 × 10-5, 1.15 × 10-2)) enriched in genomic regions influencing 14 

DTI parameters (Fig. S40). In addition to DTI parameters, other brain MRI traits showed 15 

overlapped genetic influences with CMR traits, but with less evidence for enrichment. 16 

Specifically, the 80 CMR-associated regions can explain 13.7% (1.7%/12.8%) of the 17 

heritability of task fMRI traits, 13.4% (2.8%/20.9%) of cortical thickness, 12.5% 18 

(4.6%/36.8%) of regional brain volumes, and 12.2% (1.8%/14.8%) of resting fMRI traits. 19 

Overall, these results suggest that the CMR traits had shared heritability with brain MRI 20 

traits, especially with DTI parameters measuring white matter microstructure.  21 

 22 

To replicate the identified loci, we performed separate GWAS using hold-out datasets in 23 

the UKB study that were independent from our discovery dataset. First, we repeated 24 

GWAS on a European dataset with 8,252 subjects (Methods). For the 248 independent 25 

(LD r2 < 0.1) CMR-variant associations in the 80 genomic regions, 57 (23%, in 25 regions) 26 

passed the Bonferroni significance level (2.02 × 10-4, 0.05/248) in this European validation 27 

GWAS, and 184 (74.19%, in 61 regions) were significant at nominal significance level 28 

(0.05). All the 184 associations had concordant directions in the two independent GWAS 29 

and the correlation of their genetic effects was 0.93 (Fig. S41 and Table S6). These results 30 

show a high degree of generalizability of our GWAS findings among European cohorts. 31 

We also performed GWAS on two non-European UKB validation datasets: the UKB Asian 32 
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 11 

(UKBA, n = 500) and UKB Black (UKBBL, n = 271). One association between 8q24.3 and the 1 

RVEF passed the Bonferroni significance level (P = 6.20 × 10-5) in UKBA, and 13 more 2 

regions passed nominal significance level. For UKBB, 11 regions passed the nominal 3 

significance level and none of them survived the Bonferroni significance level, which may 4 

partially be due to the small sample size of this non-European GWAS.  5 

 6 

Additionally, we evaluated the ancestry specific effects using Asian GWAS summary 7 

statistics of three CMR traits (analogous to the LVEDV, LVESV, and LVEF34), which were 8 

generated from 19,000 subjects in the BioBank Japan (BBJ) study63. At the 5 × 10-8 9 

threshold, the BBJ identified independent (LD r2 < 0.1) significant associations in 6 regions 10 

(2p14, 11p15.1, 22q11.23, 8q24.13, 10q22.2, and 18q12.1), 4 of which (22q11.23, 11 

8q24.13, 10q22.2, and 18q12.1) were among the 156 regions we discovered based on 12 

data from UKB white British. Specifically, the 22q11.23 and 8q24.13 regions were 13 

significantly associated with the LVSEV in both UKB and BBJ studies (Figs. 4C-4D). The 14 

10q22.2 and 18q12.1 regions were separately associated with the LVEDV and LVESV in 15 

BBJ but not in UKB (Figs. S42-S43). Instead, the two regions were significantly associated 16 

with the wall thickness traits in UKB (P < 6.77 × 10-10). Additionally, only CMR traits in BBJ 17 

were associated with the 11p15.1 and 2q14 regions (Figs. 2E and S44), likely representing 18 

population specific genetic influences in Asian population.  19 

 20 

Finally, we constructed polygenic risk scores (PRS) via lassosum64 to evaluate the out of 21 

sample prediction power of the discovery GWAS results. We used 2,000 subjects from our 22 

European validation GWAS as validation data and evaluated the performance on the left 23 

independent subjects (n = 5,551). Among the 82 CMR traits, 73 had significant PRS at FDR 24 

5% level (P range = (7.38 × 10-136, 3.49 × 10-2), Table S7). The highest incremental R-25 

squared (after adjusting the effects of age, sex, and ten genetic principal components 26 

(PCs)) was observed on the AAo minimum area and AAo maximum area (8.52% and 27 

8.36%, respectively). Other traits whose incremental R-squared larger than 1% included 28 

the DAo minimum area, DAo maximum area, RVEDV, RVESV, LAV max, and wall thickness 29 

traits (R-squared range = (1.01%, 3.32%), P < 4.33 × 10-15). To evaluate the cross-30 

population performance, PRS was also constructed on UKB white British discovery GWAS 31 

data using BBJ GWAS summary statistics of the LVEDV, LVESV, and LVEF. We found that 32 
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the PRS of these three traits were all significant in the UKB (P range = (1.58 × 10-11, 8.13 × 1 

10-7), R-squared range= (3.90 × 10-4, 1.35 × 10-3)). The prediction accuracy was lower than 2 

that in the above within European prediction analysis (R-squared range= (7.72 × 10-3, 9.67 3 

× 10-3)), which may be explained by the smaller training GWAS sample size in BBJ65 and 4 

the differences of genetic effects and LD among European and Asian populations66. More 5 

efforts are needed to identify causal variants associated with CMR traits in global diverse 6 

populations and quantify population-specific heterogeneity of genetic effects.   7 

 8 

Pleiotropy of genetic variants across body systems 9 

To identify the shared genetic effects between CMR traits and complex traits, we carried 10 

out association lookups for independent (LD r2 < 0.1) significant variants (and variants in 11 

their LD, r2 ≥ 0.6, P < 6.09 × 10-10) detected in our UKB white British GWAS. In the NHGRI-12 

EBI GWAS catalog67, our results tagged variants that have been linked to a wide range of 13 

traits and diseases, including heart diseases, heart structure and function, blood pressure, 14 

lipid traits, blood traits, diabetes, stroke, neurological and neuropsychiatric disorders, 15 

psychological traits, cognitive traits, lung function, parental longevity, smoking, drinking, 16 

and sleep. To evaluate whether two associated genetic signals were consistent with the 17 

shared causal variant, we applied the Bayesian colocalization analysis68 for CMR traits and 18 

selected complex traits whose GWAS summary statistics were publicly available. Evidence 19 

of pairwise colocalization was defined as having a posterior probability of the shared 20 

causal variant hypothesis (PPH4) > 0.868,69. 21 

 22 

First, our results replicated 25 genomic regions that have been linked to cardiac and aortic 23 

traits in previous GWAS, including 5 regions with left ventricular traits (such as 22q11.23 24 

with fractional shortening70, ejection fraction63, and left ventricular internal dimension63, 25 

Fig. S45); 17 regions with heart rate and electrocardiographic traits (such as 1p36.32, 26 

5q33.2, 10q25.2, 12q24.21, and 14q24.2 with PR interval71 and QRS duration72) (Figs. S46-27 

S50); and 6 regions with aortic measures (such as in 15q21.1 with thoracic aortic 28 

aneurysms and dissections73 and in 15q24.1 with aortic root size70, Figs. S51-S52). In 29 

addition, 24 regions had shared associations (LD r2 ≥ 0.6) with cardiovascular diseases, 30 

including 9 regions with coronary artery disease74,75 (such as 17p13.3 and 12q24.12, Figs. 31 

S53-S54); 9 regions with atrial fibrillation76,77 (such as 6p21.2, 1p13.1, 2q31.2, 8q24.13, 32 
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15q26.3, and 22q12.1, Figs. 5A and S55-S59); 6q22.33, 10q23.33, and 11p15.5 with 1 

hypertension78,79 (Figs. S60-S62); 15q21.1 and 13q12.11 with abdominal aortic 2 

aneurysm80,81 (Figs. S51 and S63); 14q24.2 with mitral valve prolapse82 (Fig. S50); and 3 

10q26.11 and 1p36.13 with idiopathic dilated cardiomyopathy83 (Figs. S64-S65). There 4 

was widespread evidence of colocalization on many on many loci (PPH4 > 0.849). 5 

Additionally, 41 of the 80 genomic regions were associated with blood pressure traits, 6 

such as systolic blood pressure, diastolic blood pressure, pulse pressure84, and mean 7 

arterial pressure85 (Figs. 5B and S66-S85). CMR traits were in LD (r2 ≥ 0.6) with various 8 

cardiovascular biomarkers in 32 genomic regions, such as 12q24.12, 6q22.33, 5q31.1, and 9 

17q12 with blood metabolite levels86 and lipid traits87,88 (including HDL, LDL, and 10 

triglycerides, Figs. S54, S60, S71, and S86); and 3p13, 3p25.1, 5q15, 12q14.1, and 22q13.1 11 

with red blood cell count89, blood protein levels90, red cell distribution width91, and 12 

plateletcrit89 (Figs. S87-S91).  13 

 14 

We found genetic pleiotropy between CMR traits and multiple brain-related complex 15 

traits and disorders. In 6p21.2, 7p21.1, and 12q24.12 regions, CMR traits were in LD (r2 ≥ 16 

0.6) with stroke92 (such as ischemic stroke, large artery stroke, and small-vessel ischemic 17 

stroke), intracranial aneurysm93, and Moyamoya disease94 (Figs. 5A-5B and S54). The 18 

index variants of 7p21.1 (rs2107595) and 12q24.12 (rs597808) were expression 19 

quantitative trait loci (eQTLs) of TWIST1, ALDH2, and NAA25 in human brain tissues95, 20 

suggesting that these CMR-associated variants were known to affect gene expression 21 

levels in human brain. When the GWAS significance threshold was relaxed to 5 × 10-8, the 22 

shared associations (LD r2 ≥ 0.6) with stroke were found in four more CMR-significant loci 23 

(12q13.3, 16q23.1, 4q25, 7p15.1). CMR traits were also in LD (r2 ≥ 0.6) with 24 

neurodegenerative and neuropsychiatric disorders, such as in 17q21.31 (rs62062271, 25 

brain eQTL of multiple genes such as CRHR1 and WNT3) with Parkinson's disease96, 26 

corticobasal degeneration97, multiple system atrophy98, Alzheimer's disease99 and 27 

associated cognitive impairment100, autism spectrum disorder101, and progressive 28 

supranuclear palsy102 (Fig. S92); in 12p12.1 (rs4148674, brain eQTL of ABCC9) with 29 

hippocampal sclerosis of aging103 (Fig. S78); in 15q25.2 (rs11635505, brain eQTL of 30 

UBE2Q2L, WDR73, and GOLGA6L4) and 17p13.3 (rs2281727, brain eQTL of SRR) with 31 

schizophrenia104 (Figs. 5C and S53); in 17q12 (rs903503, brain eQTL of multiple genes such 32 
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as PGAP3 and MED24) and 6q22.31 (rs1334489, brain eQTL of CEP85L) with bipolar 1 

disorder105,106 (Figs. S86 and S93); and in 3p14.3 (rs2686630, brain eQTL of ABHD6) with 2 

eating disorder107 (Fig. S94). In addition, CMR traits were in LD (r2 ≥ 0.6) with mental 3 

health traits, such as in 16q24.3, 17q21.31, 8p23.1 (rs903503, brain eQTL of multiple 4 

genes such as FAM167A and DEFB134), and 11p11.2 (rs11039348, brain eQTL of multiple 5 

genes such as FAM180B and SLC39A13) with neuroticism108, depressive symptoms109, 6 

subjective well-being110, and risk-taking tendency111 (Figs. 5D, S92 and S95-S96). For 7 

cognitive traits and education, we tagged 17q21.31, 11p11.2, and 11q13.3 with cognitive 8 

function112 and educational attainment113 (Figs. S92, S96, and S97); 7q32.1 (rs2307036, 9 

brain eQTL of ATP6V1FNB) with reading disability114 (Fig. S98); and in 12q24.12 (rs597808, 10 

brain eQTL of ALDH2 and NAA25) with reaction time112 (Fig. S54). We also found shared 11 

associations (LD r2 ≥ 0.6) in 11q24.3 (rs11222084, brain eQTL of ADAMTS8), 12q24.12 12 

(rs7310615, brain eQTL of ALDH2 and NAA25), 17p13.3 (rs10852923, brain eQTL of SRR 13 

and SMG6), 17q12 (rs10852923, brain eQTL of SRR and SMG6), and 17q21.31 with DTI 14 

parameters40 (Figs. S99-S103); in 11q24.3 (rs7936928, brain eQTL of ADAMTS8), 3p13, 15 

11p11.2 (rs7107356, brain eQTL of multiple genes such as FAM180B and SLC39A13), 16 

17q21.31 (rs118087478, brain eQTL of multiple genes such as ARL17A and ARL17B) with 17 

regional brain volumes38 (Fig. 5E and Figs. S104-S106); and in 15q21.1, 8p23.1 18 

(rs10093774, brain eQTL of multiple genes such as RP1L1 and FAM167A), 10q23.33 19 

(rs10093774, brain eQTL of HELLS), 11q13.3 (rs10093774, brain eQTL of HELLS), and 20 

17q21.31 (rs62062271, brain eQTL of multiple genes such as ARL17A and LRRC37A2) with 21 

fMRI traits42 (Fig. 5F and Figs. S107-S110). Furthermore, CMR traits were colocalized with 22 

these brain-related complex traits in many regions, such as in 15q25.2 with schizophrenia, 23 

in 16q24.3 with neuroticism, in 11q24.3 with cerebrospinal fluid volume, and in 15q21.1 24 

with functional connectivity (Figs. 5C-5F, PPH4 > 0.890). There is substantial evidence to 25 

support the interaction between cardiovascular health status and brain health. For 26 

example, people with better heart healthy have better cognitive abilities115 and lower risk 27 

for brain disorders, such as stroke and Alzheimer's disease116. In addition, mental health 28 

disorders may result in biological processes and behaviors that related to cardiovascular 29 

risk factors, such as smoking initiation and physical inactivity11,117. Our results reveal that 30 

cardiovascular conditions have substantial genetic overlaps with both mental health and 31 

cognitive functions, which may partially explain the heart-brain connections. The majority 32 
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of shared genetic variants were found to be eQTLs in brain tissues. Future studies are 1 

needed to explore the potential genomic pathways and mechanisms underlying the 2 

shared genetic influences between heart and brain.  3 

 4 

Genetic overlaps with other diseases and complex traits were also observed. For example, 5 

RVEDV is in LD (r2 ≥ 0.6) with type 1 diabetes118, T2D119, coronary artery disease75, and 6 

parental longevity120 in the 12q24.12 region (Fig. S54). CMR traits were in LD (r2 ≥ 0.6) 7 

with lung function and diseases in 7 regions, such as in 17q12 with asthma121 (Fig. S86); 8 

in 17q21.31 with idiopathic pulmonary fibrosis122 and interstitial lung disease123 (Fig. S92); 9 

and in 10q26.11, 3p22.1, 5q31.1, and 15q23 with lung function (FEV1/FVC)124 (Figs. S64, 10 

S68, S71, and S81). We also found shared genetic associations (LD r2 ≥ 0.6) in 11p11.2, 11 

12q24.12, and 17q12 with smoking111 (Figs. S96, S54, and S86); and in 17p13.3, 11p11.2, 12 

and 17q21.31 with alcohol consumption and alcohol use disorder125 (Figs. S53, S96, and 13 

S92). All the above results can be found in Table S8.  14 

 15 

Genetic correlations with brain disorders and complex traits  16 

First, we examined the genetic correlations (GC)126 among the 82 CMR traits. Strong 17 

genetic correlations were observed within and between categories of CMR traits (Fig. 18 

S111). For example, the RVEDV was genetically correlated with other RV traits, including 19 

RVSV and RVESV (GC > 0.85, P < 1.01 × 10-137), as well as RVEF (GC = -0.47, P = 4.93 × 10-20 
10). The RVEDV was also significantly correlated with CMR traits from other categories, 21 

such as AAo maximum area and DAo maximum area (GC > 0.38, P < 1.36 × 10-13), LASV 22 

and RASV (GC > 0.37, P < 3.02 × 10-7), LVEDV, LVESV, and LVM (GC > 0.594, P < 2.74 × 10-23 
35), and LVEF (GC = -0.55, P = 5.25 × 10-20). In addition, we found a strong relationship 24 

between phenotypic and genetic correlations among all CMR traits (b = 0.751, P < 2 × 10-25 
16).  26 

  27 

Next, we examined the genetic correlations between 82 CMR traits and 33 complex traits, 28 

many of which were colocalized traits in the above section. At the FDR 5% level (82 × 33 29 

tests), the CMR traits were significantly associated with heart diseases, lung function, 30 

cardiovascular risk factors, and brain-related complex traits and diseases (Table S9). For 31 

example, hypertension had strong genetic correlations with aortic traits and LV traits (Fig. 32 
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6A). The strongest correlation between LV traits and hypertension was found in wall 1 

thickness traits (GC range = (0.237, 0.406), P < 6.18 × 10-9), which were also significantly 2 

associated with coronary artery disease, T2D, and stroke. In addition, atrial fibrillation was 3 

significantly associated with aortic, LA, and RA traits (|GC| range = (0.175, 0.252), P < 7.59 4 

× 10-4), suggesting that atrial fibrillation might have a higher genetic similarity with LA/RA 5 

traits than LV/RV traits.  6 

 7 

In both schizophrenia and bipolar disorder, multiple LV traits showed significant genetic 8 

correlations. Specifically, on LVCO, LVEF, radial strains, and wall thickness, positive genetic 9 

correlations were observed with schizophrenia and bipolar disorder (GC range = (0.122, 10 

0.236), P < 9.37 × 10-3). Negative genetic correlations with the two brain disorders were 11 

observed on peak circumferential strains (GC range = (-0.168, -0.102), P < 1.26 × 10-3). 12 

Additionally, anorexia nervosa (eating disorder) was significant associated with LAV min 13 

and LAEF (|GC| range = (0.189, 0.220), P < 8.11 × 10-3) and cognitive traits and neuroticism 14 

were mainly associated with right heart traits (RA and RV traits). For example, intelligence 15 

was genetically correlated with the RAV max, RAV min, and RVEDV (GC range = (0.08, 16 

0.12), P < 7.10 × 10-3). Lung functions (FEV and FVC) had genetic correlations with multiple 17 

CMR traits, with longitudinal strains showing the strongest correlations (GC range = 18 

(0.296, 0.357), P < 7.29 × 10-6). There were more associations with other complex traits 19 

analyzed in previous GWAS, such as smoking, PR interval, blood pressure, education, risky 20 

behaviors, lipid traits, mean corpuscular hemoglobin, and mean corpuscular volume (Fig. 21 

S112A). We also found very high genetic correlations with previously reported four LV 22 

traits34 (GC > 0.865, P < 6.28 × 10-99) (Fig. S112B). In summary, genome-wide genetic 23 

similarities have been found between CMR traits and a wide range of complex traits and 24 

diseases. Discovering such genetic co-variations may improve our understanding of 25 

genetic pathways of clinical outcomes from a multi-organ perspective. 26 

 27 

Biological and gene level analyses.  28 

We performed gene level association test using GWAS summary statistics of the 82 CMR 29 

traits with MAGMA127. We identified 160 significant genes for 49 CMR traits (P < 3.24 × 30 

10-8, Bonferroni-adjusted for 82 traits) (Table S10). Next, we mapped significant variants 31 

(P < 6.09 × 10-10) to genes by combining evidence of physical position, eQTL (expression 32 
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quantitative trait loci) association, and 3D chromatin (Hi-C) interaction via FUMA128. We 1 

found 576 mapped genes, 434 of which were not identified in MAGMA (Table S11). 2 

Moreover, 90 MAGMA or FUMA-significant genes had a high probability of being loss-of-3 

function (LoF) intolerant129 (pLI > 0.98), indicating significant enrichment of intolerant of 4 

LoF variation among these CMR-associated genes (P = 1.58 × 10-4).  5 

 6 

Ten genes (CACNA1I, REN, ATP1A1, CACNB2, KCNJ8, PDE11A, AHR, ESR1, CYP2C9, and 7 

ABCC9) were targets for 32 cardiovascular system drugs130, such as 15 calcium channel 8 

blockers (anatomical therapeutic chemical (ATC) code: C08) to lower blood pressure, 5 9 

cardiac glycosides (C01A) to treat heart failure and irregular heartbeats, and 3 10 

antiarrhythmics (C01B) to treat heart rhythm disorders (Table S12). Three (CACNA1I, 11 

ESR1, and CYP2C9) of these 10 genes and 4 more CMR-associated genes (ALDH2, HDAC9, 12 

NPSR1, and TRPA1) were targets for 11 nervous system drugs, including 4 antiepileptic 13 

drugs (N03A) used in the treatment of epileptic seizures and 2 drugs for addictive 14 

disorders (N07B). Some drug target genes have known biological functions both in the 15 

heart and brain. For example, ALDH2 plays an important role in clearance of toxic 16 

aldehydes, which is an important mechanism related to myocardial and cerebral 17 

ischemia/reperfusion injury131. Therefore, ALDH2 has been proposed to be a protective 18 

target for heart and brain diseases/dysfunctions triggered by ischemic injury and related 19 

risk factors132,133. Our results may help identify new drug targets or identify drugs that 20 

could be repurposed.  21 

 22 

MAGMA gene-set analysis was performed to prioritize the enriched biological pathways, 23 

which yielded 36 significantly enriched gene sets at FDR 5% level (P < 3.0 × 10-6, Table 24 

S13). Multiple pathways related to cardiac development and heart disease were detected, 25 

including “go cardiac septum morphogenesis” (Gene Ontology [GO]: 0060411), “go 26 

cardiac muscle tissue development” (GO: 0048738), “go cardiac muscle tissue 27 

regeneration” (GO: 0061026), “go cardiac chamber development” (GO: 0003205), “go 28 

cardiac chamber development” (GO: 0003205), “go cardiac muscle contraction” (GO: 29 

0060048), “go cardiac ventricle development” (GO: 0003231), “go vasculogenesis 30 

involved in coronary vascular morphogenesis” (GO:0060979), “go adult heart 31 

development” (GO: 0007512), “go heart development” (GO: 0007507), and “bruneau 32 
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septation atrial” (M5223). Finally, we performed partitioned heritability analyses62 to 1 

identify the tissues and cell types134 where genetic variation leaded to differences in CMR 2 

traits. At FDR 5% level, the most significant heritability enrichments were found in active 3 

gene regulation regions of heart and muscle tissues, supporting the biological validity of 4 

the identified GWAS signals for CMR traits (Fig. S113). 5 

 6 

Complex traits and diseases prediction using genetic and multi-organ MRI data 7 

In this section, we examined the prediction performance of CMR traits for 95 complex 8 

traits and diseases. We evaluated the prediction performance in a training, validation, 9 

and testing design and removed the effects of age (at imaging), age-squared, sex, age-sex 10 

interaction, age-squared-sex interaction, imaging site, height, weight, body mass index, 11 

and the top 40 genetic PCs (Methods). At FDR 5% level, the CMR traits had significant 12 

prediction power on 44 traits and diseases, including diseases of the circulatory system 13 

(ICD-10 group code: “I”); endocrine, nutritional and metabolic diseases (ICD-10: “E”); 14 

endocrine, nutritional and metabolic diseases (ICD-10: “F”); mental health and cognitive 15 

traits; cardiovascular diseases (self-reported), biomarkers, and risk factors; and disease 16 

family history (prediction correlation range = (0.028, 0.5), P range = (1.60 × 10-2, 5.05 × 17 

10-234), Fig. S114). For example, CMR traits significantly predicted 14 circulatory system 18 

diseases, including atrial fibrillation, essential (primary) hypertension, angina pectoris, 19 

atherosclerotic heart disease, old myocardial infarction, chronic ischaemic heart disease, 20 

and acute myocardial infarction (b > 0.097, P < 4.99 × 10-17). They also had high prediction 21 

power for cardiovascular risk factors, such as systolic blood pressure (b = 0.367, P = 3.96 22 

× 10-219) and diabetes (self-reported) (b = 0.114, P = 9.50 × 10-23). Moreover, CMR traits 23 

can predict brain-related psychological factors and cognitive traits, such as risk-taking (b 24 

= 0.068, P = 4.81 × 10-9), depression (b = 0.046, P = 7.48 × 10-5), and fluid intelligence (b = 25 

0.091, P = 5.08 × 10-15).  26 

 27 

Next, we performed joint prediction with genetic PRS (Methods). In comparison to 28 

genetic PRS, CMR traits may be more accurate and provide additional insights when 29 

predicting heart diseases (Fig. 6B). For example, the correlation between genetic PRS and 30 

atrial fibrillation was 0.084 (P = 1.14 × 10-7), suggesting that about 0.7% disease variation 31 

can be predicted by genetic profile. The prediction correlation of CMR traits was 0.265 (P 32 
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= 2.78 × 10-65), which was comparable to the performance when using both CMR traits 1 

and genetic PRS (b = 0.276, P = 1.20 × 10-70). These results illustrate that CMR traits had 2 

much higher prediction accuracy and suggest that most of the genetic prediction power 3 

on atrial fibrillation might be medicated through cardiac conditions captured by CMR 4 

traits.  5 

 6 

We also found that combining genetic PRS, CMR traits, and brain MRI traits can improve 7 

the prediction of multi-system diseases, such as diabetes (Fig. 6C). The prediction 8 

correlation of diabetes was 0.084 (P = 1.11 × 10-7) for genetic PRS and 0.077 (P = 1.13 × 9 

10-6) for CMR traits. Multiple categories of brain MRI traits also had significant prediction 10 

power on diabetes, including DTI parameters (b = 0.094, P = 3.01 × 10-9), regional brain 11 

volumes (b = 0.076, P = 1.47 × 10-6), resting fMRI (b = 0.055, P = 4.85 × 10-4), and task fMRI 12 

(b = 0.045, P = 4.46 × 10-3). The prediction performance was improved to 0.10 (P = 3.84 × 13 

10-10) by using all CMR and brain MRI traits and further moved up to 0.125 (P = 2.17 × 10-14 
15) when adding genetic PRS. In summary, imaging traits could make a unique contribution 15 

to the prediction of complex traits and diseases. Multi-organ imaging and genetic PRS can 16 

be integrated to improve risk prediction and patient care.   17 

 18 

DISCUSSION 19 

The intertwined connections between heart and brain health are gaining increasing 20 

attention. This study quantified the heart-brain associations using CMR and brain MRI 21 

data from over 40,000 individuals in one homogeneous study cohort (the UK Biobank). 22 

Based on this unique dataset, we identified phenotypic heart-brain connections and 23 

discovered patterns of enrichment in specific brain regions and functional networks. We 24 

further examined the effects of cardiovascular risk factors on the brain mediated by 25 

cardiac conditions. GWAS identified 80 genomic loci for CMR traits, many of which were 26 

colocalized with neuropsychiatric and neurological disorders, mental health factors, and 27 

brain MRI traits. Integrating traditional genetic PRS with imaging traits can also improve 28 

the risk prediction of human diseases. In summary, multiple lines of evidence point to the 29 

close phenotypic and genetic relationship between heart health and brain health.   30 

 31 
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Using multi-organ imaging data as endophenotypes, we identified genetic variations that 1 

can affect both heart and brain functions. Interpreting the genetic pleiotropy and 2 

understanding how human organs interact in a directional and even bidirectional manner 3 

is challenging11. We have adjusted for height, weight, and body mass index in our analysis 4 

to avoid confounding effects of body size. However, unobserved biological interactions 5 

and environmental factors may also confound heart-brain connections. Pleiotropy 6 

analysis across organ systems is a relatively new concept, so future research using 7 

additional data resources (for example, long-term longitudinal data and large-scale 8 

genomics data from multiple organs) may better reveal the shared biology between the 9 

brain and heart. 10 

 11 

In this study, imaging data were mainly from European ancestry. Comparing UKB GWAS 12 

results with those of BBJ, both similarities and differences were found for genetic 13 

influences on CMR traits. For example, participants in UKB and BBJ had similar genetic 14 

effects on cardiac conditions at 22q11.23 and 8q24.13, but only the BBJ cohort had 15 

significant genetic effects at 11p15.1. It can be expected that some of the genetic 16 

components that underlie heart-brain connections may also be population-specific. More 17 

heart and brain imaging data collected from global populations may enable the 18 

development of a better picture of neuro-cardiac interactions. 19 

 20 

This paper specifically focused on heart-brain connections. Because of the large amount 21 

of data collected in the UKB study, it is also possible to study the relationships between 22 

brain and other human organs and systems. For example, increasing evidence supports 23 

the gut-brain axis, which involves complex interactions between the central nervous 24 

system and the enteric nervous system135. Patients with inflammatory bowel disease 25 

(such as Crohn’s disease) show altered brain structure and function136, impaired cognitive 26 

functions137, and a higher risk of depression and anxiety138. Multi-system analysis using 27 

biobank-scale data may provide insights for inter-organ pathophysiological mechanisms 28 

and prevention and early detection of brain diseases.  29 

 30 

METHODS 31 

Methods are available in the Methods section. 32 
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 21 

Note: One supplementary information pdf file, one supplementary figure pdf file, and one 1 

supplementary table zip file are available. 2 
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METHODS 30 

Heart and brain imaging data. We extracted imaging traits from the raw brain and cardiac 31 

MRI images under the UKB Data-Field 100003. Specifically, following the pipelines 32 
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developed in Bai, et al. 43, we generated 82 CMR traits from the short-axis, long-axis, and 1 

aortic cine images. Detailed pipeline implementation and quality controls steps can be 2 

found in Supplementary Note. The 82 CMR traits can be divided into 6 categories, 3 

including 64 left ventricle traits, 4 left atrium traits, 4 right ventricle traits, 4 right atrium 4 

traits, 3 ascending aorta traits, and 3 descending aorta traits. Among 64 left ventricle 5 

traits, we had well-established volumetric traits such as LVEDV, LVESV, LVSV, LVEF, LVCO, 6 

and LVM. In addition, there were global and regional measures for myocardial-wall 7 

thickness at end-diastole, peak circumferential strain, radial strain, as well as longitudinal 8 

strain. For right ventricle, we had RVEDV, RVESV, RVSV, and RVEF. Four traits were 9 

generated for left and right atrium, respectively, including maximum volume (LAV max 10 

and RAV max), minimum volume (LAV min and RAV min), stroke volume (LVSV and RASV), 11 

and ejection fraction (LAEF and RAEF). For ascending aorta and descending aorta, we had 12 

measures for maximum area (AAo max area and DAo max area), minimum area (AAo min 13 

area and DAo min area), and distensibility (AAo distensibility and DAo distensibility).   14 

 15 

The procedures for deriving brain MRI traits were described in detail in previous papers 16 

from our group, including regional brain volumes from T1-weighted MRI image38, DTI 17 

parameters from diffusion MRI image40, functional activity and connectivity traits from 18 

resting-state and task-based fMRI image42. Briefly, we used the advanced normalization 19 

tools139 (ANTs) to generate 98 regional brain volumes for cortical and subcortical regions, 20 

as well as 3 global brain volume measures, including total gray matter volume, total white 21 

matter volume, and total brain volume. In addition, using a similar procedure to that of 22 

brain volumetric traits, we used ANTs to extract 63 global and regional cortical thickness 23 

traits in this study (Supplementary Note). Using the ENIGMA-DTI pipeline140,141, we 24 

generated 110 tract-averaged parameters for fractional anisotropy, mean diffusivity, axial 25 

diffusivity, radial diffusivity, and mode of anisotropy in 21 major white matter tracts and 26 

across the whole brain (5 × 22). For fMRI, we used a parcellation-based approach based 27 

on the Glasser360 atlas142, which divided the cerebral cortex into 360 regions in 12 28 

functional networks143. We mainly considered the mean amplitude (that is, functional 29 

activity) of each network, the mean functional connectivity for each pair of networks, and 30 

the mean amplitude and mean functional connectivity of the whole cortex (92 traits for 31 

resting and task fMRI, respectively). To further provide details on functional organizations 32 
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of cerebral cortex, we also considered 64,620 area-level high-resolution resting functional 1 

connectivity in phenotypic analysis with CMR traits.  2 

 3 

The UKB study recruited approximately half a million participants aged between 40 and 4 

69 years between 2006 and 2010. The UKB study had obtained ethics approval from the 5 

North West Multicentre Research Ethics Committee (approval number: 11/NW/0382). In 6 

2014, UKB started a project to re-invite 100,000 participants to undergo a multi-modal 7 

imaging study, including both brain and cardiac MRI144. We used the white British 8 

individuals in UKB phases 1 to 3 data (released up through 2020, n = 31,875 for CMR traits) 9 

as main discovery sample in our analysis. The UKB white but non-British subjects in phases 10 

1 to 3 data and the white individuals in newly released UKB phase 4 data (n = 8,252, 11 

removed relatives of the discovery sample) were treated as European validation sample. 12 

In addition, we considered two non-European UKB validation datasets, including UKB 13 

Asian (UKBA, n = 500) and UKB Black (UKBBL, n = 271). We also used the UKB first revisit 14 

data (n = 2,903) to evaluate the reproducibility of CMR traits. The age range of imaging 15 

subjects was 45 to 82 (mean age = 64.16, standard error = 7.67) and the proportion of 16 

female was 51.6%.  17 

 18 

Phenotypic and mediation analysis.  19 

We performed pairwise linear regression for each pair of CMR and brain MRI traits. For 20 

all pairs, we adjusted for the effects of age (at imaging), age-squared, sex, age-sex 21 

interaction, age-squared-sex interaction, imaging site, height, weight, body mass index, 22 

the top 40 genetic PCs, and total brain volume (for traits other than total brain volume 23 

itself). For each continuous variable, the values greater than five times the median 24 

absolute deviation from the median were removed. The number of subjects that had both 25 

CMR and brain MRI data (after all quality controls) was 31,875 for regional brain volumes 26 

and cortical thickness, 30,212 for DTI parameters, 30,792 for resting fMRI traits, and 27 

26,849 for task fMRI traits. For regional cortical thickness, we additionally adjusted for 28 

global mean thickness (for traits other than global mean thickness itself). For resting and 29 

task fMRI traits, we additional adjusted for head motion, head position, and volumetric 30 

scaling variables. We reported the P values from two-sided t test and adjusted for multiple 31 

testing using Bonferroni correction (considering all pairs of CMR and brain MRI traits).  32 
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 1 

Mediation analysis was performed for 41 traits, including diastolic blood pressure, systolic 2 

blood pressure, high blood pressure, diabetes mellitus, smoking, drinking, basal metabolic 3 

rate, and 34 biomarkers. We used the 82 CMR traits as cardiac mediators and performed 4 

the analysis separately for all brain MRI traits, including 101 regional brain volumes, 63 5 

cortical thickness, 110 DTI parameters, 92 resting fMRI traits, and 92 task fMRI traits. For 6 

each brain MRI trait 𝑦 (such as total brain volume), we fitted two models: 𝑦 = 𝑥𝛽! +7 

𝑧𝜂! +𝑤𝛼 + 𝜖!	(Model 1) and 𝑦 = 𝑥𝛽" + 𝑧𝜂" + 𝜖"	(Model 2), where 𝑥  is the trait of 8 

interest (such as diastolic blood pressure), 𝑧 is the set of covariates to be adjusted, 𝑤 9 

is the set of 82 CMR traits (cardiac mediators), 𝛽! is the conditional effect of 𝑥 on 𝑦, 10 

𝛽"  is the marginal effect of 𝑥  on 𝑦, 𝜂!  and 𝜂"  are effects of covariates, 𝛼  is the 11 

effect of 𝑤  on 𝑦, and 𝜖!  and 𝜖"  are random errors. We adjusted the same set of 12 

covariates as we used in the above phenotypic analysis. A mediation relationship was built 13 

if all the three conditions were satisfied: 1) 𝛽"  was significant after Bonferroni 14 

correction, suggesting the significant effects of 𝑥  on 𝑦 ; 2) 𝛼  was significant after 15 

Bonferroni correction, suggesting significant relationship between 𝑤 and 𝑦; 3) |𝛽!| <16 

|𝛽"| and the two coefficients had the directions, suggesting the reduced effects of 𝑥 17 

after adjusting for heart mediators. The proportion of medicated effect was defined by 18 

(|𝛽!|−|𝛽"|)/|𝛽!|. A mediation relationship suggests a mechanism that the trait 𝑥 may 19 

have implicit influence on the brain MRI trait through the intermediate CMR traits.  20 

 21 

Genetic analysis on 82 CMR traits.  22 

We used the UKB imputed genotyping data and performed the following quality controls 23 

on the subset of subjects with both CMR traits and genetics data42: 1) excluded subjects 24 

with more than 10% missing genotypes; 2) excluded variants with minor allele frequency 25 

less than 0.01; 3) excluded variants with missing genotype rate larger than 10%; 4) 26 

excluded variants that failed the Hardy-Weinberg test at 1 × 10-7 level; and 5) removed 27 

variants with imputation INFO score less than 0.8. We estimated the SNP heritability using 28 

GCTA59 with autosomal SNPs in the white British discovery dataset. The effects of age (at 29 

imaging), age-squared, sex, age-sex interaction, age-squared-sex interaction, imaging 30 

site, height, weight, body mass index, and the top 40 genetic PCs were adjusted. We 31 

performed GWAS using linear mixed effect models implemented in fastGWA145, with the 32 
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same set of covariates as in heritability analysis being adjusted. We used Plink146 (v2.0) 1 

for validation GWAS, in which we adjusted for top ten genetic PCs instead of top 40. The 2 

significant (P < 6.09 × 10-10, that is, 5 × 10-8/82) genomic loci were defined using FUMA128 3 

(version v1.3.6a). Briefly, to define the LD boundaries, FUMA first identified independent 4 

significant variants, which were defined as variants whose P values were smaller than 6.09 5 

× 10-10 and were independent of other significant variants (LD r2 < 0.6). Next, FUMA 6 

constructed LD blocks by tagging all variants (MAF ≥ 0.0005, including variants from the 7 

1000 Genomes reference panel) in LD (r2 ≥ 0.6) with at least one independent significant 8 

variant. Within these independent significant variants, FUMA defined independent lead 9 

variants as those that were independent from each other (LD r2 < 0.1). For independent 10 

significant variants that were close with each other (<250 kb based on their LD 11 

boundaries), FUMA merged their LD blocks into one single genomic locus. Independent 12 

significant variants and all variants in LD (r2 ≥ 0.6) were searched on the NHGRI-EBI GWAS 13 

catalog (version 2019-09-24) to look for previously reported GWAS findings (P < 9 × 10-6) 14 

with any traits.  15 

 16 

Using GWAS summary statistics, we performed genetic correlation analysis via LDSC126 17 

(version 1.0.1). The LD scores were from the 1000 Genomes European data and were 18 

provided by LDSC. This analysis was focused on HapMap3147 variants and the variants in 19 

the major histocompatibility complex region were removed. Gene level association was 20 

tested for 18,796 protein-coding genes using MAGMA127 (version 1.08). Default MAGMA 21 

settings were used with zero window size around each gene. FUMA performed functional 22 

annotation and mapping analysis, in which genetic variants were annotated and linked to 23 

35,808 candidate genes by a combination of positional, eQTL, and 3D chromatin 24 

interaction mappings. We selected heart-tissues/cells related options and default values 25 

were used for all other options in FUMA. MAGMA gene-set analysis was used to explore 26 

the implicated biological pathway using 10,678 pre-constructed gene sets. Heritability 27 

enrichment analysis was performed using partitioned LDSC62. We tested for tissue type 28 

and cell type specific regulatory elements across multiple tissues and cell types in the 29 

Roadmap Epigenomics Project134. The baseline models were adjusted when estimating 30 

and testing the enrichment scores in partitioned LDSC.  31 

 32 
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Prediction models with genetics and multi-organ image data.  1 

We examined the prediction performance of CMR traits on 95 complex traits and 2 

diseases, most of which were ICD10 diseases (62 diseases from Chapter 3, 4, 5, 6, and 9 3 

in Data-Field 41270), mental health and cognitive traits, family history, self-reported 4 

cardiovascular diseases, and cardiovascular risk factors. We focused on the 36,949 5 

unrelated white British subjects and randomly divided the data into three independent 6 

parts: training (n = 22,169), validation (n = 7,390), and testing (n = 7,390). The effect sizes 7 

of CMR traits were estimated by ridge regression via glmnet148 (R version 3.6.0, n = 8 

22,169). We removed the effects of age (at imaging), age-squared, sex, age-sex 9 

interaction, age-squared-sex interaction, imaging site, height, weight, body mass index, 10 

and the top 40 genetic PCs. Model tuning parameters were all estimated in the validation 11 

data and the prediction performance was examined on the testing data by calculation the 12 

correlation between the predicted values and the observed ones. Next, we examined the 13 

performance of genetic PRS for selected heart diseases. We used all UKB white British 14 

subjects except for the ones in our validation and testing data (and their relatives) as 15 

training data. The genetic PRS was developed by lassosum64, with using the validation 16 

dataset to tune the parameters. Finally, similar to CMR traits, we also used multiple brain 17 

MRI traits as predictors in the prediction model for diabetes. The performance was tested 18 

and compared on the subjects in the testing dataset that had all these data types.  19 

 20 

Code availability  21 

We made use of publicly available software and tools. The codes used to generate CMR 22 

traits will be shared on Zenodo.  23 

 24 

Data availability  25 

Our GWAS summary statistics of 82 CMR traits have been shared on Zenodo and at Heart-26 

KP https://heartkp.org/. The GWAS summary statistics of brain MRI traits can be freely 27 

downloaded at BIG-KP https://bigkp.org/. The individual level UK Biobank data used in 28 

this study can be obtained from https://www.ukbiobank.ac.uk/.  29 

 30 

Fig. 1 Illustration of potential heart-brain connections.   31 
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We illustrated examples of the potential heart-brain connections. For example, 1 

cardiovascular disease/dysfunction may result in cognitive impairment and Alzheimer's 2 

Disease, while mental health disorders and negative psychological health factors may 3 

contribute to higher risk of cardiovascular disease. Multi-system aging and disease 4 

processes as well as cardiovascular risk factors may influence both brain and heart in a 5 

negative way. There may also exist the shared genetic influences between heart and brain 6 

heath.  7 

 8 

Fig. 2 Phenotypic heart-brain associations. 9 

(A) The -log10(pvalue) of phenotypic correlations between 82 CMR traits and 5 groups of 10 

brain MRI traits, including 101 regional brain volumes, 63 cortical thickness traits, 110 DTI 11 

parameters, 92 resting fMRI traits, and 92 task fMRI traits. The dashed line indicates the 12 

Bonferroni-significance level (P < 1.33 × 10-6). Each CMR trait category is labeled with a 13 

different color. (B) The -log10(pvalue) of phenotype correlations between 82 CMR traits 14 

and 8,531 resting fMRI functional connectivity traits across 12 functional networks. The 15 

dashed line indicates the Bonferroni-significance level (P < 7.15 × 10-8). Functional 16 

networks are labeled with different colors. (C) Significant correlations between resting 17 

functional connectivity traits and left ventricular myocardial mass (LVM, left) and right 18 

ventricular ejection fraction (RVEF, right). AAo, ascending aorta; DAo, descending aorta; 19 

LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle; Visual1, the primary 20 

visual network; and Visual2, the secondary visual network. 21 

 22 

Fig. 3 Effects of cardiovascular risk factors on brain MRI mediated through CMR traits.  23 

(A) We illustrate marginal effects (after adjusting for covariates) of diastolic blood 24 

pressure on brain MRI traits and the corresponding conditional effects after further 25 

adjusting for CMR traits. The difference between marginal and condition effects indicates 26 

the indirect effect mediated through CMR traits. As illustrated in (B), the average 27 

proportion of CMR-mediated diastolic blood pressure’s effects was 40.3% for DTI 28 

parameters, 37.5% for resting fMRI, 33.6% for task fMRI, 56.2% for cortical thickness, and 29 

38.6% for regional brain volumes. (C) Marginal effects (after adjusting for covariates) of 30 
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type 2 diabetes (ICD 10 code E11.9) on brain MRI traits and the corresponding conditional 1 

effects after further adjusting for CMR traits. (D) Marginal effects (after adjusting for 2 

covariates) of glycated hemoglobin A (HbA1c) on brain MRI traits and the corresponding 3 

conditional effects after further adjusting for CMR traits. 4 

 5 

Fig. 4 Genetics of CMR traits in the UK Biobank. 6 

(A) SNP heritability of 82 CMR traits across the 6 categories. The x axis displays the ID of 7 

CMR traits, see Table S1 for full names of these traits. AAo, ascending aorta; DAo, 8 

descending aorta; LA, left atrium; LV, left ventricle; RA, right atrium; and RV, right 9 

ventricle. The average heritability of each category is labeled. (B) Ideogram of 80 genomic 10 

regions associated with CMR traits (P < 6.09 × 10-10). (C) Left ventricular end-systolic 11 

volume (LVESV) was associated with the 22q11.23 region in both UK Biobank and Biobank 12 

Japan studies (shared index variant rs5760061). (D) Left ventricular end-systolic volume 13 

(LVESV) was associated with the 8q24.13 region in both UK Biobank and Biobank Japan 14 

studies (shared index variant rs34866937). (E) Left ventricular ejection fraction (LVEF) was 15 

associated with the 8q24.13 region in the Biobank Japan study (index variant 16 

rs11025521), but not in the UK Biobank study. 17 

 18 

Fig. 5 Selected genetic loci that were associated with both CMR trait and other complex 19 

traits and diseases. 20 

(A) In 6p21.2, we observed colocalization between the global myocardial-wall thickness 21 

at end-diastole (WT global, index variant rs4151702) and atrial fibrillation (index variant 22 

rs3176326). The posterior probability of Bayesian colocalization analysis for the shared 23 

causal variant hypothesis (PPH4) is 0.904. In this region, the WT global was also in LD (r2 24 

≥ 0.6) with ischemic stroke. (B) In 7p21.1, we observed colocalization between the 25 

ascending aorta minimum area (DAo min area) and systolic blood pressure (shared index 26 

variant rs2107595, PPH4 = 0.960). In this region, the DAo min area was also in LD (r2 ≥ 0.6) 27 

with stroke, intracranial aneurysm, coronary artery disease, and moyamoya disease. (C) 28 

In 15q25.2, we observed colocalization between the regional myocardial-wall thickness 29 

at end-diastole (WT AHA 7, index variant rs11635505) and schizophrenia (index variant 30 
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 41 

rs12902973, PPH4 = 0.890). In this region, the WT AHA 7 was also in LD (r2 ≥ 0.6) with 1 

bipolar disorder. (D) In 16q24.3, we observed colocalization between the ascending aorta 2 

minimum area (AAo min area, index variant rs488327) and neuroticism (index variant 3 

rs1673931, PPH4 = 0.991). (E) We illustrated the colocalization between the ascending 4 

aorta maximum area (AAo max area) and cerebrospinal fluid (CSF) volume (shared index 5 

variant rs7936928) in 11q24.3 (PPH4 = 0.902). (F) We illustrated the colocalization 6 

between the AAo max area and functional connectivity between the default mode and 7 

orbito-affective networks (Default <-> Orbito-Affective, shared index variant rs1678983) 8 

in 15q21.1 (PPH4 = 0.964). 9 

 10 

Fig. 6 Genetic correlations and integrative prediction. 11 

(A) We illustrated selected genetic correlations between CMR traits (x axis) and complex 12 

traits and diseases (y axis). The asterisks highlight significant genetic correlations after at 13 

the FDR 5% level. (B) Predicting heart diseases using genetic variants and CMR traits. 14 

Genetic PRS, polygenic risk scores of genetic variants. (C) The accuracy of diabetes 15 

prediction analysis using different types of data. Brain volume, region brain volumes; and 16 

DTI parameters, diffusion tensor imaging parameters.  17 
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