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Abstract 91 

Objective: To provide a thorough comparative study among state-of-the-art machine learning 92 

methods and statistical methods for determining in-hospital mortality in COVID-19 patients using data 93 

upon hospital admission; to study the reliability of the predictions of the most effective methods by 94 

correlating the probability of the outcome and the accuracy of the methods; to investigate how explainable 95 

are the predictions produced by the most effective methods. Materials and Methods: De-identified data 96 

were obtained from COVID-19 positive patients in 36 participating hospitals, from March 1 to September 97 

30, 2020. Demographic, comorbidity, clinical presentation and laboratory data were used as training data to 98 

develop COVID-19 mortality prediction models. Multiple machine learning and traditional statistics 99 

models were trained on this prediction task using a folded cross-validation procedure, from which we 100 

assessed performance and interpretability metrics. Results: The Stacking of machine learning models 101 

improved over the previous state-of-the-art results by more than 26% in predicting the class of interest 102 

(death), achieving 87.1% of AUROC and macro F1 of 73.9%. We also show that some machine learning 103 

models can be very interpretable and reliable, yielding more accurate predictions while providing a good 104 

explanation for the ‘why’. Conclusion: The best results were obtained using the meta-learning ensemble 105 

model – Stacking. State-of the art explainability techniques such as SHAP-values can be used to draw 106 

useful insights into the patterns learned by machine-learning algorithms. Machine-learning models can be 107 

more explainable than traditional statistics models while also yielding highly reliable predictions. 108 

 109 

Key words: COVID-19; prognosis; prediction model; machine learning110 
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The number of patients with coronavirus disease 2019 (COVID-19), as well as the related deaths, 113 

have increased exponentially since the World Health Organization declared it a pandemic on March 2020. 114 

Up to September 24, 2021, there are over 230 million cumulative cases and 4.7 million deaths reported 115 

worldwide (1). Although over 6 billion doses of COVID-19 vaccines have been administered worldwide, 116 

due to an uneven and slow rollout, variants are emerging and outbreaks continue especially in poorer 117 

countries, meaning that COVID-19 will be an issue governments worldwide will need to keep grappling 118 

with (1,2).  119 

Given the current scenario, there is an urgent need for an early disease stratification tool upon 120 

hospital admission, to allow the early identification of risk of death in patients with COVID-19, assisting in 121 

the management of disease and optimising resource allocation, hopefully assisting to save lives during the 122 

pandemic. Although several scores have been proposed for the early assessment of COVID-19 patients at 123 

hospital admission, the majority of them are bounded by methodological flaws and technological 124 

limitations, meaning that reliable prognostic prediction models are scarce (3–5). 125 

A state-of-the-art method for this prediction task has recently been proposed by our group with the 126 

development of a new risk score - ABC2-SPH - using traditional statistical methods (least absolute 127 

shrinkage and selection operator - LASSO regression), which exploits a rich set of information, including 128 

patient's demographics, comorbidities, vital signs and laboratory parameters at the time of presentation, for 129 

assessing prognosis in COVID-19 patients. The model has shown high discriminatory value (AUROC 130 

0.844, 95% CI 0.829 to 0.859), confirmed in the Brazilian (0.859 [95% CI 0.833 to 0.885]) and Spanish 131 

(0.899 [95% CI 0.864 to 0.934]) validation cohorts, and with better discrimination ability than other 132 

existing scores (4).  133 

In this context, artificial intelligence (AI), and more specifically machine learning (ML), techniques 134 

have been explored in various fields for dealing with the pandemic, such as detecting outbreaks, diagnosis, 135 

interpretation of chest imaging exams to detect COVID-19 lung disease, vaccines development and 136 
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prognosis prediction (6,7), but comprehensive comparative studies to investigate whether ML techniques 137 

have superior performance when compared to models using traditional statistical methods are still scarce.  138 

Indeed in several other contexts (8) ML techniques have demonstrated superior effectiveness (i.e., 139 

accuracy) when compared to traditional statistical methods (e.g., logistic regression), due for instance, their 140 

capability of dealing with collinearity and redundancy, as well the ability to find non-linear correlations 141 

among the variables. However, current studies in the mortality prediction for COVID-19 using ML 142 

techniques are limited, regarding either methodological or technological aspects.  143 

In this scenario, the contributions of this article are fivefold. First, we provide a thorough 144 

comparative study among state-of-the-art ML methods, including many modern techniques, such as 145 

transformer and convolutional neural networks, boosting algorithms, support vector machines (SVM), k-146 

nearest neighbors, as well as state-of-the-art statistical methods, represented by ABC2-SPH, in the task of 147 

determining in-hospital mortality in COVID-19 patients using data upon hospital admission.  148 

Second, given the profusion and diversity of the compared methods, we investigate the 149 

effectiveness of meta-learning ensemble strategies, most notably Stacking (9), that combine the methods’ 150 

outputs (probabilities), in order to exploit the ML methods’ strengths and overcome their limitations.  151 

Third, we study the reliability of the predictions of the most effective methods by correlating the 152 

probability of the outcome and the effectiveness (accuracy) of the methods. Few studies have investigated 153 

this important aspect of the predictions, which has practical impact in the applicability of the methods. 154 

Fourth, we investigated how interpretable (or explainable) are the predictions produced by the most 155 

effective methods using modern interpretability tools. Explainability is an essential aspect of the task if ML 156 

methods are to be trusted and actually used by practitioners. 157 

Finally, we provide a discussion on the adequacy of AUROC as an evaluation metric for highly 158 

imbalanced and skewed datasets commonly found in health-related problems, as is the case of our COVID-159 

19 study. 160 
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Related Work 161 

This study also included a narrative review of the scientific literature on existing prediction models 162 

for COVID-19 mortality using artificial intelligence techniques. These models were identified through a 163 

literature search of Medline and MedRxiv, with no language or date restrictions, using the search not 164 

indexed terms: “COVID-19”, “SARS-CoV-2”, combined with “mortality”, “prognosis”, “risk factors”, 165 

“hospitalizations” or “score”. The last search was performed in August 2021. 166 

Following the narrative analysis, our initial search highlighted papers that satisfied our search 167 

criteria, removing duplicates, leaving relevant articles for the title and abstract review. Text screening 168 

retained 76 studies included in the S1 Table.  169 

The existing literature largely focuses on American and Chinese hospitals, represented together by 170 

53.94% of studies. In fact, models validated in one country cannot be extrapolated to the population as a 171 

whole, since there is heterogeneity among countries in different characteristics such as populations features 172 

(including genetics, race, ethnicity, prevalence of comorbidities), socioeconomic factors, access to 173 

healthcare, and the healthcare systems themselves (hospitals patient load, practice and available resources) 174 

(10).  175 

Another important point is the sample size. Larger population studies are needed to allow certain 176 

metrics of model performance to be estimated with more accurate and reliable results. In contrast, smaller 177 

samples reduce the ability to identify risk factors and increase the likelihood of overfitting (11). Among the 178 

analyzed models, 17.10% were developed and validated with a modest sample of 500-1000 patients, and 179 

35.52% used even a smaller sample, with less than 500 patients. Only 47.36% of the studies used a sample 180 

with more than 1000 patients. Our sample used in this study has 5032 patients. 181 

Most of the studies (60.52%) used traditional statistical methods, including multivariate logistic 182 

regression, LASSO and Cox regression analysis. Artificial intelligence techniques were used in 39.47% of 183 

studies, among them stands out machine learning, including random forest (RF), XGBoost and SVM. And 184 
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only a very small percentage (11.8%) of works exploit modern neural network methods in their studies as 185 

we do in ours. 186 

Overall, the majority of developed models are limited by methodological bias, with for example, 187 

absence of external validation in 51.31%, so the assessment of accuracy in those studies may be 188 

overestimated. A minority of them (around 23.68%) reported having followed the methodological 189 

recommendations from Transparent Reporting of a multivariable prediction model for Individual Prognosis 190 

Or Diagnosis (TRIPOD) (11). 191 

The model performance was evaluated in most studies, by area under the curve (AUC), and the 192 

mean AUC for training ranged from 0.64-0.96 for traditional statistical methods, and from 0.74-0.96 for 193 

models using AI techniques. However, due to the very high skewness of the datasets (i.e., mortality 194 

corresponds to a very low percentage of the cases in the datasets, in other words, the non-death class 195 

dominates the distribution) neither AUC nor accuracy are adequate metrics (12).  196 

To properly assess the performance of different models, it is of utmost importance to use other 197 

metrics that consider imbalance issues, such as macro-average F1-score (macro-F1), used in 13.33% 198 

studies. For example, Li et al (2020) developed a deep-learning model and a risk-score system based on 55 199 

clinical variables and observed that the most crucial biomarkers distinguishing patients at mortality 200 

imminent risk, were age, lactate dehydrogenase, procalcitonin, cardiac troponin, C-reactive protein and 201 

oxygen saturation (13). The deep-learning model predicted mortality with an AUC of 0.852 and 0.844, for 202 

training and testing, respectively, which is considered excellent (13). However, the performance of the 203 

proposed algorithm on training and testing datasets measured by the F1-score was 0.642 and 0.616, 204 

respectively (13). 205 

Finally, few studies (S1 Table) deep analyzed the impact of the variables in the final model or on 206 

the final model outcome. Additionally, most studies do not investigate how reliable the made predictions 207 

are in terms of the correlation between the probability of the prediction and the accuracy. This analysis has 208 
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implications on the practical use of this technology. An accurate but unreliable method has its practical 209 

applicability diminished. We explicitly tackle these issues in our study. 210 

Materials and Methods 211 

This is a substudy of the Brazilian COVID-19 Registry, a multi-hospital cohort study previously 212 

described (14). Complying with the study protocol, adult patients with laboratory-confirmed COVID-19 213 

according to the World Health Organization criteria, admitted consecutively in any of the 36 participating 214 

hospitals, from March 1 to September 30, 2020 were enrolled. Individuals were not included if they were 215 

transferred between hospitals and data from the first or last hospitals was not available, as well those who 216 

were admitted for other reasons and developed COVID-19 symptoms during their stay (4).  217 

Trained hospital staff or interns collected demographic information, clinical characteristics, 218 

laboratory and outcome data from medical records. A prespecified case report form was used, applying 219 

Research Electronic Data Capture (REDCap) tools (15). To ensure data quality, comprehensive data quality 220 

checks were undertaken. Error checking code was developed in R to identify data entry errors, as 221 

previously described (4), and the results were sent to each center for checking and correction before further 222 

data analysis. 223 

Variables used to develop the models were obtained upon hospital presentation. A set of potential 224 

predictor features for in-hospital mortality was selected a priori, as recommended, from demographics, 225 

home medications, past medical history, clinical features, and laboratory values (S2 Table) (4,11). 226 

Laboratory exams were performed at the discretion of the treating physician. The ABC2-SPH score is 227 

composed by age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO2/FiO2 ratio, 228 

platelet count and heart rate (4).  229 

Data analysis 230 

The development, validation and reporting of the models followed guidance from the TRIPOD 231 

(Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) 232 
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checklist and the Prediction model Risk of Bias Assessment Tool (PROBAST) (11,16).  All data was fully 233 

anonymized. At that time 36 Brazilian hospitals participated in the cohort, located in 17 cities, from five 234 

Brazilian states (4). 235 

 236 

A total of 5032 patients were admitted between March 1, 2020 and September 31, 2020, and the full 237 

group was used to perform a 10-fold cross validation procedure, which was repeated 3 times (at a total of 238 

30 performance measurements for each of the classifiers presented in our study). The overall study 239 

population included 45.9% women, with a mean age of 60 (standard deviation [SD] 17) years, 1367 240 

(27.17%) needed mechanical ventilation and 1014 (20.15%) died.  241 

In order to properly assess the performance of different models, we chose to use three different 242 

metrics, each assessed through the aforementioned 10-fold cross validation procedure, for each classifier. 243 

Our evaluation metrics include both micro-average and macro-average F1-score (micro-F1 and macro-F1), 244 

and the area (AUROC) under the receiver operating curve (ROC-Curve). While more common in 245 

healthcare-related literature, the AUROC values can be misleading, especially when there is significant 246 

class imbalance (17), and even more so when the class of interest is the rare one (which is usually the case). 247 

Therefore, we included the micro and macro-F1 scores as evaluation metrics. The F1 score is the harmonic 248 

mean between precision and recall scores, for each class (i.e. one score to estimate how well the model can 249 

predict which patients will die, and one to estimate the same regarding which patients will not die). The 250 

"average" part, described as either "micro" or "macro", refers to how these results are aggregated. In 251 

"macro" averaging, all classes are taken as equally important, while in "micro" averaging, class imbalance 252 

is not accounted for in the final result and all individual predictions are considered equally important (18). 253 

As for the specific models compared in our study, we trained two modern neural network 254 

benchmarks -- the FNet transformer, with and without virtual adversarial training, which is a regularization 255 

technique -- and a deep convolutional Resnet. We also experimented with a support vector machine 256 
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classifier, a boosting model (microsoft research’s Light Gradient Boosting Machine), and the K-nearest 257 

neighbors algorithm, as well as a stacking of these methods. 258 

 We compare these ML alternatives to traditional statistical methods, including a Generalized 259 

Additive Model (GAM), which has rarely been used in this scenario before, and LASSO regression, the 260 

current state-of-the-art. GAM was used before in ABC2-SPH, but only to select variables for the lasso 261 

regression, which yielded an inferior result when compared to LASSO regression, whereas in our work, we 262 

directly tune GAM to the classification task, thus obtaining better results, as we shall see. 263 

The choice of neural networks to include in our study was motivated by current state-of-the-art 264 

methods, even though, in general, neural networks tend to perform better in situations where massive 265 

amounts of data are available, which is not our case, as we have a relatively small data sample (12,19). 266 

Usually, the ability to compare distant input positions in the query vectors is related to the neural network’s 267 

depth. Transformer architectures, as introduced by Vaswani et al (2017), gained rapid success due to their 268 

capacity of doing so in a constant number of operations, achieving state-of-the-art results in many tasks 269 

(20). That is the reason we chose a FNet Transformer classifier. For comparison purposes, we also included 270 

a Resnet model, which held similar success for image classification, due to the capacity of building very 271 

deep networks. Due to the relative drop in performance of neural networks when fewer data samples are 272 

present in training, we also include a training variant where we perform virtual adversarial training, as 273 

introduced in Miyato et al (2017), in which the model’s decision boundary is smoothed in the most 274 

anisotropic direction through a gradient-based approximation (21). 275 

Additionally, we included a standard support vector machine classifier, which learns a separation 276 

hyperplane between classes, while maximising the separation margin, and a K-nearest neighbors classifier, 277 

which yields predictions based on spatial similarities between training samples and new query points. 278 

Motivated by the results shown in Shwartz et al (2021) (22), we included a boosting algorithm 279 

(LightGBM), which is usually an effective model in tabular data, as concluded in Ke et al (2017) (23). As 280 

the final classifier, we included a meta-learning ensemble-based Stacking model, which learns to combine 281 
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the prediction outputs of all previous classifiers in order to improve classification effectiveness. We 282 

compare these methods to Generalised Additive Models (GAM) and LASSO regression, the latter being the 283 

current state-of-the-art model for this task, as demonstrated in our previous work. 284 

We ran all classification tests using a 10 fold cross validation procedure, after which we calculated 285 

confidence intervals for each result, and confirmed statistical significance by applying a Wilcoxon signed-286 

rank test with 95% confidence. 287 

For the parametrization of our models, we used the values presented in Table 1, where the values in 288 

brackets are evaluated in the validation set of the cross validation process. For deep network models we use 289 

the early stop to optimize the model, which optimizes the weights until the model has no significant 290 

improvement in the validation set. 291 

Table 1. Parameterization of methods. 

Method Parametrization 

SVM 
C: [10-3, 10-2, 10-1, 100, 101, 102] 

Kernel: [linear, rbf, poly, sigmoid] 
class_weight: [None, 'balanced'] 

RF N-estimators: [10, 50, 100, 200, 500, 1000, 2000] 

KNN Neighbors: [2, 4, 8, 16, 32] 

LASSO Alpha: [10-3, 10-2, 10-1, 100, 101, 102] 

LIGHT_GBM 
N-estimators: [10, 50, 100, 200, 500, 1000, 2000] 

learning_rate: [10-3, 10-2, 10-1, 30-1] 
colsample_by_tree: [0.5, 1.0] 

CNN Early Stop 

FNet Early Stop 

FNet + VAT Early Stop 

GAM No tunning 

Stacking Meta-Classifier: Logistic Regression, Alpha: [102] 

List of model names: CNN = convolutional neural network, FNet = fourier transformation neural network, 292 

FNet + VAT = fourier transformation neural network with virtual adversarial training, GAM = generalized 293 
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additive models, KNN = K-nearest neighbors, LASSO = lasso regression, LIGHT_GBM = light gradient 294 

boosting machines, RF = random forest, SVM = support vector machines, STACKING = a stacking 295 

classifier, which combines all others. 296 

Results and Discussion 297 

Classification results for the prediction of death can be found in Table 1. Neural network models 298 

(CNN - convolutional neural networks - and FNet - Fourrier transform neural network - / FNet + VAT - 299 

Fourrier transform neural network + virtual adversarial training) produced the worst results while boosting 300 

('LightGBM' - Light Gradient Boosting Machine), Stacking and one traditional statistical models 301 

('Generalized Additive Models - GAM') produced the best overall results, when considering both, micro 302 

and macro-F1, and AUROC. It is interesting to notice that GAM surpassed LASSO, which was used in our 303 

ABC2-SPH score and was considered the previous state-of-the-art.  304 

The less effective results of the Neural network are somewhat expected as the size of the dataset is 305 

not that huge, with fewer than 10 thousand samples. Typically, we expect neural networks of large capacity 306 

(millions to billions of parameters) to excel in tasks where very large datasets are available (millions to 307 

billions of training instances), which is very rare in health-related problems. In such large-scale datasets, 308 

neural networks can capture very complex relationships. However, in smaller sample sizes, they show a 309 

remarkable tendency to overfit, hence obtaining poor results in terms of validation error (12,19). 310 

In general, tree-based ensemble models such as random and boosting forests tend to be more robust 311 

to small sample sizes and to overfitting, which is exactly the behavior we observed in our experiments (24). 312 

SVM and K-nearest neighbors (KNN), which are simpler models, with fewer parameters, also tend to 313 

perform reasonably well on smaller datasets being better than the neural network models.   314 

We should stress that the statistical models LASSO regression and mainly Generalized additive 315 

models (GAM) showed very competitive results for this data sample. Unexpectedly, GAM was the runner 316 

up method considering all metrics, being even better than LASSO and some traditional ML methods such 317 
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as SVM and KNN. This result contrasts with the one in ABC2-SPH, where GAM was used simply to select 318 

variables for the LASSO regression. In our work, we directly tuned GAM to the classification task, using 319 

the cross-validation procedure, which yielded superior performance. GAM and LightGBM are statistically 320 

tied regarding all evaluation metrics considering a Wilcoxon signed-rank test with 95% confidence. 321 

In any case, the best single overall model, with statistical significance, under all considered metrics, 322 

was the Stacking model, which is a combination of  the output of all other individual models, which, in 323 

turn, exploited all the provided features (S2 Table), including demographic data, comorbidities, lifestyle 324 

habits, clinical assessment and laboratory data upon hospital admission: age; days from symptom onset; 325 

heart and respiratory rate, mechanical ventilation, oxygen inspiration fraction, platelets, urea, C-reactive 326 

protein, lactate, gasometry results (pH, pO2, pCO2, bicarbonate), hemogram parameters  (hemoglobin, 327 

neutrophils, lymphocytes,  neutrophils to lymphocytes ratio, platelets) and sodium  upon hospital 328 

admission. When considering micro and macro-F1, F1 for death and AUROC at the task of predicting 329 

death, Stacking was significantly (statistically) better than all other models. The largest gains were in F1 to 330 

predict death with gains of up more than 26% over LASSO, the previous state-of-the-art.  331 

Indeed, we observe in Table 2 that the combination of models by means of Stacking yields 332 

statistically significant improvements over all the best individual single models (RF, Boosting and GAM), 333 

allowing us to better discriminate between patients with higher clinical risk at admission time. The 334 

Stacking technique improves the F1-score results for the class of interest (death) by 7% over RF, by 5% for 335 

LightGBM and by 6% for GAM, which were the three individual best models in this metric. The 336 

combination of models based on different classification premises, potentially made stacking more robust. If 337 

a single classifier makes a wrong prediction, the others can still make corrections (since the predictions are 338 

independent), increasing the robustness of the final stacking model.  339 

Table 2. Micro-F1, macro-F1 and AUROC results for the prediction of COVID-19 in-hospital death. 

 MICRO-F1 MACRO-F1 F1 (DEATH) 
F1 (NO 

DEATH) AUROC 
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mean CI mean CI mean CI mean CI mean CI 

KNN 0.807 0.002 0.492 0.007 0.091 0.014 0.892 0.001 0.781 0.010 

FNet + VAT 0.810 0.013 0.677 0.020 0.470 0.038 0.884 0.009 0.772 0.019 

FNet 0.814 0.008 0.686 0.017 0.486 0.030 0.887 0.005 0.789 0.015 

CNN 0.815 0.013 0.693 0.016 0.500 0.026 0.886 0.009 0.796 0.016 

SVM 0.839 0.010 0.691 0.031 0.478 0.058 0.904 0.005 0.833 0.012 

LASSO 0.842 0.009 0.677 0.024 0.446 0.044 0.908 0.005 0.859 0.006 

LIGHT_GBM 0.846 0.008 0.723 0.016 0.538 0.028 0.908 0.005 0.865 0.008 

GAM 0.847 0.006 0.720 0.014 0.532 0.026 0.908 0.003 0.855 0.012 

RF 0.850 0.005 0.717 0.013 0.524 0.024 0.911 0.003 0.863 0.007 

STACKING 0.855 0.007 0.739 0.018 0.564 0.032 0.913 0.004 0.871 0.007 

List of model names, from top to bottom (ordered by MicF1): CNN = convolutional neural network, FNet 
340 

= fourier transformation neural network, FNet + VAT = fourier transformation neural network with virtual 
341 

adversarial training, GAM = generalized additive models, KNN = K-nearest neighbors, LASSO = lasso 
342 

regression, LIGHT_GBM = light gradient boosting machines, RF = random forest, SVM = support vector 
343 

machines, STACKING = a stacking classifier, which combines all others. 
344 

As an additional final analysis, given the popularity of this metric in the health domain, we 345 

generated ROC curves for all evaluated models, shown in Fig 1. From this Figure, we can see the 346 

separation of two distinct groups. There is a group of models with inferior results, composed of neural 347 

network models and K-nearest neighbors, and a group of models with superior (indistinguishable) results, 348 

consisting of SVM, RF, LightGBM, GAM and the Stacking of models. Despite similarities in the curves 349 

and at AUROC values, these classifiers can yield quite different results when compared with micro-F1 and 350 

macro-F1, or class-specific F1 scores, which shows that (1) AUROC score is not an adequate metric for 351 

evaluating and comparing models, especially in face of high imbalance/skewness and that (2) even though 352 

some models, like Stacking and GAM have very similar AUROC scores, their capacity to discriminate 353 
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relevant outcomes like death is quite different (0.532 F1 score for GAM end 0.564 for Stacking,  a 354 

significant difference of 6%).  355 

Another interesting remark is that, using such curves, we can sensibly calibrate the trade-off 356 

between sensitivity and specificity, further customizing the way such models can be used. In particular, 357 

when applying Stacking, our model can be tailored to the early identification of high-risk patients with 358 

good discrimination capacity. 359 

 360 

Fig 1. Receiver Operating Characteristic (ROC) Curve comparing multiple models, trained on the 361 

prediction of the death outcome. 362 

Explainability 363 

Various prognostic factors have been proposed in the stratification of COVID-19 patients, based on 364 

their risk of death, that includes clinical, laboratory and radiological variables. Among these risk factors, 365 

stand out advanced age, multiple comorbidities on admission (such as hypertension, diabetes mellitus, 366 

cardiovascular diseases and others), abnormal levels of C-reactive protein (CRP), lymphocytes, neutrophils, 367 

D-dimer, blood urea nitrogen (BUN) and lactate dehydrogenase (LDH). 368 
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A very interesting feature of some ML models, in particular decision trees, RF and boosting forests, 369 

is the explainability of these models. This is still a very active research area, but modern advances in tools 370 

and visualization alternatives allow us to represent which features were most important to the model and at 371 

which polarities and intervals. The best model in our tests was the Stacking. However, this is a meta-model 372 

whose inputs are the outputs of other classifiers. Because of that, and since we want to explain a classifier 373 

that works on the level of the features themselves instead of a meta-level of other classifier outputs, we will 374 

provide explanations for the second best model, LightGBM. Furthermore, tree-based boosting and bagging 375 

algorithms rank as some of the most explainable machine learning models, and also lead many benchmarks, 376 

particularly for tabular data where data samples are not that large. Their unique combination of 377 

explainability, reliability and performance, added to the fact that stacking is a meta-classifier are why we 378 

will exploit the boosting model (which, in our case, outperformed the bagging model - random forests/RF) 379 

to analyse the found correlations among variables. 380 

In a sense, some traditional models, such as regression models, also have a good explainability, as 381 

we can assess the coefficients of each attribute to measure how important a feature is. These models 382 

however do not measure up to modern tree-based algorithms in many scenarios, especially in cases with 383 

larger datasets (25). Another key difference between these models is that, in the case of regression models, 384 

we have to explicitly remove collinear variables, but these variables, even though they might not improve 385 

classification performance, still yield valid model explanations. In addition to that, tree based models can 386 

return explanations in the form of intervals, such as the behavior seen in Fig 2 for sodium and bicarbonate 387 

levels, which imply there is a 'safe interval' at which death risk is lower, while either extreme (i.e. too low 388 

or too high) has a predictive value for the possibility of a COVID-19 related death.  389 

From a clinical perspective, our results, shown in the Figures, are in line with a recent study with 390 

patients from two hospitals in London, which has shown that hypernatremia and hyponatremia during 391 

COVID-19 hospitalization are associated with a higher risk of death and respiratory failure, respectively 392 

(26). With regards to bicarbonate, low levels are related to acidosis, and high levels are usually related to 393 
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advanced chronic obstructive pulmonary disease (COPD) with retention of carbon dioxide, both of them 394 

conditions well-known to be associated with worse prognosis in clinical practice (27–29). This sort of non-395 

linearity cannot be captured by simple regression models, since we can only measure how large coefficient 396 

values are, and correlate that to the importance of each feature.  397 

In decision tree based algorithms, however, each node represents a feature. The closer to the root 398 

(i.e. the 'first' node of each tree), the more the feature is able to differentiate the data classes. For example, 399 

in Fig 2, feature 'SF ratio'' with the value less than 233 and the feature 'lactate' with a value less than 1.68 400 

mmol/L results in a subset with 5.9% of the dataset where the 'death' outcome is more common. 401 

 402 

Fig 2. A sample decision tree with depth 2, trained on our dataset. At each level but the last, the first 403 

line of text in each box shows the variable and its cut before the split. 404 

These algorithms look for the values of the features that further separate the classes, while trying to 405 

decrease the coefficient or entropy values of the class label (which are measures of purity and information) 406 

in each partition in each decision tree -- this coefficient is called the GINI Index. Such index and the 407 

entropy score tend to isolate records that represent the most frequent class in a branch. 408 
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In Fig 3, we present SHapley Additive exPlanation (SHAP) values for our boosting model. This is a 409 

special type of explainability technique, which allows us to not only probe which features were important 410 

to the model, but also which polarities or intervals push predictions to each of the training classes and, 411 

additionally, allows us to evaluate why the model predicted any single instance (30). 412 

 413 

Fig 3. SHAP values for the LightGBM model trained on the prediction of the death outcome. 414 

For any simple model, such as regression, the model itself is a reasonable explanation of what was 415 

learned. However, for more complex models, which in turn are capable of learning more complex solutions 416 

(provided enough data is present at training time), we cannot use the model to explain itself, since it is a 417 

complex solution. In these situations, shapley values build upon the idea that the explanation of a model 418 

can itself be a model. This technique was introduced recently by Lundberg et al (2020), and further expands 419 
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on the explainability of machine learning models, making them even more useful, as they become more 420 

interpretable (30). 421 

With the help of SHAP values in Figs 3 and 4, we can extract interesting knowledge from our 422 

boosting model, the best individual ML model that works with the base features. We can see for instance 423 

that the most important feature in the prediction of death COVID-19 is age. This is coherent with previous 424 

medical literature, and serves as an additional validation to the model. Other scores and a recent meta-425 

analysis have shown age as a key prognostic determinant in COVID-19 (31–34). The meta-analysis 426 

included more than half million of COVID-19 patients from different countries, and observed that the risk 427 

increased exponentially after the fifth decade of life. It is important to highlight that this fact could be 428 

influenced by both the physiological aging process and, especially by the individuals functional status and 429 

reserve, what may hinder the intrinsic capacity to fight against infections, increasing susceptibility to the 430 

infection and severe clinical manifestations (35). 431 

 432 

Fig 4. Mean SHAP values for each feature in the prediction of either death. 433 

A recent Brazilian study in a center not included in the present analysis observed that frailty 434 

assessed using the Clinical Frailty Scale is a key predictor of COVID-19 prognosis. The authors identified 435 
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different mortality risks within age and acute morbidity groups. As our study was based on chart review 436 

only, we could not assess frailty, but we agree with study authors that it must not be neglected when 437 

assessing COVID-19 prognosis. In addition to helping identify patients with a higher risk of death, it can be 438 

valuable in guiding evidence-based discussions on realistic goals patients can achieve (35). 439 

The second most important feature is the supplemental oxygen requirement, which, as per Fig 3, 440 

lower values (blue tones) indicate higher risk. Although COVID-19 is a multisystem disease, it is well 441 

known that lung involvement is the mainstain for assessing disease severity, and oxygen requirement upon 442 

hospital admission has been shown to be an independent predictor for severe COVID-19 in several studies 443 

(36,37).  444 

Still in this analysis, lower values of platelets also increase risk of mortality, as well as higher levels 445 

of urea and C-reactive protein, which was in line with what was previously observed (38). Other studies 446 

suggest that C-reactive protein was a marker of a cytokine storm developing in patients with COVID-19 447 

and was associated with the disease mortality (39–41).  448 

An interesting behavior that we can observe with SHAP values and which might not be possible to 449 

analyze with a simple regression model, is the one seen in features like admission sodium and bicarbonate 450 

serum levels, in which there is a "safe zone" for which risk is lower, but values either too high or too low 451 

yield higher risk. This is an intrinsic limitation of regression models, and the variable may be seen as non-452 

significant due to the fact that it is a non-linear association.  453 

As previously mentioned, an important limitation of regression models is collinearity. When 454 

exploiting LASSO regression in our previous work (4), we had to exclude some features which had shown 455 

to be important in the boosting model due to high collinearity. This may explain the difference in the 456 

features included in both models, despite the fact that all features included in both had previous evidence of 457 

association with COVID-19 prognosis. 458 

Another interesting remark is shown in Fig 4, in which we can see the relative importance of each 459 

feature. Here, again, age is the most important single feature (due to higher mean SHAP value), which is in 460 
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line with previous studies (3,31,32). In an American study in intensive care units, age has shown higher 461 

discriminatory capacity when used in isolation (AUC 0.66) than the Sequential Organ Failure Assessment 462 

(SOFA) score (0.55) for mortality prediction, in a cohort study of adult patients from 18 ICUs in the US, 463 

with COVID-19 pneumonia. This score is widely used at emergency departments and ICUs worldwide to 464 

determine the extent of a person's organ function or rate of failure (42). In the present study, the remaining 465 

features, when combined, yield higher predictive value in this task than just age. 466 

Reliability 467 

Finally, we investigate issues related to the reliability of the models. Neural network models are, for 468 

instance, known for having irregular error rates, regardless of prediction confidence. At the other end of the 469 

spectrum, boosting and bagging models tend to have a very interesting reliability profile, with a tendency to 470 

have lower error rates at high confidence scores, and higher error rates at lower confidence scores. This 471 

generates a very useful perspective, in which we can tune the trade-off between accuracy and sensitivity for 472 

some specific classifiers.  473 

Accordingly, we show in Fig 5 the reliability profile for our best model (Stacking). In this Figure, 474 

the x-axis shows prediction ranges for the model's confidence score, while the y-axis shows the percentage 475 

of hits or misses for the model. Note that the model makes more correct predictions (hits, in green) when it 476 

is more certain of the prediction (range 0.87-0.96). As seen in Fig 5, this classifier yields a useful reliability 477 

profile with respect to its confidence score. This kind of characteristic means we can tune how many 478 

patients the model will indicate, as well as how sensitive or specific that indication can be. Such tuning can 479 

be tailored to any specific healthcare service, accounting for intensive care unit beds, available 480 

professionals and so on. 481 
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 482 

Fig 5. Error rates for each confidence threshold in the Stacking model. 483 

In recent months, COVID-19 mortality prediction models were published ranging from simplified 484 

scores to machine learning. Based on S1 Table, there were few prediction studies that had extensive 485 

analysis utilizing AI techniques. In this study, AI techniques were compared to traditional statistical 486 

methods to develop a model to predict COVID-19 mortality, considering demographic, comorbidity, 487 

clinical presentation and laboratory analysis data. We observed that regarding the prediction of the class of 488 

interest (death), the best individual methods was a ML one (LightGBM) closely followed by a statistical 489 

model (GAM), both being better than neural network models, and both being surpassed by a meta-learning 490 

ensemble model -- Stacking -- which was the best overall solution considering all criteria for the posed 491 

prediction problem. 492 

We would like to stress that, despite the fact that in medical research the AUROC is widely used as 493 

the sole measure of models' discriminatory ability, our data reassured us that it is an insufficient metric for 494 

evaluating and comparing models. In contrast, F1 Score is a more robust metric, especially in larger, more 495 
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complex and imbalanced datasets, which are common in health-related scenarios. Among the variables 496 

analyzed, age was the main mortality risk predictor, similar to other studies, while urea, C-reactive protein, 497 

lactate, respiratory rate, heart rate, NRL, neutrophils, sodium and pCO2 have been shown to significantly 498 

influence the disease outcome (according to Fig 3). 499 

Conclusion 500 

In this study, modern AI techniques were compared to traditional statistical methods to develop a 501 

model to predict COVID-19 mortality with demographic, comorbidity, clinical presentation and laboratory 502 

analysis data. In our experiments, ML models excel in the task, with a meta-learning strategy based on 503 

Stacking surpassing the state-of-the-art LASSO regression method by more than 26% for predicting death. 504 

As a side effect of our study, we demonstrated that AUROC score was an insufficient metric for evaluating 505 

and comparing models. Even though some models, like Stacking and GAM have very similar AUROC 506 

scores, their capacity to discriminate relevant outcomes like death is quite different (0.53 F1 score for 507 

GAM and 0.56 for Stacking, which yields an 5.6% difference). Finally, we investigated issues related to the 508 

explainability and prediction reliability of the best ML models, concluding that they are potentially very 509 

useful for practical purposes in real settings.  510 
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