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Abstract 

SARS-CoV-2 evolution plays a significant role in shaping the dynamics of the COVD-19 

pandemic. To monitor the evolution of SARS-CoV-2 variants, through international 

collaborations, we performed genomic epidemiology analyses on a weekly basis with SARS-

CoV-2 samples collected from a border region between Germany, Poland and the Czech 

Republic in a global background. For identified virus mutant variants, active viruses were 

isolated and functional evaluations were performed to test their replication fitness and 

neutralization sensitivity against vaccine elicited serum neutralizing antibodies. Thereby we 

identified a new B.1.1.7 sub-lineage carrying additional mutations of nucleoprotein G204P and 

open-reading-frame-8 K68stop. Of note, this B.1.1.7 sub-lineage is the predominant B.1.1.7 

variant in several European countries, such as Czech Republic, Austria and Slovakia. The 

earliest samples belonging to this sub-lineage were detected in November 2020 in a few 

countries in the European continent, but not in the UK. We have also detected its further 

evolution with extra spike mutations D138Y and A701V, which are signature mutations shared 

with the Beta and Gamma variants, respectively. Antibody neutralization assay of virus variant 

isolations has revealed that the variant with extra spike mutations is 3.2-fold less sensitive to 

vaccine-elicited antibodies as compared to other B.1.1.7 variants tested, indicating potential for 

immune evasion, but it also exhibited reduced replication fitness. The wide spread of this 

B.1.1.7 sub-lineage was related to the pandemic waves in early 2021 in various European 

countries. These findings about the emergence, spread, evolution, infection and transmission 

abilities of this B.1.1.7 sub-lineage add to our understanding about the pandemic development 

in Europe, and could possibly help to prevent similar scenarios in future.  
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Introduction 

As one of the SARS-CoV-2 variants of concern (VOC) (1), the alpha variant B.1.1.7 was first 

detected in the UK in September 2020. This variant was shown to be more transmissible (2-4) 

compared to previously detected other variants. In Europe, B.1.1.7 accounted for the majority 

of COVID-19 cases from February to May in spring 2021. The originally reported B.1.1.7 was 

characterized by 17 mutations including amino acid replacements and deletions on the spike 

protein (S), open-reading-frame-1ab (ORF1ab), open-reading-frame-8 (ORF8) and the 

nucleoprotein (5). These mutations might play a role in ACE2 receptor binding or neutralizing 

antibody escape (6, 7). One recent study has investigated the spatial invasion dynamics of 

B.1.1.7 in the UK, and the results of this study indicated that early B.1.1.7 growth rates were 

related with lineage export frequencies from a dominant source location (8). It remains unclear 

how B.1.1.7 could quickly spread to all the countries in Europe in spite of the strict lockdown 

including restrictions on international travels since December 2020 in almost all the European 

countries.  

In Germany, regular large-scale genomic surveillance was initiated in early January 2021. With 

SARS-CoV-2 samples sequenced locally and with virus genomes shared on GISAID (9), we 

have routinely carried out genomic epidemiology analyses to investigate local, national and 

international virus spreading conditions, and monitor the evolution of existing variants and the 

emergence of new variants. Through joint efforts in genomic surveillance with Czech and 

Poland partners, we detected that in the B.1.1.7 samples in the Czech Republic, around 95% 

samples carried two extra mutations: N_G204P and ORF8_68stop. In Germany, more than 30% 

of B.1.1.7 samples showed these two extra mutations as well. More detailed analysis of 

international samples revealed that this B.1.1.7-N:G204P-ORF8:K68stop sub-lineage has been 

widely distributed in Europe. Here, we describe the detection, characterization, transmission, 

evolution and functional analyses of this B.1.1.7 sub-lineage, and the spreading pattern of 

B.1.1.7 in Europe in January 2021 when B.1.1.7 got detected in most European countries. The 
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relevant information may help to understand why and how the B.1.1.7 waves could take place 

across Europe in the spring of 2021, thereby possibly promoting suitable strategies for 

preventing the spread of other variants of concern that evolve quickly.  

 
Methods  

Establishment of genome sequence data set for emerging variant monitoring 

We combined SARS-CoV-2 sequences generated from samples collected in a border region 

between Germany, Poland and Czech Republic, with full-length SARS-CoV-2 sequences 

periodically downloaded from GISAID (9) to build up genome sequence data set for emerging 

variant monitoring (locally generated sequences were shared on GISAID as well). We first 

performed quality check and filtered out low-quality sequences that met any of the following 

criteria: 1) sequences with less than 90% genome coverage; 2) genomes with too many 

mutations (defined as having >20 nucleotide mutations relative to the Wuhan reference), which 

would violate the SARS-CoV-2 molecular clock at the time of study; 3) genomes with more 

than ten ambiguous bases; and 4) genomes with clustered mutations, defined as mutations in 

close proximity to one another. These are the standard quality assessment parameters utilized 

in NextClade (https://clades.nextstrain.org). The current study was based on the 2.17 million 

global viral genomes available as of 30 June 2021. 

Lineage classification 

We used the dynamic lineage classification method in this study through the Phylogenetic 

Assignment of Named Global Outbreak Lineages (PANGOLIN) software suite 

(https://github.com/hCoV-2019/pangolin) (10). This is intended for identifying the most 

epidemiologically important lineages of SARS-CoV-2 at the time of analysis (11).  

Phylogenetic analysis of SARS-CoV-2  

Phylogenetic analysis was carried out to infer the transmission routes of B.1.1.7 in Europe (12) 

with a custom build of the SARS-CoV-2 NextStrain build (https://github.com/nextstrain/ncov) 
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(13). The pipeline includes several Python scripts that manage the analysis workflow. Briefly, 

it allows for the filtering of genomes, the alignment of genomes in MAFFT (14), phylogenetic 

tree inference in IQ-Tree (15), tree dating (16) and ancestral state construction and annotation. 

The phylogeny analysis is rooted by Wuhan-Hu-1/2019. 

Epidemiology data 

We analyzed daily cases of SARS-CoV-2 in the Czech Republic from publicly released data 

provided by the Ministry of Health of the Czech Republic (https://onemocneni-

aktualne.mzcr.cz/covid-19), and 7-day incidence rates per 100K inhabitants were calculated 

accordingly based on the local population. Daily cases of SARS-CoV-2 in Poland was obtained 

from publicly released data provided by the Service of the Republic of Poland 

(https://www.gov.pl/web/koronawirus/wykaz-zarazen-koronawirusem-sars-cov-2), and 7-day 

incidence rates per 100K inhabitants were calculated accordingly as well.  

Viruses 

All viruses used were patient isolates cultured from nasopharyngeal swabs. Virus stocks were 

grown on Vero E6 cells in DMEM GlutaMAX supplemented with 10% FBS, 1% non-essential 

amino acids and 1% penicillin/streptomycin. The second passage of each virus isolate was used 

for experiments. The virus isolates hCoV-19/Germany/SN-RKI-I-178035/2021 (similar to 

originally defined B.1.1.7, labelled as B.1.1.7_O), hCoV-19/Germany/SN-RKI-I-038776/2021 

(B.1.1.7-N:G204P-ORF8:68stop sub-lineage, labelled as B.1.1.7_S), hCoV-19/Germany/SN-

UKDD-91348010S+/2021(B.1.1.7-N:G204P-ORF8:68stop sub-lineage with extra spike 

mutations D138Y and A701V, labelled as B.1.1.7_S+) were used in the virus neutralization 

assay and growth kinetics measurement. 

Virus Neutralization Assay 

All sera were derived from healthy individuals fully vaccinated with BNT162b2. A 2-fold 

dilution series of each serum was prepared in PBS+ (supplemented with 0.3 % bovine albumin, 
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1 mM MgCl2 and 1 mM CaCl2) and each serum concentration was incubated with 50 PFU of 

B.1.1.7_O, B.1.1.7_S or B.1.1.7_S+ for 1 h at 37°C. Confluent Vero E6 cells seeded the day 

before were infected with the virus-containing serum dilutions for 1 h at 37°C and 5% CO2 with 

occasional shaking. The inoculum was aspirated, cells washed with PBS and subsequently 

overlayed with semi-viscous Avicel Overlay Medium (double-strength DMEM, Avicel RC-581 

in H2O 0.75 %, 10 % FCS, 0.01 % DEAE-Dextran and 0.05 % NaHCO3). After 3 days, cells 

were stained with 0.1 % crystal violet in 10 % formaldehyde and plaques were counted. ID50 

values were calculated using GraphPad Prism 9. 

Virus Growth Kinetics 

Calu 3 cells were seeded 3 days prior to infection. On the day of infection, cells were infected 

with B.1.1.7_O, B.1.1.7_S or B.1.1.7_S+ at MOI 0.1 diluted in PBS+ for 1h at 37°C and 5% 

CO2 with occasional shaking. Afterwards, the inoculum was aspirated, the cells were washed 

with PBS and fresh medium (DMEM GlutaMAX supplemented with 10% FBS, 1 % non-

essential amino acids, 1% sodium pyruvate and 1% penicillin/streptomycin) was added. 

Supernatants were removed at 8, 16, 24, 48, 72 and 96 hours post infection (hpi). Infectious 

virus particles in the supernatant were determined using plaque assay, which was performed 

analogously to the neutralization assay from the infection step onwards. Results are given as 

plaque forming units (PFU) per ml. Graphs were generated using GraphPad Prism 9. 

 

Results 

1. Identification of one specific B.1.1.7 sub-lineage with extra mutations in Europe. 

We evaluated 948,077 SARS-CoV-2 alpha variant genomes available as of June 30, 2021. One 

specific B.1.1.7 sub-lineage with two extra mutations: nucleoprotein G204P (N_G204P) and 

ORF8 K68stop (Orf8_K68stop) (Fig. 1A), was detected in various European countries. 

Surprisingly, this B.1.1.7-N:G204P-ORF8:68stop sub-lineage had very unequal distribution in 
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Europe. In the Czech Republic, Hungary, Slovakia and Austria, this sub-lineage was 

predominant, accounting for around 60-95% of local B.1.1.7 related COVID-19 cases. In 

Germany, Denmark, Switzerland, Poland and France, this sub-lineage accounted for around 10-

35% of B.1.1.7 related COVID-19 cases in each country (Fig. 1B). In Belgium and Netherlands, 

this variant only accounted for less than 10% of B.1.1.7 related cases. Of note, this B.1.1.7-

N:G204P-ORF8:68stop sub-lineage comprised only 0.4% of total B.1.1.7 genomes in the UK. 

 
Fig. 1. One specific B.1.1.7 sub-lineage with extra mutations was detected in Europe. A. 
This sub-lineage was characterized by two extra mutations: N_G204P and ORF8_K68stop. B. 
The distribution of this B.1.1.7-N:G204P-ORF8:68stop sub-lineage in Europe is shown as 
percentage of this sub-lineage in total B.1.1.7 in each country (data collected on June 30, 2021 
including all available B.1.1.7 sequences on GISAID). 
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2.  Estimated transmission routes of B.1.1.7 in Europe in January 2021. 

 
 
Fig. 2. Transmission routes of B.1.1.7 in Europe in January 2021 inferred based on 
phylogeny analysis. The size of the circle represents the number of genomes from all B.1.1.7 
(A) or from B.1.1.7-N:G204P-ORF8:68stop sub-lineage (B) in each country. The line colors 
correspond to the exporting locations. A. Left: Time and phylogeny tree of B.1.1.7 collected in 
January; Right: Estimated transmission routes of B.1.1.7 in Europe in January 2021. B. Left: 
Only the cluster characterized by N_G204P and ORF8_K68stop is displayed; Right: Estimated 
transmission routes of B.1.1.7 samples with the two extra mutations N_G204P and 
ORF8_K68stop (B.1.1.7-N:G204P-ORF8:68stop sub-lineage). 
 
Since the spreading of B.1.1.7 was one critical driving force for the February-May wave in most 

European countries, we performed phylogeny analysis of B.1.1.7 to estimate the early 

transmission routes of B.1.1.7 in Europe. In most European countries, in January 2021 the 

B.1.1.7 already got frequently detected (17-19), so this analysis focused on the cross-country 

transmission taking place in January. Phylogeny analysis was performed with B.1.1.7 samples 

collected in January that are available at GISAID from 10 European countries (Austria: 202; 
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Czech Republic: 161; UK: 57,847; Germany: 699; Switzerland: 1,117; Slovakia: 77; Italy: 373; 

Poland: 51; France: 1524; Denmark: 1412). In a few countries, especially in the UK, the 

sampling density was much higher than other countries, so we downsized the sample numbers 

to 100 randomly selected samples collected in January from each country. This condition was 

chosen because similar sample size from each country could largely prevent statistical errors in 

transmission route estimation.  Fig. 2A shows the phylogeny-inferred cross-country 

transmission routes, which revealed two centers in the transmission network: UK and Czech 

Republic, indicating the frequencies of export from these two countries were much higher than 

that of other countries. Analysis of the transmission routes of the cluster of the B.1.1.7-

N:G204P-ORF8:68stop sub-lineage (Fig. 2B) revealed that the Czech Republic was the center 

for this transmission network. 

 

3. Exploration of the source of the B.1.1.7-N:G204P-ORF8:68stop sub-lineage. 

As this B.1.1.7 sub-lineage accounted for only 0.4% of B.1.1.7 related cases in UK till June 30, 

2021 (Fig. 1), this finding suggests the UK was possibly not the direct source of this B.1.1.7 

sub-lineage. To investigate the source and possible transmission routes of this B.1.1.7 sub-

lineage at early stage, we analyzed all the B.1.1.7 samples belonging to this sub-lineage 

collected from all around Europe till end of January 2021. Earliest B.1.1.7 samples with 

N_G204P and Orf8_K68* occurred in November 2020 in the following countries: Switzerland, 

Austria, France, Slovakia and Denmark, with only one genome from each country being 

reported (Fig. 3A). Yet, till end of January 2021 it had been detected in 23 countries in Europe 

(Fig. 3B). Owing to the limited number of SARS-CoV-2 genomes that were sequenced last 

year, it is difficult to analyze more details about the early transmission routes of this sub-

lineage. This B.1.1.7-N:G204P-ORF8:68stop sub-lineage was almost exclusive to Europe, and 

only a few samples were detected in Asia and North America. 
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In the Czech Republic, the first sample of this B.1.1.7 sub-lineage was reported at the beginning 

of January 2021, which was also the first B.1.1.7 variant being reported locally. However, it 

should be pointed out that in December only 39 SARS-CoV-2 samples were sequenced, which 

means the early spreading of the B.1.1.7 sub-lineage might be missed out owing to the low 

sampling density, and it could be that in late December the B.1.1.7 sub-lineage already started 

community transmission. The B.1.1.7 sub-lineage in the Czech Republic was possibly from one 

of the Czech neighbor countries, such as Slovakia or Austria, where the B.1.1.7-N:G204P-

ORF8:68stop sub-lineage was detected much earlier. 

 
Fig. 3. The emergence and spreading condition of this B.1.1.7 sub-lineage at the end of 
November 2020 (A) and at the end of January 2021 (B). Each circle represents the number of 
genomes reported from each country.  
 

4. The COVID-19 pandemic waves in early 2021 in the Czech Republic were associated 

with the expansion of the B.1.1.7-N:G204P-ORF8:68stop sub-lineage 

Since this B.1.1.7 sub-lineage was dominant in the Czech Republic and accounted for around 

95% B.1.1.7 related cases, to investigate the impact of the spreading of this B.1.1.7 sub-lineage 

on the COVID-19 pandemic in the Czech Republic, we analyzed the details of the COVID-19 

pandemic conditions between December 2020 to April 2021 in the Czech Republic and the 

corresponding SARS-CoV-2 lineage development during the same period. For COVID-19 

pandemic, following a second wave from September 2020 till November 2020 which was 

known to be caused by the spreading of other previously existing lineages (20, 21), a sharp 
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wave occurred between December 2020 to January 2021 (Fig. 4A). For SARS-CoV-2 lineage 

development, between December 2020 to January 2021, the prevalence of B.1.1.7 (B.1.1.7 

samples/all sequenced samples) increased from 0% in late December 2020 to ~ 60% in late 

January 2021, replacing the majority of other lineages (Fig. 4B) (Note: as mentioned in the 

results section 3, the early growth of the B.1.1.7 sub-lineage might be missed out from the 

genome surveillance owing to the low sampling density in December), suggesting the major 

driving force for the sharp wave was the quick expansion of the B.1.1.7 variant, which was 

shown to be more transmissible than previously existing other lineages (2-4). Although the 

January wave was curbed temporarily by some countermeasures, after the January peak, the 7-

day incidence rate was kept at a high level (above 400), and reached another peak in early 

March (Fig. 4A&C) along with the further expansion of B.1.1.7. Across the time period 

between January to April 2021, the ratio of the B.1.1.7-N:G204P-ORF8:68stop sub-lineage to 

all B.1.1.7 in the Czech Republic was between 91% to 100% (Fig. 4C). 

The prevalence of B.1.1.7 in the Czech Republic in January was much higher than that of most 

other European countries. For example, the prevalence of B.1.1.7 in Poland in late January 2021 

was only around 10% (Fig. S1A). Besides, in most other European countries, such as in Poland 

(Fig. S1B), the B.1.1.7 wave peaked later at the end of March or the beginning of April 

(https://qap.ecdc.europa.eu/public/extensions/COVID-19/COVID-19.html#country 

comparison-tab).  
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5. Signature mutations. 

5.1 Signature mutations of the B.1.1.7-N:G204P-ORF8:68stop sub-lineage. 

Within this sub-lineage, the most common signature mutations were the same as B.1.1.7 

signature mutations, with the additional N:G204P and ORF8:68stop mutations. As described 

below, there were other novel common spike mutations detected in a small portion of samples 

from this sub-lineage. 

5.2 Further mutation accumulation in the B.1.1.7 sub-lineage. 

Through extensive investigation of this B.1.1.7 sub-lineage, we detected one variant with 

further accumulated mutations in the spike protein on the genetic background of the B.1.1.7-

N:G204P-ORF8:68stop sub-lineage, characterized by two further extra spike mutations: 

D138Y and A701V (Fig. 5A). This variant was mainly detected in Germany, accounting for 

0.07% of all B.1.1.7 in Germany as of June 30, 2021. However, it is noteworthy that the two 

extra mutations carried by this B.1.1.7 variant are shared with other VOCs. The spike D138Y 

is one signature mutation for the Gamma variant (22), and the spike A701V is one signature 

mutation for the Beta variant (23). For samples sequenced locally with vaccine documentation, 

this variant accounted for around 50% B.1.1.7 related vaccine breakthrough cases. 
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Fig. 4. The COVID-19 pandemic waves in early 2021 and the expansion of the B.1.1.7 in 
the Czech Republic. A. 7-day incidence rate per 100K inhabitants in the Czech Republic. B. 
B.1.1.7 proportion of sequenced cases in the Czech Republic in each week, starting from the 
week 1st – 7th December, 2020. The B.1.1.7 lineage rose rapidly in early 2021, replacing the 
majority of other lineages (shown as the white blank space) present during this time period. C. 
The ratio of the B.1.1.7-N:G204P-ORF8:68stop sub-lineage to all B.1.1.7 in each week, starting 
from the first week when B.1.1.7 was detected. 
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6. Impact of the mutations in the B.1.1.7 variants on virus propagation and antibody 

neutralization.  

 

Fig. 5. Neutralization efficacy and growth kinetics of three B.1.1.7 variants. A. Further 
mutant accumulations of D138Y and A701V in the spike protein were detected within the 
SARS-CoV-2 B.1.1.7-N:G204P-ORF8:68stop sub-lineage. B&C. Functional evaluation of 
virus isolates from the three B.1.1.7 variants: the originally defined B.1.1.7 (B.1.1.7_O), the 
B.1.1.7-N:G204P-ORF8:68stop sub-lineage (B.1.1.7_S) and the B.1.1.7-N:G204P-
ORF8:68stop sub-lineage carrying two extra spike mutations D138Y and A701V (B.1.1.7_S+). 
B. Neutralization efficacy of sera from fully vaccinated individuals (n=7, BNT162b2) against 
active virus of the three B.1.1.7 variants. ID50, the serum dilution required for 50% virus 
inhibition. Bars represent the median ID50 values with 95% CI. *p<0.05 Wilcoxon matched-
pairs signed rank test, ns not significant. C. Growth kinetics of B.1.1.7_O, B.1.1.7_S and 
B.1.1.7_S+ on Calu 3 cells as titrated by plaque assay. All data represent three independent 
experiments each with two technical replicates.  

 
We used virus isolates from the three variants B.1.1.7_O (similar to originally defined B.1.1.7), 

B.1.1.7_S (B.1.1.7-N:G204P-ORF8:68stop sub-lineage) and B.1.1.7_S+ ( B.1.1.7-N:G204P-

ORF8:68stop sub-lineage  with extra spike mutations D138Y and A701V) to test their 
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susceptibilities to vaccine elicited serum neutralizing antibodies in individuals following 

vaccination with two doses BNT162b2. These experiments showed a decrease of neutralization 

sensitivity for B.1.1.7_S+, which carries two extra spike mutations D138Y and A701V, 

compared to the other two B.1.1.7 variants B.1.1.7_O and B.1.1.7_S of around 3.2-fold (Fig. 

5B).  

To evaluate replication abilities of these three B.1.1.7 variants, we infected a lung epithelial cell 

line, Calu-3, with the three B.1.1.7 variant isolates. We observed a replication disadvantage for 

B.1.1.7_S+ compared to B.1.1.7_O and B.1.1.7_S (Fig. 5C) in the first 24 hours after infection. 

These data support lower replication rate and therefore lower transmissibility of B.1.1.7_S+ 

over B.1.1.7_O and B.1.1.7_S.  

 

Discussion 

In this article we describe the detection, characterization, transmission, evolution and functional 

evaluation of the B.1.1.7-N:G204P-ORF8:68stop sub-lineage that emerged in the European 

continent in November 2020 and spread widely in many European countries as of 30 June 2021. 

This B.1.1.7-N:G204P-ORF8:68stop sub-lineage was first detected in November 2020 in 

Switzerland, Austria, France, Slovakia and Denmark. In late December 2020 or early January 

2021, it spread to the Czech Republic and quickly became the local predominant SARS-CoV-

2 variant replacing the majority of previously existing variants, and then spread to other 

European countries. Furthermore, we detected evolution of this B.1.1.7 sub-lineage, 

characterized by samples carrying two extra spike mutations A701V and D138Y on the genetic 

background of this B.1.1.7 sub-lineage. 

With virus isolates from the three B.1.1.7 variants: the originally defined B.1.1.7 (B.1.1.7_O), 

the B.1.1.7-N:G204P-ORF8:68stop sub-lineage (B.1.1.7_S) and the B.1.1.7-N:G204P-

ORF8:68stop sub-lineage carrying two extra spike mutations D138Y and A701V (B.1.1.7_S+), 
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we have tested among the B.1.1.7 variants if there is any difference in replication efficiency or 

neutralization sensitivity against vaccine elicited serum neutralizing antibodies. The results 

indicated the B.1.1.7_S itself showed no replication advantage or reduced neutralization 

sensitivity compared to the B.1.1.7_O. This explains the co-existence of the two variants in 

many European countries as shown in Figure 1. However, for the B.1.1.7_S+, reduced 

neutralization sensitivity was observed, indicating potential for immune evasion (24-26). At the 

same time, the B.1.1.7_S+ isolate showed decreased replication fitness compared to the other 

B.1.1.7 variants, which explains its limited expansion in Europe and low ratio of detection in 

Germany (less than 0.1% of all B.1.1.7 as of June 30, 2021).  

Furthermore, using virus genome surveillance data we have estimated the cross-country 

spreading pattern of B.1.1.7 in Europe in January 2021 when B.1.1.7 started being frequently 

detected in most European countries. We find the spreading pattern of B.1.1.7 throughout 

Europe was shown as high export frequencies from the major source locations, UK and Czech 

Republic, which is comparable to the early spreading pattern of B.1.1.7 in the UK (8) and in a 

few other countries at the national level (17, 18, 27).  

The identification of this B.1.1.7 sub-lineage has solved an important puzzle about the 

spreading of B.1.1.7 in Europe. The SARS-CoV-2 lineage B.1.1.7 was first detected in the UK 

in late 2020, and then spread to other countries. It is commonly acknowledged that geographic 

distance and traffic connection to the epicenter play an important role in the spreading pattern 

of virus (28, 29). Usually, in the region closer to the epicenter, the virus would emerge and 

spread earlier. In most countries in Europe, the B.1.1.7 wave peaked at the end of March or 

early April. Among European countries, Czech Republic is geographically farther away from 

the UK than most other countries, but in January 2021 the B.1.1.7 had already become the 

predominant SARS-CoV-2 lineage there, which was earlier than most other countries. It was 

difficult to explain the contradiction between the geographical distribution and the time line of 
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the B.1.1.7 spreading, but the spreading of this B.1.1.7 sub-lineage in the European continent 

since November 2020 has provided one answer for that.  

Moreover, this B.1.1.7 sub-lineage might be the only B.1.1.7 variant that was not restrained by 

the local control measures in the Czech Republic and went on with community transmission in 

last December or early January 2021. Perhaps driven by various transient demographic and 

epidemiological factors, such as opening of ski resorts and other human mobilities related with 

vacation or family gathering, or local high incidence rate that may lead to escalating growth 

rate of SARS-CoV-2, this B.1.1.7 sub-lineage rapidly increased in the Czech Republic and then 

spread to a variety of other countries. 

The wide spread of this B.1.1.7 sub-lineage was related to the pandemic waves in the Czech 

Republic in early 2021, and played a role in driving the B.1.1.7 wave in various other European 

countries, such as Austria, Slovakia, Germany and Denmark. These findings add to the 

understanding about the pandemic development in Europe and could possibly help to prevent 

similar scenarios in future. Also, these findings emphasize the importance of international 

collaboration on virus mutant surveillance, not only for SARS-CoV-2, also for other epidemic 

viruses or bacteria.  
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