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Abstract 21 

Background 22 

During the COVID-19 outbreak in Taiwan between May 11 and June 20, 2021, the observed 23 

fatality rate (FR) was 5.3%, higher than the global average at 2.1%. The high number of 24 

reported deaths suggests that hospital capacity was insufficient. However, many unexplained 25 

deaths were subsequently identified as cases, indicating that there were a few undetected cases, 26 

hence resulting in a higher estimate of FR. Estimating the number of total infected cases or 27 

knowing how to reduce the undetected cases can allow an accurate estimation of the fatality 28 

rate (FR) and effective reproduction number (𝑅!). 29 

Methods 30 

After adjusting for reporting delays, we estimated the number of undetected cases using 31 

reported deaths that were and were not previously detected. The daily FR and 𝑅!  were 32 

calculated using the number of total cases (i.e. including undetected cases). A logistic 33 

regression model was developed to predict the detection ratio among deaths using selected 34 

predictors from daily testing and tracing data. 35 

Results 36 

The estimated true daily case number at the peak of the outbreak on May 22 was 897, which 37 

was 24.3% higher than the reported number, but the difference became less than 4% on June 9 38 

and afterward. After taking account of undetected cases, our estimated mean FR (4.7%) was 39 

still high but the daily rate showed a large decrease from 6.5% on May 19 to 2.8% on June 6. 40 

𝑅! reached a maximum value of 6.4 on May 11, compared to 6.0 estimated using the reported 41 

case number. The decreasing proportion of undetected cases was associated with the increases 42 

in the ratio of the number of tests conducted to reported cases, and the proportion of cases that 43 

are contact-traced before symptom onset.  44 

Conclusions 45 

Increasing testing capacity and tracing efficiency can lead to a reduction of hidden cases and 46 

hence improvement in epidemiological parameter estimation.   47 
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Introduction 49 

Knowing the actual number of coronavirus disease 2019 (COVID-19) cases throughout an 50 

outbreak is critical to provide an accurate estimate of epidemiological parameters such as the 51 

fatality rate (FR) and effective reproduction number (𝑅!). These parameters aid in making 52 

proper public health decisions, assessing health care system performance, and predicting the 53 

trend of COVID-19 spread. However, the number of undetected cases can be large and may 54 

vary during an outbreak. Limited capacities for contact tracing and testing often result in 55 

underestimation of true infections 1,2. The proportion of undetected cases may reduce after such 56 

capacities improve. Hence, estimating this constantly changing proportion of undetected cases 57 

throughout an outbreak is important. 58 

After several months of zero confirmed community-acquired cases, quarantine exemption for 59 

flight crews, and super spreader events in tea parlors in Wanhua in Taipei in late April and 60 

early May 2021, triggered a fresh wave of local spread of the Alpha variant 3. This resulted in 61 

14,005 total reported cases between May 11 and June 20, 2021 4. Approximately 5% of cases 62 

resulted in death, which was a higher case fatality rate (CFR) compared to the global rate 63 

(obtained by dividing the total number of deaths by the total number of cases worldwide), 64 

which has been consistently below 2.5% since November 16, 2020 5. Whether this high CFR 65 

was mainly because of insufficient hospital capacity and treatment, or a massive proportion of 66 

undetected cases was unknown. 67 

Early in the outbreak, testing capacity was insufficient to cope with the rising cases among 68 

initial transmission clusters. The daily number of new cases grew to more than 200 within a 69 

week and continued to increase until reaching a plateau at the end of May 2021 (i.e., 596 cases 70 

on average per day from May 22 to 28). Because of the emerging outbreak, Taiwan had been 71 

under Level 2 alert since May 11, 2021 6, followed by escalation to Level 3 restrictions on May 72 

19, 2021 7, under which people are required to wear masks outdoors, gatherings of more than 73 

four people indoors and more than nine people outdoors are banned, and all schools are closed. 74 

Social distancing measures reduced individual mobility 8 and effectively lowered 𝑅!. At the 75 

same time, the daily number of tests conducted continued to increase, presumably allowing 76 

more cases to be identified. 77 

During the outbreak, many confirmed cases failed to be detected when alive but were tested 78 

because of their death, indicating that a certain number of undetected cases existed. The number 79 

of undetected cases who eventually died (referred to as undetected deaths), together with the 80 
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number of deaths who were known to have COVID-19 (referred to as detected deaths), can 81 

be used to infer the proportion of undetected cases if their fatality rates are known. Presumably, 82 

the probability of death among undetected cases is similar to that among detected cases during 83 

the early period of the outbreak when hostpial capacity and treatment is not sufficient.  84 

Although knowing the numbers of detected and undetected deaths helps to estimate the 85 

proportion of undetected cases and hence to guide interventions, a challenge exists that many 86 

deaths from infection usually happen several weeks after symptom onset. This highlights the 87 

importance of early estimation of the true number of total cases without delay. Hence, it is 88 

important to know whether the changes in the proportion of detected deaths can be predicted 89 

by daily testing and tracing data. 90 

We quantified time-varying FR and 𝑅! by taking into account the proportion of undetected 91 

cases estimated using death data. We then developed a model based on logistic regression to 92 

predict the proportion of undetected cases using daily data related to testing and tracing 93 

capacity.   94 
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Methods 95 

Data sources 96 

We collected the date of symptom onset time and testing date for each reported death of 97 

COVID-19 from May 28 to July 22, 2021 from Taiwan Centers for Disease Control 9. The 98 

daily number of deaths reported before May 28 was obtained from the media. Daily number of 99 

confirmed cases was collected from Taiwan National Infectious Disease Statistics System 4. 100 

We collected the daily number of tests conducted from the Government Information Open 101 

Platform, Taiwan 10,11.  102 

Estimating true total cases and fatality rate 103 

Deaths from COVID-19 were classified into two categories, detected and undetected deaths, 104 

depending on whether testing was performed before the death or not, respectively (see the 105 

schema in Figure 1A). To estimate the number of true total cases, we first considered the 106 

following ratio of undetected to detected deaths using the numbers of detected and undetected 107 

cases and their respective FR: 108 

𝑑"#(𝑡)
𝑑#(𝑡)

=
𝑐"#(𝑡) × 𝐹𝑅"#
𝑐#(𝑡) × 𝐹𝑅#(𝑡)

																																																					(1) 109 

where 𝑑# refers to the number of detected deaths, while 𝑑"# refers to the number of undetected 110 

deaths; 𝑐#(𝑡) and 𝑐"#(𝑡) represent the number of cases that are detected and undetected at day 111 

𝑡, respectively. Note that 𝑡 refers to the reporting date for detected cases or detected deaths; 112 

For undetected cases or undetected deaths, 𝑡 refers to the adjusted reporting date such that the 113 

reporting delay (i.e., the time elapsed between symptom onset and reporting) is adjusted to be 114 

the same as that of detected cases. Thus, 𝑑#(𝑡) represents the number of deaths among the 115 

detected cases who are reported at day 𝑡. Similarly, 𝑑"#(𝑡) is the number of deaths among the 116 

undetected cases whose adjusted reporting date is at day 𝑡. 𝐹𝑅#(𝑡), which is likely to be 117 

affected by the change in hospital capacity or treatment, represents the daily FR among the 118 

detected cases at day 𝑡 . 𝐹𝑅"#  represents the FR among the undetected cases. 𝐹𝑅"#  was 119 

assumed to be a constant, estimated as the average 𝐹𝑅#(𝑡) during the initial two weeks (from 120 

May 11 to May 24) of the outbreak when the hostpital capacity or treatment was not sufficient. 121 

Undetected deaths who are tested later are identified as “late-detected” cases (𝑐$#) (See Figure 122 

1A). We back-projected the number of late-detected cases from their late reporting time to their 123 

adjusted reporting date 𝑡  12, using the mean and standard deviation of the reporting delay 124 
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among detected cases. Our aim was to estimate 𝑐"#(𝑡). After rearrangement, the following 125 

formula was derived: 126 

𝑐"#(𝑡) = 𝑐#(𝑡) ×
𝐹𝑅#(𝑡)
𝐹𝑅"#

/
𝑑#(𝑡)
𝑑"#(𝑡)

																																		(2) 127 

The value can be solved because all of the terms on the right are either known or can be 128 

estimated. We assumed that most of the undetected deaths were identified as “late-detected” 129 

cases (𝑐$#). Therefore, the number of undetected deaths was approximated by the number of 130 

late-detected cases (𝑑"# ≈ 𝑐$#) and then the ratio #!(!)
#"!(!)

 was obtained. At the same time, the 131 

proportion of detected deaths (i.e., the detection ratio among death cases; #!(!)
#!'#"!(!)

) was also 132 

calculated. Finally, the true number of total cases was derived empirically as the sum of 133 

detected and undetected cases (i.e., 𝑐# + 𝑐"#). Note that these ratios among deaths were also 134 

predicted by a regression model using data related to testing and tracing and hence a model-135 

predicted number of total cases was obtained (see later sections). 136 

The FRs of reported cases (including both detected and late-detected cases; 𝑐# + 𝑐$#) and total 137 

cases were estimated at the reporting time (or the adjusted reporting time for undetected cases) 138 

using the following equations. 139 

𝐹𝑅()*+(!)#(𝑡) = 0
𝑑#(𝑡) + 𝑐$# 	(𝑡)
𝑐#(𝑡) + 𝑐$#(𝑡)

1																														(3) 140 

𝐹𝑅!+!,$(𝑡) = 0
𝑑#(𝑡) + 𝑑"# 	(𝑡)
𝑐#(𝑡) + 𝑐"#(𝑡)

1																																		(4) 141 

𝐹𝑅()*+(!)#is commonly known as the case fatality rate, and 𝐹𝑅!+!,$ is the infection fatality 142 

rate.  143 

Estimating the proportion of detected deaths using a predictive model 144 

We predicted the detection ratio among death cases using daily values of five indicators related 145 

to testing, tracing, and hospital capacities as candidate predictors. These indicators are: the 146 

proportion of cases without contact tracing delay, ratio of the number of tests conducted to 147 

reported cases, testing delay, reporting delay and death delay (for definitions, see Error! 148 

Reference source not found.). We calculated the delay periods in testing, reporting and death 149 

by subtracting adjusting for the date of symptom onset from the dates of these three events. 150 

Testing (the first test) earlier or on the same day as symptom onset implied that cases were 151 
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contact-traced without delay. If cases were tested after symptom onset, they were either 152 

contact-traced with delay or were not contact-traced. The proportion of death cases that were 153 

contact-traced without delay was calculated. 154 

To investigate the factors that influence the proportion of detected deaths, we developed a 155 

logistic regression model. We assumed that the number of deaths that were previously detected 156 

on day 𝑡 follows a binomial distribution, i.e. 𝑑#(𝑡)~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙<𝑑(𝑡),𝑚(𝑡)>, where 𝑚(𝑡) =157 
#!(!)

#!(!)'#"!(!)
 is the expected proportion of detected deaths on day 𝑡. 158 

The full predictive model is: 159 

log 0
𝑚(𝑡)

1 − 𝑚(𝑡)1 = 𝛼 + 𝛽-𝑅!. + 𝛽/𝑃0!# + 𝛽1𝐶# + 𝛽2𝑇# + 𝛽3𝐷# 						(5) 160 

where 𝑅!.  is the daily ratio of tests conducted to reported cases; 𝑃0!#  represents the daily 161 

proportion of cases (among detected deaths) without contact tracing delay. 𝐶#, 𝑇# and 𝐷# are 162 

daily reporting, testing and death delays, respectively. 𝛼 is the intercept and 𝛽4 is the regression 163 

coefficient of each covariate. The proportion of undetected COVID-19 cases can be calculated 164 

using equations (1) and (5) after 𝑚(𝑡) is estimated: 165 

𝑐"#(𝑡)
𝑐"#(𝑡) + 𝑐#(𝑡)

= 1 01 +
𝑚(𝑡)

1 − 𝑚(𝑡) ×
𝐹𝑅"#
𝐹𝑅#(𝑡)

1J 																											(6) 166 

where  5(!)
-65(!)

= #!(!)
#"!(!)

 is the odds of being detected.  167 

Model selection 168 

To obtain the best model, the variables in equation 5 were added to the model iteratively. First, 169 

model fit was measured for each of the variables separately using the Akaike information 170 

criterion (AIC) 13. The model containing the lowest AIC value was selected as the best model 171 

candidate in this batch. Next, we added one additional variable to the candidate model from 172 

the remaining four variables in the next batch. Among the two-variable models, the model with 173 

the lowest AIC value was selected as the best model candidate again. We obtained the best 174 

model candidates among three-variable, four-variable and full models. The final best model 175 

was obtained by comparing the best model candidates in different batches with the lowest AIC.  176 

Model validation 177 

To evaluate whether the predictive model achieved its intended purpose (i.e., to improve the 178 

accuracy of epidemiological parameter estimation), we explored the relationship between 𝑅! 179 
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estimated from the total cases predicted by the best model and daily mobility data. Cases 180 

were back-projected to infection time. The result was compared with 𝑅! estimated using total 181 

cases that were empirically derived or using reported cases. 𝑅! estimated from four scenarios 182 

of infections were compared:  183 

Scenario 1 (S1): Total cases (at infection time) estimated using an empirical detection 184 

ratio – These cases include both the reported and undetected cases at their infection time. The 185 

number of undetected cases was estimated empirically assuming reporting delay was the same 186 

for detected and undetected cases.  187 

Scenario 2 (S2): Total cases (at infection time) estimated from a model-predicted 188 

detection ratio – These cases include both the reported and undetected cases at their infection 189 

time. The number of undetected cases was estimated from the model assuming reporting delay 190 

was the same for detected and undetected cases. 191 

Scenario 3 (S3): Reported cases (at infection time) – Cases that were detected before death 192 

and late-detected after death at their infection time. 193 

Scenario 4 (S4): Reported cases (at reporting time) – Cases that were detected before death 194 

and late-detected after death at their reporting time. Late-detected cases were back-projected 195 

at the adjusted reporting time. 196 

Estimating the effective reproduction number  197 

The effective reproduction number 𝑅!  was estimated from the daily new cases of infection 198 
using the statistical package EpiEstim 14. To estimate the daily number of new cases, we 199 
assumed that both the incubation time and reporting delay followed gamma distribution 15,16. 200 
The mean incubation time for the circulated strain in Taiwan was 3.53 days 17, and we estimated 201 
the mean reporting delay as 4.45 days. Assuming the standard deviations were equal for both 202 
the distributions (estimated as 3.93 days for the reporting delay), the distribution of time 203 
between infection and reporting was gamma distribution with a mean of 7.98 days and a 204 
standard deviation of 5.28 days. The mean of the distribution was estimated as the sum of mean 205 
incubation time and confirmation delay. In contrast, the standard deviation was obtained from 206 
weighted means and pooled standard deviation for the period between infection and reporting 207 
using the following formula: 208 

𝑠𝑑7,55, = 𝑠𝑑*++$)#MN
𝑚- +𝑚/

𝑚8
O																(7) 209 

where, 𝑚- and 𝑚/ are mean incubation time and confirmation delay and 𝑚8 refers weighted 210 

mean of these two. 𝑠𝑑*++$)# represents the pooled standard deviation for the period between 211 

infection and reporting. 212 
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We then estimated total cases at infection time using the empirical detection ratio (S1) and the 213 

model-predicted detection ratio (S2), and reported cases at infection time (S3) using a back-214 

projection method 12. 215 

We set initial conditions for estimating 𝑅!. Before May 11, we assumed that there were 15 216 

cases each day between May 6 and 10, which was the average number of reported cases at 217 

infection time during this 5-day period.  218 
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Results 219 

Time-varying FR among true total cases (equation 4) was first quantified after taking into 220 

account undetected cases and was compared with that of reported cases. The number of total 221 

cases was also predicted using polymerase chain reaction (PCR) testing data (equations 5 and 222 

6). To assess the impact of including undetected cases, we investigated the relationship between 223 

𝑅! generated using total cases and mobility data and then determined whether the relationship 224 

improved, compared with 𝑅! from reported cases. 225 

After the number of undetected cases was considered, the estimated FR was lower than using 226 

reported cases but was still high during the initial period of the outbreak. The mean FR of total 227 

cases was estimated to be 4.7%, which was lower than the mean FR of 5.3% for reported cases 228 

(Figure 1B). The FR increased rapidly from 4.7% and peaked at 6.5% on May 19, but then 229 

continued decreasing, reaching 2.8% on June 6. Since then, the rate was generally maintained.  230 

From May 24 to June 3, the 5-day moving average numbers of reported cases reached a plateau 231 

and then declined thereafter (Figure 3A). The estimated true daily case number at the peak of 232 

the outbreak on May 22 was 897, which was 24.3% higher than the reported number.  The 233 

difference became less than 4% on June 9 and afterward.  234 

Until June 20, a total of 105 late-detected cases were reported, indicating many undetected 235 

deaths. Similarly, daily detected deaths also reached a plateau around May 24 (Figure 3B). 236 

However, the number of late-detected cases (at adjusted reporting time), reached a peak (7 237 

persons per day) on May 21 and started to decline immediately, approaching zero after June 8. 238 

This indicated the improvement of the detected ratio among deaths. The detection ratio among 239 

deaths, which was about 50% initially, exceeded 95% after the end of May (Figure S1B). This 240 

ratio was very different from the observed ratio (a V-shaped pattern) without back-projection 241 

(Figure S1A). 242 

Predicting detection ratio using testing data 243 

We next investigated whether the improvement in the proportion of detected cases was related 244 

to the improved capacity of testing and tracing. The indicators of the capacity were explained 245 

by the schematic of individual infection and testing statuses of each case among deaths (for 246 

definitions, please refer to Figure 2 and its legend). Depending on the time of testing, the case 247 

can be categorized as a detected death ( contact-traced without delay or tested after symptom 248 

onset but before death) or an undetected death (tested after death). More efficient contact 249 
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tracing allowed more cases to be traced and tested before symptom onset and was indicated by 250 

the proportion of cases without contact tracing delay. This proportion fluctuated between 25% 251 

and 75% throughout the study period, with an increasing trend from late May (below 50%) to 252 

late June (above 60%) (Figure 4A). The testing delay gradually increased, from approximately 253 

two days to up to 4–6 days, until June 14, a few weeks after the outbreak started to decline 254 

(Figure 4B). The reporting delay from the day of symptom onset ranged mostly between 2.5 255 

and 7.5 days (Figure 4E), whereas the death delay continued increasing from 5 days to more 256 

than 18 days (Figure 4C). The ratio of the number of tests conducted to reported cases 257 

increased from less than 50 to more than 200 (Figure 4D), demonstrating the improvement in 258 

testing capacity throughout the outbreak.  259 

We compared models starting from the most basic to more complex ones by their AIC values 260 

to identify the best-fitting model. The model with the predictor, i.e., the proportion of cases 261 

without contact tracing delay and the ratio of tests conducted to reported cases, was selected as 262 

the best model (Model 2 in Table 1).  263 

The model successfully captured the trend in the proportion of detected deaths (Figure 4F). 20 264 

out of 34 daily values were successfully predicted within the confidence interval. Among the 265 

values outside the interval, most of the them were in the near distance; only two dots have 266 

errors larger than two times the intervals.  267 

The results suggest that a higher detection ratio among deaths was driven by more cases who 268 

were contact-traced without delay and a higher number of tests conducted relative to the 269 

number of cases (Table 2). 270 

Comparing effective reproduction number and mobility index 271 

Comparisons were made between 𝑅! estimated using i) total cases that were estimated using 272 

the empirical detection ratio; ii) total cases that were estimated from the model-predicted 273 

detection ratio using testing data; and iii) reported cases only (see Figure 5A, B, Figure S2 and 274 

Methods). When the total case number was used, 𝑅! was higher during the earlier dates. The 275 

number reached a maximum value of 6.4 on May 11, compared to 6.0 estimated using the 276 

reported case number. We further evaluated the relationship between 𝑅!  and mobility data 277 

during the period when 𝑅! reduced from the maximum value to 1 (May 11 to May 24) (Table 278 

S1). We found that when the total case number was used (either estimated using the empirical 279 

detection ratio or predicted using the testing data), a lower AIC was produced, indicating a 280 

better fit to the mobility data. 281 
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In summary, efficiencies of testing and contact tracing changed during the outbreak and were 282 

useful in predicting the proportion of undetected cases. After adding the undetected cases, a 283 

better estimate of 𝑅! was made and a reduction in the FR was observed.   284 
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Discussion 285 

Understanding whether a high FR observed in the recent largest COVID-19 outbreak in Taiwan 286 

was attributed to a higher number of undetected cases or insufficient health care capacity is 287 

important to guide interventions to reduce COVID-19 mortality in the future. An important 288 

observation is that even though the proportion of undetected cases was included, the average 289 

FR was only adjusted to 4.7% from 5.3%, which is still higher than the global average for the 290 

same time (i.e., 2.1% in May and June 20215). However, the daily FR reduced to 2.8% on June 291 

6 and remained at this low level, similar to that in the United States (i.e., 2.8% in May and June 292 

2021 18). The reduction from the initially high FR can be explained by the improvement in 293 

hospital capacity or treatment to accommodate the sudden rise in cases. This is supported by 294 

the observation that the duration between symptom onset and death among detected deaths 295 

continued increasing from approximately five days to more than two weeks in June. 296 

The number of hidden (undetected) COVID-19 cases often affects the estimation of 297 

transmissibility of the virus and the effectiveness of non-pharmaceutical interventions (NPIs) 298 

implemented. Even though the effects of contact tracing and testing on transmissibility have 299 

been studied19,20, how many hidden cases do they cause is unclear. We demonstrated that the 300 

time-varying detection ratios can be predicted using data on testing and contact tracing. As a 301 

result, a more accurate 𝑅! can be obtained, which is likely to be explained by mobility data 302 

better. The guidance for implementing NPIs based on changes in mobility can be provided 8.  303 

We found that the ratio of the number of tests conducted to reported cases, and the proportion 304 

of cases that are contact traced without delay can be used to “nowcast” the proportion of 305 

undetected cases. Because the number of tested samples can quickly reach the capacity limit 306 

when the case number is growing, many samples remain untested. Hence, each day, the number 307 

of confirmed cases depends largely on how many tests can be performed. A day delay in testing 308 

and confirming a case, leads to a day delay in tracing the close contacts of the case. Further 309 

more, a higher contact tracing coverage together with a shorter delay of being traced enables 310 

more cases to be identified earlier19,20. These suggest increasing testing and tracing capacity to 311 

identify those infections earlier can reduce hidden cases more.  312 

Modelling has been used to estimate the proportion of undetected COVID-19 cases using the 313 

observed case number during a specific period (e.g., before or after an intervention) of an 314 

outbreak21,22. More recently, an approach through estimating under-ascertainment by directly 315 

comparing model-predicted death with excess deaths recorded was used 23. We checked the 316 
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number of deaths related to flu and pneumonia illness 9 and found no unusual excess deaths 317 

other than the reported COVID-19 deaths during this period. The proportion of undetected 318 

cases can also be calculated after incorporating seroprevalence data with false negative rates 319 

of tests into models 24. Overall, none of these methods estimate the constantly changing 320 

proportion of undetected cases. 321 

Several criteria enabled us to make successful prediction using testing data. First, the number 322 

of deaths should be high. If this number is low, the uncertainty of estimating the number of 323 

undetected cases becomes high. Second, most of the deaths have to be tested eventually. 324 

Taiwan government has a strong directive to test all sudden death cases; for example, on June 325 

18, it was announced that PCR tests would be performed for all sudden and unexplained deaths 326 
25. This may not likely be the case in countries with a large number of excess deaths associated 327 

with COVID-19. 328 

In summary, predicting the number of undetected cases as early as possible using testing data 329 

can help obtain an 𝑅! with a better relationship with mobility data, thus enabling policymakers 330 

to make timely public health decisions using mobility information to contain the outbreak.  331 
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Figures and tables 406 

 407 

 408 
Figure 1. Types of cases and the fatality rate (FR). (A) Schema of different types of cases and 409 
deaths in relation to their testing and death time. At the time of reporting detected cases, the 410 
number of undetected cases is estimated using Eq. (2) (see Methods). 𝐹𝑅# is the FR among 411 
detected cases, and 𝐹𝑅"#  is the FR among undetected cases. Reported cases include both 412 
detected and late-detected cases (after undetected deaths are tested and confirmed), while total 413 
cases include both detected and undetected cases. (B) Time-varying FRs among reported and 414 
total cases. The solid red line represents the proportion of reported deaths (i.e., detected and 415 
undetected deaths) among the total reported cases. The solid blue line represents the proportion 416 
of reported deaths among the total cases. The dashed red line represents the average FR among 417 
the reported cases (5.3%), whereas the blue dashed line shows the average FR among the total 418 
cases (4.7%). Note that the FR of the total cases was higher than that of the reported cases in 419 
the first few days because 𝐹𝑅"# 	was assumed to be same as the mean 𝐹𝑅# between May 11 420 
and May 26. Data points during the earliest dates when the number of detected or undetected 421 
cases was zero are not shown.  422 
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423 

 424 
Figure 2. (A) Statuses of infection and testing of individual deaths. The gray bar represents the 425 
infection statuses of an infected case who later died after the start of infection. Orange and blue 426 
bars represent the flow of testing from the first test until the infected case is reported. The 427 
infected case was categorized as Detected if the first testing was performed before death. A 428 
case that was tested on the same date of or after death was categorized as Undetected. Among 429 
detected cases, we assumed that a case was contact traced without delay if the first test 𝑇- was 430 
performed before symptom onset 𝑂; otherwise, contact traced with delay or not contact traced 431 
if the 𝑇- was performed after symptom onset. Testing delay refers to the time between symptom 432 
onset and the last test 𝑇9. Similarly, the reporting delay and death delay are defined as the time 433 
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difference between symptom onset and reporting, 𝑅, and death,	𝐷, respectively. The reporting 434 
time among an undetected death was adjusted to an earlier time to have the same reporting 435 
delay as detected deaths. The definitions for each status, 𝐸, 𝑂, 𝑇-, 𝑇9 , 𝑅 and D, are listed in the 436 
text box. (B) Estimation of total number of COVID-19 cases (sum of detected and 437 
undetected) using a regression model. With the best-fitting model (see Table 2), we estimated 438 
the percentage of deaths that are detected, 𝑚(𝑡).  Undetected proportion of cases was estimated 439 
based on the relationship between 𝑚(𝑡) and fatality rates (see equation 6). Gray dashed lines 440 
represent the predictors that were not included in the best-fitting model while estimating 𝑚(𝑡).   441 
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 442 

Figure 3. Daily numbers of reported, total cases and deaths. Data are plotted on their reporting 443 
date. (A) Daily number of cases that are reported. Daily number of total cases, including both 444 
the detected and undetected cases at their reporting date (green). The reporting delay of 445 
undetected cases is adjusted to be the same as that of the reported cases. The dashed vertical 446 
lines represent the implementation of level 2 and level 3 restrictions in May and June. Level 2 447 
restrictions were started on May 11 and lasted until June 8, whereas level 3 restrictions were 448 
started on May 19 and lasted until May 28. (B) Daily number of deaths, plotted separately for 449 
detected deaths at their reporting time following case confirmation (red), ) late-detected cases 450 
at adjusted reporting time (dark green) and late-detected cases at their late reporting time (blue). 451 
Dots represent daily numbers. Solid lines represent moving averages using a 5-day sliding 452 
window, centered at day 3 (except dark green line in (B)).  453 
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 454 
Figure 4. Candidate predictors that influence detected deaths. Dots in each plot represent 455 
observed values, whereas solid lines show moving averages using a 5-day sliding window, 456 
centered at day 3. (A) Percentage of cases without contact tracing delay was defined as the 457 
proportion of cases that were tested (the first test) earlier or on the same day as symptom onset. 458 
(B) Testing delay is the time delay between symptom onset and the final test. It was estimated 459 
by subtracting these two time points. (C) Death delay was defined as the difference between 460 
the time of death and symptom onset. (D) Ratio of tests to cases was calculated as the daily 461 
number of tests divided by the daily number of reported cases. (E) Reporting delay refers to 462 
the time delay between symptom onset and reporting. (F) Percentage of deaths that are detected 463 
using adjusted reported data and model prediction. Red circles represent the adjusted reported 464 
data. The blue dashed line represents the prediction results using the best fitting model. The 465 
gray shaded area represents forecasted values of the proportion of detection. 466 
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467 
Figure 5. The daily number of new infections and instantaneous reproduction numbers. (A) 468 
The daily number of new infections was back-projected from the daily number of cases 469 
obtained from the detected and empirically estimated undetected cases (green dots; referred to 470 
as S1). The daily number of new infections obtained from the detected and model-predicted 471 
undetected cases were plotted (dark yellow dots; referred to as S2). The daily number of 472 
reported cases at their back-projected infection time (blue dots; referred to as S3). The daily 473 
numbers of new infections were back-projected from the original reported cases to virus 474 
exposure time. The lines represent moving averages using a 5-day sliding window, centered at 475 
day 3. The shaded area represents the 95% confidence interval for total cases estimated using 476 
the model-predicted detection ratio. Daily number of new detected (reported) cases at their 477 
reporting time (red dots; referred to as S4) is presented in Figure S2. (B) Effective reproduction 478 
number estimated from (A). Lines represent the estimated values and shaded regions represent 479 
the 95% confidence intervals. The dashed line depicts the cutoff value when 𝑅! = 1. The full 480 
view of the effective reproduction number (𝑅!) for the entire period between May 6 and June 481 
20 is given in Figure S4. Color codes represent the same definition as in (A). The shaded area 482 
represents 95% confidence intervals.  483 

  484 
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Table 1. Candidate models used to choose the best model. 𝛼	and 𝛽s are model coefficients, 485 
whereas the proportion of contact tracing delay (𝑃0!# ), the ratio of the number of tests 486 
conducted and reported cases (𝑅!.), the delay in testing (𝑇#), the delay in reporting (𝐶#), and 487 
the delay in deaths (𝐷#) are predictors. AIC represents the Akaike information criterion.  488 

Models Description AIC 

1 𝛼 + 𝛽-𝑅!.  95.9 

2 𝛼 + 𝛽-𝑅!. + 𝛽/𝑃0!#  91.0 

3 𝛼 + 𝛽-𝑅!. + 𝛽/𝑃0!# + 𝛽1𝐶#  93.0 

4 𝛼 + 𝛽-𝑅!. + 𝛽/𝑃0!# + 𝛽1𝐶# + 𝛽2𝑇#  95.0 

5 𝛼 + 𝛽-𝑅!. + 𝛽/𝑃0!# + 𝛽1𝐶# + 𝛽2𝑇# + 𝛽3𝐷# 96.9 

 489 

  490 
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 491 

Table 2. Parameter estimates of the best-fitting model (Model 2) 492 

Covariates Estimates 95% Confidence intervals p-value 
Ratio of number of tests conducted to 
reported cases (𝑅!.) 

0.009 0.002-0.018 0.0180 

Proportion of cases without tracing 
delay (𝑃0!#)  

1.834 0.316-3.375 0.0185 

 493 

494 
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Supplementary Materials 495 

Establishing the relationship between mobility and effective reproduction number 496 

Daily mobility data were obtained from Google mobility report 26 and were normalized after 497 

setting the mobility index on May 11 (first day of the start of the outbreak) as 1 and the value 498 

-100 as 0. The normalized mobility index ranged between 0 and 1, where higher values 499 

represent greater mobility. To compare and validate the estimated 𝑅!, we used a generalized 500 

linear model for Gaussian distribution with identity link function. Mobility index was adjusted 501 

in the model using the following formula adopted from a recent study 8: 502 

log(𝑅!) 	= log(𝑅:) + 𝛽<1 −𝑀;(𝑡)>.																																								(8) 503 

where 𝑅: is the initial reproduction number obtained from 𝑅! at the start of the outbreak (May 504 

11, 2021), which gave the maximum number of 𝑅! ; 𝑀;(𝑡) represents the daily normalized 505 

mobility index; and 𝛽 is the regression coefficient.   506 
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Supplementary figures 507 

 508 

 509 
 510 

Figure S1. (A) Proportion of detected deaths among total reported deaths. (B) Proportion of 511 

detected deaths among total deaths estimated using the empirical detection ratio. In each plot, 512 

dots represent daily numbers that are observed or estimated. Solid lines represent moving 513 

average using a 5-day sliding window, centered at day 3.  514 
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 515 
 516 

Figure S2. (A) Daily number of new infections at their reporting time. Daily values are 517 

indicated by red dots (referred to as S4 in Methods). The line represents moving averages using 518 

a 5-day sliding window, centered at day 3. (B) Effective reproduction number estimated from 519 

(A). The solid red line represents estimated values. The shaded area represents 95% confidence 520 

intervals. The dashed line depicts the cutoff value when 𝑅! = 1.  The value 𝑅! during the entire 521 

period (between May 6 and June 20) is given in the Supplementary Figure S4D.  522 
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 523 

 524 
 525 

Figure S3. (A) Mobility index during the outbreak. The smooth line shows a 7-day moving 526 

average, whereas the dots represent the observed mobility index. The vertical dashed lines 527 

represent the implementation of level 2 and level 3 restrictions in May and June. Level 2 528 

restrictions were started on May 11 and lasted until June 8, whereas level 3 restrictions were 529 

imposed for the duration between May 19 and May 28. (B) Distribution of death delay. The 530 

bars represent the observed frequency of delay distribution and line represents the fitted line 531 

for gamma distribution with mean and standard deviation 12.7 and 5.3 days, respectively.  532 

reuse, remix, or adapt this material for any purpose without crediting the original authors.
this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placedthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.21265691doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.29.21265691


 
30 

 

 

 533 

Figure S4. Effective reproduction number 𝑅! during the entire period between May 6 and June 534 

20. S1 and S2 refer to the numbers of total cases at infection time. S3 and S4 refer to the 535 

numbers of reported cases at infection and reporting time, respectively. Smooth solid lines 536 

represent the estimated mean 𝑅!, and shaded regions show the 95% confidence intervals.The 537 

dashed line depicts the cutoff value when 𝑅! = 1.    538 
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Supplementary tables 539 

 540 

Table S1. Validation of the estimates of instantaneous reproduction number using mobility 541 
adjusted regression model between May 11 and May 24 when 𝑅! reached one. The moving 542 
average of mobility using a 7-day sliding window, centered at day 4, was considered as the 543 
predictor. AIC represents the Akaike information criterion. Δ𝐴𝐼𝐶  shows the differences 544 
between the smallest AIC and AIC of the ith model. We rechecked the values for an extended 545 
period until May 27, when 𝑅! reached a minimum. In this case, 𝑅!, estimated under scenario 546 
S1, showed the best fit of the mobility data with minimum AIC -27.93 (data is not presented 547 
in this table), whereas scenario S2 was treated as the second-best with AIC -27.20. The 548 
difference between the AIC of these two scenarios was less than one.  549 

Date Type of data 𝑹𝒕 estimated from 
Validation window 

11 May- 24 May 
AIC 𝚫AIC 

At infection 
time 

S1: Total cases estimated using the 
empirical detection ratio -27.93 0.00 

S2: Total cases estimated using the 
model-predicted detection ratio -27.20 0.73 

S3: Reported cases -21.70 6.23 
At reporting 
time S4: Reported cases 27.56 55.49 

 550 
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