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ABSTRACT 
 

Point-of-care testing (POCT) offers several advantages over traditional laboratory testing. 
Offering less invasive testing with a faster turnaround time is not enough if not associated 
with an acceptable level of accuracy. Here, we show the analytical validation behind the 
multi-analyte POCT immunochromatography analyser, Hilab Flow (HiF). Analyses from 
4,518 clinical samples were compared to College of American Pathologists accredited 
laboratories for ten quantitative and thirteen qualitative exams. Compatibility between 
methods was evaluated in terms of association/correlation and clinical agreement. Strong 
correlation/ concordance was observed between quantitative (CHOL, HDL-c, TG, HbA1c, 
Glycemia, 25-Hydroxy Vitamin D, TSH, Uric Acid, Creatinine, Urea) and qualitative methods 
(COVID-19 IgG/ IgM, Beta-hCG, Syphilis, Anti-HBsAg, Zika IgG/ IgM, Influenza A/B, HIV, 
HCV, HBsAg, Dengue NS1, COVID-19 Ag, Dengue IgG/ IgM, PSA). Approval criteria was 
obtaining a kappa agreement > 0.8 or a Pearson correlation > 0.9 depending on the exam. 
Overall percentage agreement was greater than 95% for all exams, indicating a good clinical 
agreement to gold-standard laboratory-based tests. Results indicate all exams are suitable 
for POCT and present a reliable performance. Data support the analyser is a useful tool to 
aid decision-making at the clinical setting, with potential to contribute with healthcare 
solutions in diagnostic medicine worldwide. 
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1. INTRODUCTION 

 
Point-of-care testing (POCT) employs remote clinical diagnostics with faster turnaround time, 
next to the patient [1-2]. It is a tool evolving as fast as innovation allows, with a potentially 
transformative impact on health care [3]. Devices for POCT diagnostics are now equipped 
with embedded technology and its application in medicine is steadily growing [4], since it may 
optimize clinical decisions, patient outcomes and even provide financial benefits [5-6]. 
 
POCT offers an alternative to traditional laboratory testing, especially in locations with limited 
infrastructure, but it is also used at wealthy settings in developed countries [7] . Advantages 
of the testing model includes the use of portable equipment, specimen collection at the test 
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site, immediate identification of biological samples, small sample volume needed and fast 
results, features that can minimize pre-analytical errors and risks related to the transport and 
identification of biological samples [1-2,8]. 
 
One of the commercially available POCT devices is the Hilab Flow (HiF), a patented analyser 
[9-13] dedicated to read immunochromatography results from lateral flow assays and 
colorimetric results from vertical flow assays. The small handheld POCT device combines 
artificial intelligence, machine learning and deep learning techniques to enable a shorter 
turnaround time, but without compromisings the exam’s performance, precisely the main 
drawback in current POCT [14]. The HiF analysers are connected to a central laboratory for 
real-time monitoring and management of POCT performed remotely. Another important 
feature of this analyser is that it is able to perform a virtually unlimited number of exams, due 
to its system's flexibility. 
 
The main concern regarding POCT is to guarantee reliable results, equivalent to those 
acquired with traditional standard laboratory-based methods, and according to international 
clinical guidelines [15-17]. Rapid test suppliers usually offer limited information about test 
performance thus performing a robust performance analysis is crucial to offer a quality 
service which meets consumer expectations. Therefore, this study aims to provide data from 
analytical validation to assess the system performance for POCT use and its potential to aid 
medical decision-making. 
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2. MATERIAL AND METHODS 
 
2.1 Sample and Data 
 
Internal data from the routine analysis of clinical laboratory service were used retrospectively 
for this in-house validation study. Evaluation of respiratory viruses exams evaluation, such as 
COVID-19 Ag, were conducted with nasopharyngeal samples, while other exams were 
evaluated from whole blood, serum and/or plasma specimens. The study was approved by 
the Beneficência Portuguesa Research Ethics Committee: CAEE 33490420.9.0000.5483. 
 
The clinical samples were evaluated by lateral or vertical flow assays, depending on the type 
of the exam. Lateral flow assays are membrane-based tests which combine colloidal gold 
labeled particles to detect the analyte of interest from nasopharyngeal secretion, whole 
blood, serum or plasma specimens. Analyte’s molecules react and form a complex with 
labeled antibodies or antigens and, as this conjugate moves through capillarity across the 
membrane, the anti-analyte antibody or antigen immobilized in the membrane binds to the 
complex, revealing a colored line of varying intensity, that can be measured by its optical 
density.  
 
For qualitative exams, a colored line in the test region, accompanied by a line in the control 
region, indicates a positive result (reagent). For quantitative exams, the intensity of the 
coloured line in the test region relates to analytes’ concentration. Other analytes were 
evaluated by vertical flow assays. The presence of the analyte of interest promotes a 
measurable color change on the test membrane which is proportional to the analyte 
concentration and can be measured similarly to lateral flow assays. 
 
A list of all validated exams and the respective employed tests are shown in Table 1. 
 

Table 1 - Specifications on Analyte, Sample Type and Comparison Methods for 
Evaluating Clinical Correlation. 

Analyte Specimen Gold-standard assay Equipment HiF 

COVID-19 IgG/IgM Serum Chemiluminescence 
Alinity, Abbott  / 

Sprinter, Euroimunn 
Lateral Flow 

COVID-19 Ag 
Nasopharynx 

swab 
Real Time PCR 

QuantStudio 5, 
ThermoFisher / CFX 96, 

Bio-Rad 
Lateral Flow 

Influenza A/B Virus  Ag Nasopharynx 
swab 

Real Time PCR 
QuantStudio 5, 

ThermoFisher / CFX 96, 
Bio-Rad 

Lateral Flow 

Syphilis Ab Serum Chemiluminescence 
Alinity, Abbott  / 

Sprinter, Euroimunn Lateral Flow 

HIV Ab Serum Chemiluminescence Alinity, Abbott Lateral Flow 

HCV Ab Serum Chemiluminescence Alinity, Abbott Lateral Flow 

HBsAg Serum Chemiluminescence Alinity, Abbott Lateral Flow 

Anti-HBsAg Ab Serum Chemiluminescence Alinity, Abbott Lateral Flow 

Dengue Virus NS1 Ag 
Whole blood, 
plasma and 

serum 
Immunochromatography Wama Lateral Flow 
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Dengue Virus IgG/IgM Serum Enzyme immunoassay Sprinter, Euroimunn Lateral Flow 

Zika Virus IgG/IgM Serum Enzyme immunoassay Sprinter, Euroimunn Lateral Flow 

PSA Serum Chemiluminescence DXI 800, Beckman Lateral Flow 

TSH Serum Chemiluminescence DXI 800, Beckman Lateral Flow 

Beta-hCG Serum Chemiluminescence DXI800, Beckman Lateral Flow 

25-Hydroxy Vitamin D  Serum Chemiluminescence DXI 800, Beckman Lateral Flow 

HbA1c Whole blood 
High Performance Liquid 
Chromatography (HPLC) 

Variant, Beckman / 
Cobas C513 

Lateral Flow 

Glycemia Serum Colorimetric AU5800, Beckman Vertical Flow 

Lipid Panel* Serum Colorimetric AU5800, Beckman Vertical Flow 

Renal Function** Serum Colorimetric 
Beckman Coulter AU-

DXC 5800 
Vertical Flow 

*Lipid Panel: cholesterol, HDL-cholesterol and triglycerides. ** Renal Function: uric acid, creatinine and urea. 
 
2.3 HiF Analyser 
 
The HiF reader (Hilab, Curitiba-PR) is a laboratory analyser platform for professional POCT 
used for detection and/or quantification of various analytes. The system processes 
immunochromatography results from lateral flow assays and colorimetric results from vertical 
flow assays by measuring optical density or color model values, respectively. The equipment 
is composed of two main parts, a portable handheld analyser (12 cm x 12 cm x 13 cm, 450 
g), which incorporates a camera-equipped light detector, and sample integrated 
capsules/cartridges. Such a device communicates with the laboratory’s server, where 
artificial intelligence tools and biomedical/biochemical specialists analyze the results. The 
system applies artificial intelligence techniques, such as computer vision and image 
processing tools to find regions of interest, improve image quality and detect objects. 
Moreover, machine learning and deep learning techniques perform classification and 
regression tasks to assist the analysis of quantitative and qualitative exams, respectively. 
Finally, human specialists also analyze the exams. If there is divergence between the 
automatic and human results, a senior specialist also analyzes the exam to achieve the final 
result, improving the overall quality of exams. For this study, HiF analysers were used for the 
analytical validation of 27 different analytes. 
 
2.4 Operation  
 
Sample (5 µL to 80 µL) is introduced into the capsule by using a capillary tube, pipette or a 
medicine dropper device, with or without an adjuvant buffer (depending on the exam). The 
capsule, identified by a unique QR code, is then inserted into the analyser, which measures 
the compatible signal of the lateral/vertical flow test within the capsule. Internet Of Things 
(IoT) technology is used to recognize the unique QR code from each test sample and sends 
the reaction information via cloud to a main laboratory. There, an artificial intelligence (AI) 
software analyses the reaction, and a licensed health professional confirms and signs the 
clinical diagnosis report. The test result is released through the cloud system to the health 
care service location where the test was performed and via email and/or text message to the 
patient. Data management and protection is ensured by a robust system, enabling the 
tracking of processed samples based on the investigated analyte [12]. The full process 
occurs within 30 min.  
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2.5 Clinical Agreement Evaluation 
 
To ensure a thorough analysis, each exam was evaluated in terms of clinical agreement and 
compatibility between methods. 
 
Agreement between quantitative methods was assessed through regression analysis of the 
plotted curves. Interpretation of Pearson’s correlation was only secondary in our analysis 
especially because testing in a wider range might show strong correlation, but not 
necessarily indicate that both methods are compatible. 
 
2.6 Performance Evaluation 
 
For the exam’s performance evaluation, measurements from 10 quantitatives and 13 
qualitatives exams were compared to those from College of American Pathologists’ (CAP) 
accredited laboratories. Some exams are multi-analyte (e.g. renal function and lipid profile) 
which explains a total of 27 evaluated analytes. Analytes, specimens, gold-standard assay 
and equipment used for comparison and validation of the POCT assays are described in the 
Supplementary Data. 
 
Quantitative clinical correlation analyses were performed for the following analytes: blood 
glucose (glycemia), glycosylated hemoglobin (HbA1c), total cholesterol (CHOL), high-density 
lipoprotein cholesterol (HDL-c), triglycerides (TG), 25-Hydroxy (25-OH) Vitamin D, thyroid-
stimulating hormone (TSH), uric acid (UA), creatinine (C), and urea (UR). Other analytes 
from the lipid panel are indirectly estimated through the difference between CHOL and HDL-c 
(NHDL-c), Martin’s equation (LDL-c), Friedewald equation (VLDL), but not reported here 
because any interpretation on correlation and analytical accuracy would be derived from the 
relationship between CHOl, HDL-c and TG. 
 
Qualitative clinical correlation analyses were performed for: COVID-19 IgG / IgM, COVID-19 
antigen (Ag), Influenza A / B virus Ag, Syphilis antibody (Ab), human immunodeficiency virus 
(HIV) Ab, hepatitis C virus (HCV), surface antigen (HBsAg), hepatitis B virus surface 
antibody (Anti-HBsAg), Dengue virus NS1 Ag, Dengue virus IgG / IgM, Zika virus IgG / IgM, 
Beta-human chorionic gonadotropin (Beta-hCG), and prostate-specific antigen (PSA). 
 
2.7 Statistical Analysis 
 
The adjusted Wald Interval method (Agresti–Coull interval) was applied to estimate the 
confidence intervals for the clinical agreement parameters of the tests: positive percentage 
agreement (PPA), negative percentage agreement (NPA), overall percentage agreement 
(OPA), and overall clinical agreement (OCA). Other approaches might render inaccurate 
results due to showing proportions (PPA, NPA) close to 0, thus the adjusted Wald interval 
estimate was chosen to prevent such behavior [18]. 
 
OCA and OPA differed in exams with more than two reference ranges, which is the case for 
most quantitative assays. While qualitative assays comprise binary outcomes (e.g. normal 
VS disease), several quantitative assays might possess multiple reference ranges depending 
on analyte concentration and reported clinical impact (e.g. diabetes). Thus, OCA was based 
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on the hit rate for all reference ranges of the analyte. Conversely, OPA was calculated only 
for samples matching the reference ranges present in the analyte individual contingency 
tables. The reference ranges used for plotting the contingency tables and calculating each 
exam’s performance are shown in Table 2. 
 

Table 2 - Interpretation  and Reference Ranges for the Exams’s Clinical Agreement. 

Exam / Analyte Interpretation / Reference Ranges* 

COVID-19 IgG/ IgM Reactive Non-reactive - - 

Syphilis Reactive Non-reactive - - 

Anti-HBsAg Reactive Non-reactive - - 

Zika IgG / IgM Reactive Non-reactive - - 

Influenza A / B Reactive Non-reactive - - 

HIV Reactive Non-reactive - - 

HCV Reactive Non-reactive - - 

HBsAg Reactive Non-reactive - - 

Dengue NS1 Reactive Non-reactive - - 

COVID-19 Ag Reactive Non-reactive - - 

Dengue IgG/ IgM Reactive Non-reactive - - 

PSA Reactive Non-reactive - - 

Beta-hCG Pregnancy Indicator Non-Pregnant - - 

CHOL (mg/dL) High  
(> 190 mg/dL) 

Normal  
(< 190) - - 

HDL-c (mg/dL) Low  
(> 40) 

Normal 
 (> 40) - - 

TG (mg/dL) High 
 (> 150) 

Normal  
(< 150) - - 

HbA1c (%) Diabetes  
(> 6.5) Pre-Diabetes (5.7-6.4)** Normal  

(< 5.7) - 

Glycemia (mg/dL) Diabetes 
 (> 126 mg/dL) Pre-Diabetes (100-126)** Normal (70-

100) 
Hypoglycemia  

(< 70)** 

25-OH Vitamin D (mg/dL) Deficiency (< 20) Normal (20-60) - - 

TSH (µUI/mL) Primary Hypothyroidism  
(> 10) 

Mild Hypothyroidism (4.5-
10)** 

Normal 
(< 4.5) - 

Uric Acid (mg/dL) 
High  

(male > 7 
female > 5.7) 

Normal  
(male < 7 

female < 5.7) 
- - 

Creatinine (mg/dL) 
High  

(male > 1.3 
female > 1.1) 

Normal  
(male < 1.3 

female < 1.1) 
- - 

Urea (mg/dL) High 
(> 20) 

Normal  
(< 20) - - 

 
All reference ranges were used for calculating each assay overall clinical agreement (OCA). 
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* Reference ranges are based on international, national societies and/or organizations responsible for 
establishing guidelines for the evaluation of each analyte. 
** Reference ranges excluded from calculation of the exam’s positive percentage agreement (PPA), 
negative percentage agreement (NPA), and overall percentage agreement (OPA). 
 
Compatibility between methods was evaluated in terms of association (Pearson’s correlation 
coefficient for quantitative or Cohen’s Kappa agreement for qualitative assays) and 
performance parameters (PPA and NPA). For quantitative assays, the systematic difference 
was also evaluated by applying a compatible paired test (t-test for parametric distribution or 
Mann-Whitney for non-parametric) considering the null hypothesis as 0 for the true mean 
difference. Finally, the regression analysis was employed for estimating the slope (and its 
respective confidence intervals) and correlation coefficient [19]. Samples with concentrations 
outside of the exam’s measuring range were excluded from the linear regression analysis to 
avoid misinterpretation of the data. The statistical significance for all analyzes was p < 0.05. 
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3. RESULTS 
 
Due to lack of consensus in literature, we followed IUPAC and CLSI definition for “analytical 
sensitivity” which refers to the assay sensitivity to slight changes in analyte concentration 
[20]. That is, the closer to 1 is the slope of the regression curve, the more precise is the 
method. Several guidelines on method validation highlight the importance of calculating 
regression parameters (e.g. correlation coefficient, y-intercept) for a comprehensive method 
validation [21-22], but no clear criteria is established for the acceptable range of estimated 
slope, especially for POCT [23]. Thus, our acceptance criteria for assay precision was 
obtaining a slope anywhere between 0.85 - 1.15, which is a common rule-of-thumb for most 
rapid test strip suppliers (Figure 1). 
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Figure 1 - Regression Parameters and Correlation between reference and proposed 
method. Correlation between methods was extremely high (r > 0.9) for all analytes. 
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All exams matched our criteria, since estimated slopes (with confidence intervals) ranged 
from 0.85 - 1.15. The closer to 1 is the slope the higher is the precision of an exam in relation 
to changes in analyte content. For the remaining exams, the variation in slope did not impact 
the clinical agreement of the exams even at decision limits, as indicated by the obtained PPA 
and NPA. 
 
PPA, NPA and OCA were greater than 90% for all analytes, suggesting a good agreement 
for the proposed methods (Tables 3 and 4). Clinical differences between measurements 
(proposed method VS POCT) were considered acceptable for any result within a defined % 
of a category boundary. Ferreira et al. (2015) [24] employed a similar approach to avoid 
overestimation of clinical differences. However, we considered  analyte-specific variation – 
reported by the CLIA [25] – as a standard other than an arbitrary value (e.g. 5%) for a more 
accurate estimate of exam’s performance. 
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Table 3 - Clinical Agreement for Quantitative Assays. 

Exams PPA NPA OPA OCA n 

CHOL >99.0% (CI: 94.0% - 100.0%) >99.0% (CI: 94.0% - 100.0%) >99.0% >99.0% 148 

HDL-c 96.3% (CI: 80.0% - 100.0%) >99.0% (CI: 96.0% - 100.0%) >99.0% >99.0% 131 

TG >99.0% (CI: 90.0% - 100.0%) 98.2% (CI: 93.3% - 100.0%) 98.7% 98.7% 157 

HbA1c 90.5% (CI: 80.0% - 96.0%) 99.3% (CI: 97.0% - 100.0%) 97.7% 93.8% 3.87 

Glycemia >99.0% (CI: 89.0% - 100.0%) >99.0% (CI: 97.0% - 100.0%) >99.0% 91.3% 243 

25-Hydroxy Vitamin D >99.0% (CI: 90.0% - 100.0%) >99.0% (CI: 94.0% - 100.0%) >99.0% >99% 115 

TSH >99.0% (CI: 87.0% - 100.0%) >99.0% (CI: 98.0% - 100.0%) >99.0% 98.0% 342 

Uric Acid 91.7% (CI: 73.0% - 98.0%) >99.0% (CI: 93.0% - 100.0%) 97.6% 97.6% 84 

Creatinine 92.6% (CI: 82.0% - 97.0%) >99.0% (CI: 94.0% - 100.0%) 97.0% 97.0% 133 

Urea 97.8% (CI: 87.0% - 100.0%) >99.0% (CI: 94.0% - 100.0%) 98.7% 98.7% 157 

     1897 

 
Table 4 - Clinical Agreement for Qualitative Assays. 

Exams PPA NPA OPA Kappa (k) n 

COVID-19 IgG / IgM >99.0% (CI: 98.0% - 100.0%) >99.0% (CI: 99.0% - 100.0%) >99.0% 0.99 1008 

Beta-hCG >99.0% (CI: 94.0% - 100.0%) >99.0% (CI: 98.0% - 100.0%) >99.0% 1.00 276 

Syphilis >99.0% (CI: 87.0% - 100.0%) >99.0% (CI: 90.9% - 100.0%) >99.0% 1.00 80 

Anti-HBsAg 97.3% (CI: 90.1% - 99.8%) >99.0% (CI: 92.8% - 100.0%) 98.5% 0.97 137 

Zika IgG / IgM >99.0% (CI: 84.0% - 100.0%) >99.0% (CI: 93.0% - 100.0%) >99.0% 1.00 92 

Influenza A / B >99.0% (CI: 90.0% - 100.0%) >99.0% (CI: 89.0% - 100.0%) >99.0% 1.00 80 

HIV >99.0% (CI: 80.6% - 100.0%) >99.0% (CI: 87.6% - 100.0%) >99.0% 1.00 54 

HCV >99.0% (CI: 79.8% - 100.0%) >99.0% (CI: 90.2% - 100.0%) >99.0% 1.00 63 

HBsAg >99.0% (CI: 76.6% - 100.0%) >99.0% (CI: 92.0% - 100.0%) >99.0% 1.00 69 

Dengue NS1 >99.0% (CI: 94.8% - 100.0%) >99.0% (CI: 97.8% - 100.0%) >99.0% 1.00 300 

COVID-19-Ag >99.0% (CI: 94.0% - 100.0%) >99.0% (CI: 95.7% - 100.0%) >99.0% 1.00 181 

Dengue IgG / IgM >99.0% (CI: 91.0% - 100.0%) >99.0% (CI: 97.0% - 100.0%) >99.0% 1.00 209 

PSA >99.0% (CI: 87.0% - 100.0%) >99.0% (CI: 89.3% - 100.0%) >99.0% 1.00 72 

     2621 
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4. DISCUSSION 
 
Universal health care availability depends on decentralized diagnostic POCT systems in 
order to solve healthcare bottlenecks both in wealthy and developing countries [26-27]. 
Technology has incremented POCT for the last two decades, so modern devices are now 
smaller, smarter, easier to use, less prone to errors and go without additional testing for 
clinical purposes [4]. POCT is a patient-oriented technology, but health professional 
expertise is still required for sensitive diagnostic and clinical decision-making. Importantly, 
patients that used POCT reported greater levels of confidence in their health professional 
and motivation to manage their health condition [28]. For minor conditions and highly 
prevalent diseases, POCT results may be sufficient for health decisions in the clinical setting 
[8], without additional confirmation from a traditional laboratory. However, this scenario 
requires that POCT is reliable and robust regarding clinical agreement with an established 
laboratory method [29-30]. Combining a robust analytical validation and a reliable quality 
control in the clinical laboratory is the key for improving healthcare access, even in remote 
regions [14].  
 
In the point of care industry, equipments are usually designed to analyse a small set of 
analytes which limits the spread of POCT and, consequently, offers a service at competitive 
prices to the consumer. The HiF analyser goes further by enabling a multi-analyte evaluation 
on a single device of quantitative and qualitative exams. Also, employing a dual verification 
of analyzed samples (by the AI and the biomedical specialist) helps minimize common 
analytical errors from decentralized laboratory settings. Previous works from our group show 
AI can improve the analytical precision of a method, thus enabling epidemiological 
conclusions on a populational level [13,31-32]. 
 
The integrated laboratory management model, especially developed for POCT with the HiF, 
is a distinguishing feature that enables a continuous enhancement of the test accuracy. 
These features are aligned with the understanding that POCT test performance should be 
compatible with any traditional tests, as required by international and regional standards [33]. 
POCT can be used to improve patient flow within the clinical setting and may even provide 
indirect cost effectiveness advantages compared to centralized laboratory testing, 
considering increased resource management and more efficient patient care [3,34]. 
Shortening the turnaround time is another asset of the HiF system, specially when delays 
compromises the patient’s health: on an intensive care unit setting, the time of analysis 
shows great influence over a physician’s conduct [35], thus the patient can greatly benefit 
from a faster, yet precise result. 
 
Modern POCT health systems may also create a valuable database for precision public 
health management using Big Data. Precision public health uses data from traditional and 
emerging sources to deliver assertive interventions to populations, focusing on social and 
environmental health aspects [36-38]. Big Data analytics aims to implement evidence-based 
decision-making in clinical and population settings [38]. This scenario depends on available 
population-level data on disease surveillance [40], and requires a solid collaboration among 
health care systems, clinicians, governments and communities [41]. Precision public health 
can provide doctors and public health practitioners with new insights, with the potential of 
revolutionizing health care, through the use of new technologies. 
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5. CONCLUSION 
 
This study presents data from 4,518 clinical samples used to evaluate the analytical 
accuracy and clinical agreement between a CAP certified laboratory and a POCT based 
laboratory (HiF analyser). Combining effective IoT and AI tools is essential for offering POCT 
alternatives with a faster turnaround time and a reliable performance to benefit both health 
professionals and patients. Our results show that the evaluated POCT system is a useful tool 
to aid medical decision-making at the clinical setting, with potential to contribute with 
healthcare solutions in diagnostic medicine.  
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