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Abstract  

Modeling treatment effect could identify a subgroup of individuals who experience greater 

benefit from disease modifying therapy, allowing for predictive enrichment to increase the 

power of future clinical trials. We use deep learning to estimate the conditional average 

treatment effect for individuals taking disease modifying therapies for multiple sclerosis, 

using their baseline clinical and imaging characteristics. Data were obtained as part of three 

placebo-controlled randomized clinical trials: ORATORIO, OLYMPUS and ARPEGGIO, 

investigating the efficacy of ocrelizumab, rituximab and laquinimod, respectively. A shuffled 

mix of participants having received ocrelizumab or rituximab, anti-CD20-antibodies, was 

separated into a training (70%) and testing (30%) dataset, but we also performed nested 

cross-validation to improve the generalization error estimate. Data from ARPEGGIO served 

as additional external validation. An ensemble of multitask multilayer perceptrons was 

trained to predict the rate of disability progression on both active treatment and placebo to 

estimate the conditional average treatment effect. The model was able to separate responders 

and non-responders across a range of predicted effect sizes. Notably, the average treatment 

effect for the anti-CD20-antibody test set during nested cross-validation was significantly 

greater when selecting the model’s prediction for the top 50% (HR 0.625, p=0.008) or the top 

25% (HR 0.521, p=0.013) most responsive individuals, compared to HR 0.835 (p=0.154) for 

the entire group. The model trained on the anti-CD20-antibody dataset could also identify 

responders to laquinimod, finding a significant treatment effect in the top 30% of individuals 

(HR 0.352, p=0.043). We observed enrichment across a broad range of baseline features in 

the responder subgroups: younger, more men, shorter disease duration, higher disability 

scores, and more lesional activity. By simulating a 1-year study where only the 50% 
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predicted to be most responsive are randomized, we could achieve 80% power to detect a 

significant difference with 6 times less participants than a clinical trial without enrichment. 

Subgroups of individuals with primary progressive multiple sclerosis who respond favourably 

to disease modifying therapies can therefore be identified based on their baseline 

characteristics, even when no significant treatment effect can be found at the whole-group 

level. The approach allows for predictive enrichment of future clinical trials, as well as 

personalized treatment selection in the clinic. 
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Introduction  

Multiple disease modifying therapies have been successfully developed for the treatment of 

RRMS using the strategy of performing relatively short and small phase 2 trials with an MRI 

endpoint for establishing proof of concept and finding the optimal dose, before proceeding to 

longer, more expensive phase 3 trials. The absence of analogous MRI endpoints for 

progressive multiple sclerosis have hampered progress in developing drugs for this clinical 

phase of the disease. As proceeding directly to large, phase 3 trials is expensive and risky, 

most programs having followed this path have failed to adequately demonstrate efficacy. 

It is often the case that medications are more effective in some patients than others. Selecting 

such a subgroup for inclusion in a clinical trial in order to increase its power is a technique 

called predictive enrichment.1 A drug proven to be efficacious in an enriched trial can later be 

tested in a larger, more inclusive population. This sequence prevents efficacious medications 

from having their effect diluted in early clinical trials due to inclusion of a population that is 

too heterogeneous. As an example, Bovis et al.2 used CPH models to predict a more 

responsive sub-group of RRMS patients to laquinimod, a medication whose average 

treatment effect in the original phase 3 studies was insufficient for drug approval. 

To achieve the goal of enriching clinical trials with more responsive individuals, a machine 

learning problem can be formulated as the prediction of the ITE, or the difference between a 

person’s rate of progression on treatment and that on placebo. This formulation is grounded 

in the theory of causal inference, and the related sub-fields of heterogeneous treatment effects 

and uplift modeling have contributed numerous approaches adapted to machine learning 

(reviewed elsewhere3). Arguably some of the most popular methods have been tree-based 

approaches (see Radcliffe and Surry4 for an example) which model treatment effect directly, 

and meta-learning approaches5 which use base models trained on the outcome of interest for 

the downstream task of treatment effect prediction. 

We implement a learning framework based on an ensemble of multitask MLPs, a type of 

deep neural network architecture, to predict ITE using readily available clinical information 

(demographic characteristics and clinical disability scores) and scalar MRI metrics (lesional 

and volumetric) obtained at a screening visit. This approach can be used to identify a sub-
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group of more responsive individuals for the purpose of clinical trial enrichment, using a 

desirable ITE threshold. In this work, we study the population of patients with PPMS that 

were exposed to anti-CD20 monoclonal antibodies in two clinical trials, ORATORIO 

(NCT01194570) and OLYMPUS (NCT00087529). We also test our model on individuals 

exposed to laquinimod as part of the ARPEGGIO trial (NCT02284568), a medication with a 

completely different mechanism of action, to assess whether learned predictors of response 

could be mechanism-agnostic. 

Materials and methods  

Data 

Data were acquired as part of three randomized placebo-controlled clinical trials: 

ORATORIO,6 OLYMPUS7 and ARPEGGIO.8 Anti-CD20 monoclonal antibodies, henceforth 

abbreviated anti-CD20-Abs (ocrelizumab in ORATORIO and rituximab in OLYMPUS) are 

primarily thought to act through B-cell depletion. Laquinimod (in ARPEGGIO) has a 

different and complex mechanism of action, thought to involve immunomodulatory effects on 

innate immune cell lineages (dendritic cells and monocytes peripherally, and microglia and 

astrocytes centrally). All three trials enrolled adults with PPMS and had similar inclusion 

criteria, shown in Supplementary Table 1. We excluded participants who spent less than 24 

weeks in the trial, who had less than two clinical visits, or who were missing one or more 

input features at the baseline visit. 

We used all clinical and MRI metrics (features) that were consistently recorded as part of the 

data available from the three trials, amounting to 19 features. Values were recorded at the 

baseline visit (immediately before randomized treatment allocation), and are a combination of 

binary (e.g. sex), ordinal (e.g. disability scores), and continuous variables (e.g. age, T2 lesion 

volume). Lesion segmentation and brain volume estimation were done according to the 

individual study’s methodology. Means and standard deviations for each feature distribution 

are shown in Table 1. The feature distributions are similar for all three treatment groups. 

However, some clinically meaningful differences are found in the MRI metrics, where the 

anti-CD20-Ab group has a higher average Gad count and T2 lesion volume compared to the 

other treatment group. The following right-skewed distributions were log-transformed: 

normalized brain volume, T2 lesion volume, timed 25-foot walk (T25FW), and 9-hole peg 
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test (9HPT). Gad counts were binned into ten bins as follows: 0, 1, 2, 3, 4, 5-6, 7-9, 10-14, 

15-19 and 20+ lesions. Finally, to improve convergence during gradient descent,9 all non-

binary features were standardized by subtracting the mean and dividing by the standard 

deviation, both calculated from the training dataset. 

Treatment effect modeling 

We are interested in predicting the ITE, 𝜏𝑖, defined according to the Neyman/Rubin Potential 

Outcome Framework:10 

𝜏𝑖 ∶= 𝑌𝑖(1) − 𝑌𝑖(0)  (1) 

where 𝑌𝑖(1) and 𝑌𝑖(0) represent the outcome of participant i when given treatment and 

control medications, respectively. The Fundamental Problem of Causal Inference11 is that the 

ITE is unobservable because only one of the two outcomes is realized in any given patient, 

dictated by their treatment allocation. 𝑌𝑖(1) and 𝑌𝑖(0) are therefore termed potential outcomes 

or, alternatively, factual (observed) and counterfactual (not observed) outcomes. 

Ground-truth can nevertheless be observed at the group level in specific situations, such as 

randomized control trials, because treatment allocation is independent of the outcome. We 

provide a detailed discussion of two important estimands, the average treatment effect and the 

CATE in Supplementary Material Section 1. Briefly, the average treatment effect represents 

the average effect when considering the entire population, while CATE considers a sub-

population selected based on patient characteristics. The following discussion focuses on the 

problem of CATE estimation, which we use to frame the problem of predicting treatment 

response. 

The best estimator for the CATE is conveniently also the best estimator for the ITE in terms 

of mean squared error (see Equation 2 in Künzel et al.5). Several frameworks have been 

developed to model the CATE, but a simple metalearning approach which decomposes the 

estimation into sub-tasks that can be solved using any supervised machine learning model 

provides a flexible starting point.5 For a broader survey of methods, see the survey on uplift 

modeling by Gutierrez & Gérardy3 (the uplift literature has contributed extensively to the 

field of causal inference, particularly when dealing with randomized experiments from an 

econometrics perspective). 
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In the present work, a MLP was used as the base model for its high representational power, 

flexible architecture, and ability to integrate into larger end-to-end-trainable neural networks 

consisting of different modules (such as convolutional neural networks or attention modules). 

We used a multitask architecture with two output heads, one for the modeling the potential 

outcome on treatment, 𝜇̂1(𝑥), and the other to model the potential outcome on placebo, 

𝜇̂0(𝑥). For inference, we compute can compute the CATE estimate 𝜏̂(𝑥𝑖) given a feature 

vector 𝑥𝑖 as: 

𝜏̂(𝑥𝑖) =  𝜇̂1(𝑥𝑖) − 𝜇̂0(𝑥𝑖)  (2) 

An additional correction to increase robustness to distributional shifts that could occur as a 

result of our tuning procedures is applied to 𝜏̂(𝑥𝑖) at inference time to produce our final ITE 

estimate, 𝜏̂𝑖 (see Supplementary Material Section 1 and 2 for details). 

This multitask approach can be seen as a variant of the T-Learner described by Künzel et al.,5 

except that the two base models in our case share weights in the first layers. Our network is 

similar to that conceptualized by Alaa et al,12 but without the propensity network used to 

correct for any dependence between the treatment allocation and the outcome conditional on 

the features, given that our dataset is from a randomized controlled trial. 

To decrease the size of the hyperparameter search space, we fixed the number of layers and 

only tuned the layer width. We used two common hidden layers and one treatment-specific 

hidden layer (Fig. 1). More common or treatment-specific layers could be used if necessary, 

but given the low dimensionality of our feature-space and the relatively low number of 

instances, we opted to keep the network’s depth small to avoid over-fitting. The inductive 

bias behind our choice of using a multitask architecture is that disability progression can have 

both disease-specific and treatment-specific predictors which can be encoded into the 

common and treatment-specific hidden layer representations, respectively. Consequently, the 

common hidden layers can learn from all the available data, irrespective of treatment 

allocation. Rectified linear unit (ReLU) activation functions were used for non-linearity. 

We compared the performance of the multitask MLP on our validation metric, the weighted 

ADabc (defined below in the “Validation metrics” subsection) to the following linear (or log-

linear) models as baselines: ridge regression and CPH. We also compared it to a popular non-

linear heterogeneous treatment effect estimator, uplift forest.4 Ridge regression models were 

used as base models inside both an S-Learner and T-learner configuration (as defined by 

Künzel et al.5), while the CPH model was used as the base model for a T-learner only (as 
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implemented by Bovis et al.2). The uplift forest was used as a standalone heterogeneous 

treatment effect estimator. 

Outcome definition 

The primary outcome used in clinical trials assessing the efficacy of therapeutic agents on 

disease progression is the time to CDP at 12, or 24 weeks. We chose to use CDP at 24 weeks 

(CDP24) because it is a more robust indication that the disability accrual will be sustained 

over 5 years.13 CDP24 is based on progression on the EDSS, a scale from 0 (no disability) to 

10 (death), in discrete 0.5 increments. We define CDP24 as an increase in the EDSS of 0.5 

for baseline EDSS values > 5.5, or an increase of 1.0 for baseline EDSS values ≤ 5.5, 

sustained over 24 weeks. This difference in the increment required to confirm disability 

progression is commonly adopted in clinical trials, and partially accounts for the finding that 

patients transition through different stages of the EDSS at different rates.14 

While it is possible to predict time-to-event using traditional machine learning methods if 

workarounds are used to address right-censored data or using machine learning frameworks 

specifically developed to model survival data (reviewed elsewhere15), we choose not to 

model time-to-CDP24 because of limitations inherent in this metric. As outlined by Healy et 

al.,16 CDP reflects not only the rate of progression but also the current stage of disease, which 

is problematic because the stage is represented by a discretized EDSS at a single baseline 

visit. This results in a noisy outcome label which could make it harder for a model to learn a 

representation that relates to the progressive biology which we are trying to model. 

We therefore model the rate of progression directly by fitting a linear regression model onto 

the EDSS values of each individual participant over multiple visits (see Supplementary 

Material Section 3 for details) and take its slope to be the outcome label yi that our model 

uses for training. One advantage of the slope outcome over time-to-CDP24 is that it can be 

modeled using any type of regression model. After model training using the slope outcome, 

we revert to time-to-CDP24 for model evaluation to facilitate comparison with treatment 

effect survival metrics reported in the original clinical trial publications. 

Training 

We trained our model using mini-batch gradient descent with a batch size of 128 and the 

Adam optimizer.17 To prevent overfitting, we monitored the concordance index (C-index) on 
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the validation set during CV, and early-stopped model training at the epoch with the highest 

C-index, up to a maximum of 100 epochs. Dropout and L2 regularization were used, along 

with a max-norm constraint on the weights18 to further prevent overfitting. 

Batches were sampled in a stratified fashion to maintain the proportions of participants 

receiving active treatment and placebo. The mean squared error was computed from each 

instance’s squared error at the output-head with the available factual (ground-truth) outcome. 

Furthermore, the squared errors from each output head were weighted by 𝑛𝑠/(2 ∗ 𝑛𝑡), where 

𝑛𝑠 represents the total number of participants in the training split and 𝑛𝑡 represents the 

number of participants in the treatment arm corresponding to the output head of interest. This 

compensates for treatment allocation imbalance in the dataset. 

Hyperparameter tuning and experimental setup 

A random search over 100 different hyperparameter combinations was used to find the 

combination with the best validation performance (see Supplementary Table 2 for the full 

search set). 

In our first experiment, we randomly shuffled data from ORATORIO and OLYMPUS given 

that the two active arms test drugs (ocrelizumab and rituximab, respectively) with the same 

mechanism of action (n = 1,119). We will refer to this dataset as the anti-CD20-Ab dataset. 

We then split this dataset into a training (70%) and testing (30%) set. We kept the data from 

ARPEGGIO as a second held-out test set (n = 323). The training set was subjected to 10-fold 

CV for hyperparameter tuning. 

In our second experiment, we used 5x8 nested CV19 on the anti-CD20-Ab dataset to ensure 

our model training procedure was robust to the choice of training and test split. This involves 

adding an outer loop to the usual CV procedure, such that the entire dataset is split into five 

sets, one of which (20% of the total) is used as an unseen test set for each outer fold. Its 

corresponding training set (the 80% remaining) is subjected to 8-fold CV (validation sets are 

therefore 10% of the original dataset) for tuning and model selection in the inner loop. This 

results in five different models being selected and tested on a different test set, amounting to 

test predictions for every individual in the dataset. 

In our third experiment, we retrained a model on the entire anti-CD20-Ab dataset and tested it 

on the ARPEGGIO dataset. The training set was subjected to 10-fold CV. 
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We used CV aggregation, or crogging,20 to improve the generalization error estimate using 

our metrics. Crogging involves aggregating all validation set predictions (rather than the 

validation metrics) and computing one validation metric for the entire CV procedure. We also 

used crogging in the outer loop of the nested CV experiment, therefore computing one test 

metric for the entire dataset. 

We aimed to reduce variance by using the early-stopped models obtained from each CV fold 

as members of an ensemble. This ensemble’s prediction is the median of its members’ 

predictions (as opposed to the mean, which is more sensitive to outliers), and is used for 

inference on the unseen test set. 

Hyperparameter tuning for the baseline models (ridge regression and CPH) was done on 

same folds and with the same metrics as for the MLP. The uplift forest was tuned only for the 

weighted 𝐴𝐷𝑎𝑏𝑐  (defined below) given that it estimates treatment effect directly. 

Validation metrics 

The best model was selected during CV on the basis of two validation metrics: the C-index of 

the factual predictions, and the weighted ADabc. 

The first validation metric, the C-index, is defined as the proportion of correctly ordered pairs 

over all admissible pairs.21 We used the C-index instead of the mean squared error for tuning 

because we found empirically that models tuned for C-index performed better during CV in 

terms of their weighted ADabc. It has the advantage over other non-parametric ranking metrics 

such as Spearman’s rank correlation coefficient of being able to deal with censored data, if 

the chosen outcome label of interest would be a time-to-event variable, but in the case where 

a slope outcome is used either would provide an appropriate measure of rank ordering. 

The second validation metric, a modified (weighted) version of the ADabc described by Zhao 

et al.,22 directly measures the quality of the treatment effect prediction. It is a measure derived 

from the area under the AD(c) curve, which is the average treatment effect for individuals 

who are predicted to respond (according to 𝜏̂𝑖) more than a desired response threshold c. A 

model capable of ranking responders appropriately should have an AD(c) curve that is almost 

monotonically increasing with a large area under the curve. ADabc is in unit years, and a 

larger positive number therefore indicates the ability for the model to separate responders 

across a range of predicted treatment effect sizes. See Supplementary Material Section 4 for a 

more detailed discussion including how we weigh the ADabc. For ease of interpretation, we 
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will refer to c in terms of the percentile for c among all 𝜏̂𝑖 in the test set (e.g. the 80th 

percentile threshold for c represents the top 20% most responsive individuals according to 

our model’s prediction 𝜏̂𝑖). 

We combine both validation metrics during tuning by choosing the model with the highest 

weighted ADabc among all models that fall within 1 SD of the best performing model based 

on the C-index. The SD of the best performing model’s C-index is calculated from the C-

indices obtained in the individual CV folds. 

Statistical analysis 

Hazard ratios were calculated using CPH models with associated p-values from log-rank 

tests. Right censoring times were clamped at 2 years at inference for all experiments except 

for the effect size calculation in the simulated phase 2 clinical trial in the Results section 

“Simulating a one-year phase 2 clinical trial enriched with predicted responders”, where the 

right censoring times were clamped at 1 year. 

Note that we multiplied all treatment effect values by −1 to simplify interpretation in the 

Results section, such that a positive effect indicates improvement, while a negative effect 

indicates worsening on treatment. 

Software 

All experiments were implemented in Python 3.8.23 MLP models were implemented using the 

Pytorch library.24 Scikit-Learn25 was used for the implementation of ridge regression, while 

Lifelines26 was used for CPH. CausalML27 was used for implementing the uplift forest. For 

reproducibility, the same random seed was used for data splitting and model initialization 

across all experiments. 

Data availability  

Data used in this work are controlled by pharmaceutical companies and therefore are not 

publicly available. Access requests should be forwarded to data controllers via the 

corresponding author. 
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Results  

Predicting response to anti-CD20 monoclonal antibodies 

We first trained an ensemble of multitask MLPs on 70% (n = 784) of the mixed dataset 

consisting of participants from ORATORIO and OLYMPUS. A histogram of test predictions 

on the 30% (n = 335) test set is shown in Supplementary Fig. 1. Varying the threshold c from 

the 10th percentile to the 80th percentile of predicted treatment effect results in the AD(c) 

curve shown in Fig. 2 (ADabc = 0.0679). It is appropriately increasing throughout its range 

with a positive ADabc, demonstrating the ability for the model to rank response to anti-CD20-

Abs accurately, in a way that reflects the group-level ground-truth. 

Kaplan-Meyer curves of the factual time-to-CDP24 in predicted responders (𝜏̂𝑖 ≥ c) and non-

responders (𝜏̂𝑖 < c) are shown in Fig. 4 at various percentile thresholds for c. We observe a 

decrease in HR from 0.787 (p=0.292) when including the entire test population to 0.395 

(p=0.0279) at the 75th percentile threshold for c (including only the top 25% most responsive 

individuals). At this 75th percentile threshold, the nonresponder group has a HR of 1.02 

(p=0.938), which suggests that a large part of the beneficial effect visible at the whole-group 

level comes from a very small proportion of patients. The lowest HR achieved is 0.3 (95% CI 

0.100-0.901, p=0.0229) at the 85th percentile threshold, but beyond this point the sample size 

becomes too small and the confidence intervals too large to provide a meaningful estimate. 

Due to the relatively small test size (n = 335), to better estimate the generalization error of the 

training and model selection procedure, we performed 5x8 nested CV,19 yielding test-time 

predictions for the entire dataset (n = 1,119). The outer-fold crogging is expectedly consistent 

with our previous experiment (ADabc = 0.0415), and provides more confidence in the 

treatment effect estimates due to the increased test set size. The effect is very similar at the 

50th percentile threshold (HR 0.625, p=0.008), while it slightly less beyond the 75th 

percentile. From this estimate, we expect to reach a HR of 0.521 (p=0.013) with a 75th 

percentile threshold, with a peak HR of 0.338 (p=0.013) at the 92nd percentile threshold. 

We verified whether the predictive ability of the model is similar if we consider men and 

women separately. The model tested on men alone achieved a weighted ADabc of 0.057, while 

the one tested on women alone achieved 0.093, indicating a greater power in isolating 

responders in women. Taking the 75th percentile for comparison, the model reaches a HR of 

0.293 (p<0.001) with women compared to 0.555 (p=0.090) with men. 
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Simulating a one-year phase 2 clinical trial enriched with 

predicted responders 

To understand the effect of enriching a future clinical trial studying novel B-cell depleting 

agents for reduction of disability progression, we simulated a 1-year randomized clinical trial 

using populations enriched with predicted responders. Using our model to predict sub-groups 

of responders to anti-CD20-Abs across a variety of thresholds, we can calculate the 1-year 

CDP24 event rate and 1-year HR for these sub-groups, which can then be used for sample 

size estimation. Table 2 shows the sample size needed to have 80% power to detect a 

significant difference with α = 0.05 across various degrees of enrichment. 

The 50th percentile is the threshold for inclusion of participants that provides the best 

compromise between needing a small number (n = 497) of participants to show a significant 

treatment effect, while still randomizing most screened participants. This process involves 

screening a total of 944 individuals and selecting the top 50% who are predicted to be most 

responsive for enrollment in the trial. This leads to a 6-fold reduction in the number of 

patients that need to be randomized, and a 3-fold reduction in the number of patients that 

need to be screened, compared to the scenario where all participants are randomized into a 

one-year study (n = 3,068). 

Group characteristics of predicted responders and non-

responders 

We provide group-level characteristics of the predicted responders in comparison with non-

responders at the 50th percentile threshold in Table 3. See Supplementary Table 3 for the 

statistics at the 75th percentile threshold. We observe enrichment across a broad range of 

input features in the responder sub-group: younger, more men, shorter disease duration, 

higher disability scores, and more lesional activity. Normalized brain volume was the only 

feature which did not differ between the two groups at either threshold. A lower weight was 

only significantly different in the single test set, and not in the nested CV aggregate. 

Predicting response to laquinimod 

Finally, to determine whether the same model could be predictive of treatment response to 

medications with different mechanisms of action, and to provide a second validation for the 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.31.21265690doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.31.21265690
http://creativecommons.org/licenses/by-nd/4.0/


13 

 

model trained on the single 70% training set in the first anti-CD20-Ab experiment, we tested 

it on a separate clinical trial that was not used during training: ARPEGGIO. As a second step, 

we retrained the model on 100% of the anti-CD20-Ab dataset, and again tested this retrained 

model on the ARPEGGIO dataset. The results are shown in Table 4. We see that the model 

trained on the single anti-CD20-Ab training set also generalizes to this second unseen test set 

(ADabc = 0.024). The treatment effect increases almost monotonically and reaches 

significance (p < 0.05) at the 80th percentile threshold. The retrained model performs better 

(ADabc = 0.0436), obtaining a HR of 0.352 (p=0.043) at the 70th percentile and 0.196 

(p=0.010) at the 80th percentile. The Kaplan-Meyer curves for the 70th and 80th percentile 

thresholds are shown in Supplementary Fig. 2. We show the group characteristics for 

predicted responders using a 50th percentile and a 75th percentile threshold in Supplementary 

Tables 4 and 5, respectively. The significant groupwise differences are largely similar to 

those obtained on the anti-CD20-Ab dataset, with a few notable exceptions. A taller height 

and a higher normalized brain volume are present in the ARPEGGIO responder group, 

whereas no difference is observed in weight, Gad count and T2 lesion volume. Altogether, 

this out of distribution generalization provides strong evidence suggesting that this approach 

can truly find underlying predictors of treatment response which are at least partly drug 

mechanism agnostic. 

Comparison to baseline models 

To determine whether non-linear models (such as an MLP with ReLU activations) provide 

any performance gains over linear models, we compared the multitask MLP to the commonly 

used ridge regression trained on the slope outcome and to a CPH model (which is log-linear) 

trained directly on the time-to-CDP24 outcome. We used an uplift forest as a non-linear 

baseline. 

The ADabc achieved by each model when tested on both the anti-CD20-Ab and the 

laquinimod datasets is shown in Table 5, along with the average p-value obtained from log-

rank tests at each of the 8 percentile thresholds used to compute the AD(c). The multitask 

MLP outperforms all other linear (and log-linear) baselines, along with the non-linear uplift 

forest which fails to identify responders (negative weighted ADabc) on our dataset. 
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Discussion  

This work addresses an important limitation in the current treatment of PPMS, whereby no 

biomarker adequately predictive of treatment response is available to guide the choice of 

treatment for individuals, either in the clinic or in clinical trials. It is well recognized that the 

disability trajectory of individuals with multiple sclerosis and their response to specific 

treatments are highly heterogeneous. We therefore set the stage for treatment effect 

prediction with the primary goal of increasing the efficiency of early phase clinical trials in 

PPMS, but also secondarily to help make better treatment decisions in the clinic. We use a 

multitask MLP architecture for CATE estimation, and through a one-year phase 2 clinical 

trial simulation demonstrate the benefit of predictive enrichment, which could reduce the 

number of patients randomized by 6-fold while screening 3 times less patients than would be 

required for a short (one year) clinical trial in PPMS. We go through numerous steps to 

validate our approach, in particular by using nested CV and crogging to better estimate the 

generalization error and by showing generalization to a different unseen test set. The latter 

demonstrates that this approach can likely be useful on future clinical trials even if they study 

different medications. 

Although our results illustrate a potential benefit of using predictive models in the clinic to 

assist in selecting patients who are more likely to benefit from anti-CD20-Abs, it remains an 

open question whether patients for whom our model predicted minimal response over two 

years could benefit from longer periods of administration. Answering this question would 

require longer-term observational data. 

Interpretability of neural networks is a growing field in the machine learning literature 

(reviewed elsewhere28) and how to best interpret the predictions of neural networks remains 

an area of active research. We therefore do not attempt to provide in-depth interpretations of 

the network’s predictions, but instead analyse the group-level statistics of the predicted 

responders at various thresholds of response. The more responsive groups are enriched in 

numerous baseline features, including a younger age, more men, higher disability scores, and 

more lesional activity. Similarly, in subgroup analyses from OLYMPUS, an age less than 51 

years and presence of gad lesions at baseline was also found to be associated with increased 

response.7 In a study by Bovis et al.,2 a response scoring function obtained via a T-learner 

composed of CPH models in RRMS found increased age, female sex, more Gad lesions and a 

higher normalized brain volume to be associated with better response. Conversely, Signori et 
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al.29 found an opposite relationship between age and response in RRMS, demonstrating that 

different types of models looking at different combinations of features can find different 

optimal solutions. 

Finding more individuals with greater lesional activity (particularly Gad, and to a lesser 

extent T2 lesions) in the responder subgroups would support a role for these lesions in 

progressive biology. However, this role appears to be indirect, as most of the progression in 

multiple sclerosis occurs independent of relapse activity. The presence of multiple 

pathophysiological mechanisms to explain progression in multiple sclerosis involving both 

inflammation and neurodegeneration has been postulated,30 and smouldering inflammation 

associated with slowly enlarging lesions31 could be a potential effector for anti-CD20-Ab’s 

effect on progression. The alternative hypothesis that lesional activity in the responder group 

could be a marker of more aggressive disease for which CDP is more likely to occur is not 

supported by our results, since our model does not work solely by identifying a more rapidly 

progressive sub-group. This is evidenced by the reduction in the frequency of CDP in the 

treatment group for the more responsive individuals (see Table 2). 

Interestingly, despite a balanced dataset with respect to gender, our model was better at 

identifying responders in women compared to men. This is particularly interesting because 

most of the responders are men. To deploy ethically fair point-of-care tools, every effort 

should be made to ensure that easily identifiable groups of individuals (e.g. based on gender, 

age, and ethnicity) all benefit equally from such tools. Potential ways to address this in future 

work would be through the use of fine tuning on larger observational datasets, optimizing 

models for each identifiable sub-group separately, or through more complex loss-weighing 

schemes. 

Limitations of this work include the choice of model. Although our MLP outperformed linear 

baselines, MLPs are notoriously more difficult to tune and at higher risk of overfitting. We 

made heavy use of several regularization schemes to prevent this (shallow/narrow network, 

dropout, weight decay, max-norm constraint and early-stopping). This approach is not the 

easiest to implement nor the most computationally efficient, but it provided the best results, 

suggesting inherent non-linearities in the dataset that benefit from ReLU networks and their 

compositional expressivity. Our hyperparameter tuning procedure is also one of many that 

can be designed. Optimizing for the weighted ADabc directly could potentially provide better 

results and is the subject of ongoing work. Finally we used MRI-derived metrics that came 
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from the individual clinical trials and that offered expert corrected lesion counts and volumes. 

Extracting features from the MRI images themselves through convolutional neural networks 

is the subject of ongoing work. 

In conclusion, we demonstrate the utility of CATE estimation for predictive enrichment of 

clinical trials aimed at increasing the efficiency of the drug development process in PPMS. 

We were able to find subgroups of increasingly responsive individuals to anti-CD20 

therapies. Our model was able to generalize to a medication with a very different mechanism 

of action, laquinimod, suggesting that there might be common predictors for treatment effect 

independent of mechanism, which would facilitate the use of such a model for planning 

future clinical trials. This flexible training paradigm and multitask model architecture can 

easily be integrated into larger neural networks to benefit from data-driven imaging feature 

extraction through convolutional neural networks. The use of this approach is not limited to 

enrichment of clinical trials and can also be used for precision medicine in the clinic when 

deciding whether initiation of a therapy is worthwhile, by predicting response of individual 

patients based on their unique characteristics. 
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Tables and Figures 

 

Table 1 Feature distribution per treatment arm 

 Anti-CD20-Ab Laquinimod Placebo 

 n = 745 n = 190 n = 507 

Trial contribution: 

ARPEGGIO 0 190 133 

OLYMPUS 276 0 141 

ORATORIO 469 0 233 

Demographics: 

Age (years) 44.65 (8.08) 46.34 (6.56) 44.91 (8.13) 

Sex (% male) 51.28 56.84 47.93 

Height (cm) 170.67 (9.44) 172.20 (9.35) 170.44 (9.39) 

Weight (kg) 74.91 (17.10) 75.59 (15.52) 74.18 (16.22) 

Disease duration (years)a 7.53 (5.12) 8.15 (6.14) 7.14 (5.12) 

Disability Scores: 

EDSS 4.73 (1.25) 4.49 (0.97) 4.62 (1.18) 

FSS-Bowel and Bladder 1.24 (0.88) 1.27 (0.94) 1.18 (0.91) 

FSS-Brainstem 0.84 (0.91) 1.00 (0.91) 0.86 (0.91) 

FSS-Cerebellar 2.10 (1.02) 2.11 (0.82) 2.09 (0.95) 

FSS-Cerebral 1.03 (0.88) 0.95 (0.91) 0.98 (0.87) 

FSS-Pyramidal 2.80 (0.71) 2.92 (0.55) 2.83 (0.68) 

FSS-Sensory 1.54 (1.03) 1.74 (1.04) 1.60 (1.07) 

FSS-Visual 0.81 (0.92) 0.95 (1.34) 0.79 (0.97) 

Mean T25FW (sec) 13.34 (17.42) 9.57 (8.78) 11.44 (12.83) 

Mean 9HPT dominant hand (sec) 31.79 (27.45) 28.49 (12.28) 29.35 (15.35) 

Mean 9HPT non-dominant hand (sec) 34.68 (34.13) 31.33 (17.89) 33.87 (3‘.49) 

MRI metrics: 

Gad count 1.07 (4.60) 0.22 (0.53) 0.82 (4.78) 

T2 lesion volume (mL) 11.47 (14.09) 3.00 (3.95) 8.38 (11.74) 

Normalized brain volume (L) 1.47 (0.08) 1.48 (0.12) 1.47 (0.10) 

 

aDisease duration is measured from the time of symptom onset. 

Standard deviation shown in brackets following each value. 

FSS = Functional Systems Score; T25FW = timed 25-foot walk; 9HPT = 9-hole peg test. 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.10.31.21265690doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.31.21265690
http://creativecommons.org/licenses/by-nd/4.0/


21 

 

Table 2 Estimated sample size to detect a significant treatment effect from anti-CD20-Abs by predictive enrichment 

Percentilea CDP 

controlb 

CDP 

treatmentb HRc P-

valued 

Sample size 

controle 

Sample size 

treatmente 

Number 

screenedf 

0 0.148 0.109 0.745 0.088 1023 2045 3068 

10 0.159 0.115 0.695 0.043 620 1239 2066 

20 0.150 0.115 0.739 0.117 931 1862 3491 

30 0.166 0.112 0.646 0.021 422 844 1809 

40 0.183 0.101 0.516 0.002 180 360 900 

50 0.172 0.088 0.478 0.003 166 331 994 

60 0.154 0.080 0.485 0.012 183 366 1373 

70 0.180 0.089 0.460 0.013 139 278 1390 

80 0.239 0.075 0.283 <0.001 49 97 730 

 

aPercentile threshold for selecting predicted responders into the simulation. The 0th percentile represents an unenriched population, while 

the 80th percentile leads to inclusion of only the top 20% most responsive individuals (i.e. a greater percentile represents a more enriched 

study population). 
bProportion of CDP24 events after one year for the responder groups corresponding to each percentile threshold. 
cHR for time-to-CDP24 after one year for the responder groups corresponding to each percentile threshold. 
dP-value obtained from a log-rank test. 
eSample size estimates reflect the number of participants that need to be randomized into the study and are based on the 1-year CDP24 

rate and 1-year HR of responder groups in the anti-CD20-Ab dataset. 
fNumber of participants that need to be screened to reach the corresponding sample size estimate for randomization. This is dictated by 

the amount of predictive enrichment applied at randomization (see Percentile column). 
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Table 3 Group statistics for predicted responders and non-responders to anti-CD20-Abs at the 50th percentile threshold 

 
Responders Non-responders P-valuea 

Singleb Croggingc Single Crogging Single Crogging 

Trial contribution: 

OLYMPUS 52 199 68 218   

ORATORIO 113 361 103 341   

Demographics: 

Age (years) 44.93 (8.22) 43.58 (8.47) 45.59 (7.21) 45.48 (7.77) 0.436 <0.001 

Sex (% male) 52.73 53.57 43.86 45.97 0.126 0.012 

Height (cm) 171.75 (9.65) 170.77 (9.30) 170.19 (8.80) 170.21 (9.46) 0.123 0.313 

Weight (kg) 73.93 (16.15) 74.20 (16.78) 77.72 (16.88) 75.35 (16.82) 0.037 0.251 

Disease duration (years)d 6.99 (5.07) 6.97 (4.52) 8.25 (6.11) 7.78 (5.62) 0.041 0.009 

Disability Scores: 

EDSS 4.85 (1.25) 4.79 (1.24) 4.57 (1.27) 4.63 (1.26) 0.041 0.032 

FSS-Bowel and Bladder 1.32 (0.89) 1.28 (0.88) 1.12 (0.93) 1.16 (0.91) 0.051 0.027 

FSS-Brainstem 0.96 (0.95) 1.04 (0.94) 0.67 (0.82) 0.63 (0.82) 0.003 <0.001 

FSS-Cerebellar 2.33 (0.87) 2.28 (0.96) 1.82 (1.12) 1.90 (1.01) <0.001 <0.001 

FSS-Cerebral 1.09 (0.86) 1.10 (0.87) 1.03 (0.87) 0.96 (0.88) 0.521 0.012 

FSS-Pyramidal 2.99 (0.63) 2.88 (0.64) 2.61 (0.80) 2.74 (0.76) <0.001 0.001 

FSS-Sensory 1.37 (1.00) 1.57 (1.04) 1.73 (1.03) 1.52 (1.05) 0.001 0.482 

FSS-Visual 1.01 (0.97) 0.94 (0.96) 0.45 (0.73) 0.67 (0.87) <0.001 <0.001 

Mean T25FW (sec) 16.45 (22.81) 14.50 (18.81) 11.27 (14.30) 11.32 (13.42) 0.014 0.001 

Mean 9HPT dominant hand (sec) 37.46 (34.70) 34.63 (30.86) 24.67 (5.60) 27.61 (14.33) <0.001 <0.001 

Mean 9HPT non-dominant hand 

(sec) 
44.47 (45.59) 37.42 (36.75) 26.09 (6.98) 32.56 (32.32) <0.001 0.019 

MRI metrics: 

Gad count 1.22 (6.19) 1.45 (6.16) 0.88 (4.83) 0.67 (3.24) 0.569 0.008 

T2 lesion volume (mL) 11.89 (15.60) 11.48 (13.20) 10.20 (12.44) 10.67 (14.22) 0.275 0.322 

Normalized brain volume (L) 1.48 (0.07) 1.47 (0.08) 1.47 (0.09) 1.47 (0.08) 0.447 0.761 

 

aP-values for continuous and ordinal variables are calculated using a two-sided Welch’s t-test due to unequal variances/sample sizes. P-

value for the categorical variable “Sex” is calculated using a two-sided Fisher’s exact test due to unequal and relatively small sample sizes. 
bSingle refers to the single anti-CD20-Ab test set (30% of the mixed dataset). 
cCrogging refers to the nested cross validation aggregation procedure in the outer testing loop (100% of the mixed dataset). 
dDisease duration is measured from the time of symptom onset. 

Standard deviation shown in brackets following each value. 

FSS = Functional Systems Score; T25FW = timed 25-foot walk; 9HPT = 9-hole peg test. 

P-values < 0.05 are shown in bold. 
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Table 4 Treatment effect for predicted responders to laquinimod at various response percentile thresholds 

                Originalb                Retrainedc 

Percentilea HR P-value HR P-value 

20 0.691 0.272 0.668 0.198 

30 0.778 0.492 0.533 0.066 

40 0.651 0.261 0.508 0.082 

50 0.567 0.187 0.486 0.067 

60 0.636 0.333 0.641 0.341 

70 0.445 0.119 0.352 0.043 

80 0.275 0.028 0.196 0.010 

 

aPercentile threshold for selecting predicted responders to laquinimod. The 20th percentile considers the top 80% most responsive 

individuals to be “responders”, while the 80th percentile considers only the top 20% most responsive individuals to be “responders”. 
bThe original model trained on 70% of the anti-CD20-Ab dataset. 
cThe model trained on 100% of the anti-CD20-Ab dataset. 

P-values are calculated using a log-rank test. 

P-values < 0.05 are shown in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 Comparison of model performance on the anti-CD2-Ab and laquinimod datasets 

 
         Anti-CD20-Aba   Laquinimodb 

ADabc
c P-valued ADabc P-value 

Ridge Regression (S-Learner) 0.009 0.145 0.002 0.255 

Ridge Regression (T-Learner) -0.003 0.279 -0.003 0.107 

CPH (T-Learner) -0.005 0.547 -0.001 0.237 

Uplift forest -0.002 0.267 -0.002 0.380 

Multitask MLP 0.042 0.028 0.0436 0.0887 

 

aRefers to the anti-CD20-Ab dataset subjected to the nested cross validation aggregation procedure in the outer testing loop (test metrics 

are therefore computed from test predictions on 100% of the dataset). 
bRefers to the laquinimod test set, with models being trained on 100% of the anti-CD20-Ab dataset. 
cThe weighted ADabc values. A larger positive number indicates better performance at ranking responders. 
dThis p-value is an average of p-values obtained from log-rank tests performed on responder subgroups selected from percentile 

thresholds ranging from the 0th to the 80th percentile (in increments of 10). This average p-value is not to be interpreted as a standard p-

value, but rather an intuitive summary of the significance achieved across a range of response thresholds. 

Best performance for each metric is shown in bold. 
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Figure 1 Multitask MLP architecture for CATE estimation. 𝜏̂(𝑥): CATE estimate given a 

feature vector x. 𝜇̂0(𝑥): predicted potential outcome on control medication. 𝜇̂1(𝑥): predicted 

potential outcome on treatment. 
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Figure 2 Average treatment difference curve for the anti-CD20-Ab test set. Average 

treatment difference represents the difference in the restricted mean survival time at 2 years 

between anti-CD20-Abs and placebo.  
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Figure 3 Kaplan-Meyer curves for predicted responders to anti-CD20-Abs at different 

percentile thresholds for response. Survival probability is measured in terms of time-to-

CDP24. Censorship times are clamped at 2 years. P-values are calculated using log-rank tests. 
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