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Abstract 

Background 

After a global decline, malaria cases re-increases have been shown recently.  
The aim of this analysis was to update the epidemiological facies of malaria in Burkina Faso 
(around 4% of malaria cases worldwide) by estimating weekly malaria incidences at health district 
levels, from 2013 to 2018, associated to environmental and meteorological factors. 
 
Methods 
 
Malaria cases and deaths weekly reports were extracted from the National Malaria Control Program 
for each health district from 2013 to 2018. Population data were extracted from the reports of the 
national statistics council. Environmental data were collected through remote sensing. 

After estimating incidence through time and space, trend was assessed by an additive decomposition 
of the incidence and malaria seasons of transmission was estimated by change point analysis (PELT 
algorithm).  

Incidence maps for each year of the study period were assessed to highlight spatial variability through 
years. Maps of rainfall, temperature, and vegetation (NDVI) were produced to characterize the health 
district environmental variability. 

 

Results 

In 2013, 775 cases /100,000 inhab.week were observed in average, and remain roughly constant until 
2015. Malaria re-increased from 2016, reaching 2428 cases /100,000 inhab.week in 2018. 
 
From 2013 to 2016, two transmission periods were observed:  low from January to July (included) and 
high from August to December (included). 
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From 2017 to 2018, an intermediate transmission period from mid-November to early January 
intercalated between the low transmission period from mid-February to early June and the high 
transmission period from July to late December  
 
From 2013 to 2015, the most affected districts were located in the center and central-eastern part of the 
country. From 2016 to 2018 all health districts, except those in the Sahel region, were affected with at 
least 45,000 cases per 100,000 persons/year. This south-to-north gradient was also observed with 
rainfall, temperature and NDVI.   
 
Conclusion 

Malaria incidences re-increased through years and across the country since 2016. But no modification 
of the environmental factor variability was observed during the same period, in time or space. The re-
increase of malaria in Burkina Faso could be due to a real increase of the disease, or to a better access 
to diagnostic and cure, together with the development of the epidemiological information system. 

 

Introduction 

Malaria is a parasitic disease transmitted by the female Anopheles mosquitoes that remains the most 
deadly vector-borne disease globally 1. While causing a sustained burden in endemic countries, 
malaria case and infection patterns vary greatly across regions, seasons and from one year to the next2–

4.  
The number of malaria cases was estimated at 229 million in 2019 with more than 94% of cases 
and deaths localized in the World Health Organization (WHO) African Region5. Burkina Faso 
accounts for 4% of malaria cases worldwide, displays a strongly seasonal influence, and 
associations with weather parameters have been quantified5. Variations in weather conditions and 
their impact influence the incidence of malaria by affecting its timing and intensity. This 
phenomenon has been observed in studies in Burkina Faso and Sénégal 6–8. Growing evidence 
regarding the local variations of malaria transmission intensity warrants the adaptation of control 
measures to the local epidemiological context 9.  
WHO Malaria Control Program 2016-2030 recommends that National Malaria Control Programs 
(NMCPs) to tailor their malaria control based on analysis of past and contemporary data, risk 
factors, and the environment 10. Malaria risk mapping using robust approaches and spatial-temporal 
analyses that consider environmental and meteorological data are therefore necessary to assess the 
impact of control and identify areas where malaria control strategies need to be adapted 11–13. These 
techniques will then allow the development of weather-based early warning systems able to predict 
seasonal variations, and to trigger the timely reactive deployment of preventive measures by health 
authorities 7,14. 
 
The objective of this study was to update the epidemiological facies of malaria in Burkina Faso 
according to the recent re increase in the incidence. We estimated incidence and mortality rates, 
and analysed the main environmental indicators influencing the transmission of the disease. 
 
 

Materials and methods 

Study area 
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In 2018, Burkina Faso had a population of 20 244 079 and a population density of 72.2 inhabitants/km 
15. The country is spread over 3 climatic zones: in the north (Sahelian zone), rainfall is less than 
600mm/year. While the centre ( northern Sudanese) zone receives 600-900mm/year, rainfall in the 
southern (southern Sudanese) zone exceeds 900mm/year 16. 

The health district being the operational entity of the national health system 17, it will be the 
spatial unit in our study (Figure 1). In 2018, in average a health district had a median of around 
255000 habitants with an interquartile range equal to 177331 

 
Figure 1: Burkina Faso Map showing the boundaries of the 70 health districts. 

 

Malaria cases, deaths and population data 

A malaria case is defined as a person experiencing fever with a positive rapid diagnostic tests or thick 
blood smears. Malaria cases and deaths data were obtained from the National Malaria Control 
Program. Indeed, the national epidemiological surveillance includes an early warning system with 
priority diseases including malaria. This surveillance is carried out to collect cases and deaths data on 
a weekly basis, transmitted from the regional to the national level.  

We have therefore recovered all malaria cases and deaths in Burkina Faso by week and by health 
district from January 2013 to December 2018. Yearly estimated population data were extracted from 
the reports of the national statistics council for the years 2013 to 2018 18. 

Meteorological data 

Meteorological data were collected for each health district from remote sensing using satellites 
through Google earth engine 19. The recovered data over the period January 2013-December 2018 are 
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daily precipitation (Climate Hazards Group InfraRed Precipitation with Station Data with , spatial 
resolution: 0.05 arc degrees ), average daily temperature, maximum daily temperature, minimum daily 
temperature (Latest climate reanalysis produced by ECMWF / Copernicus Climate Change Service, 
spatial resolution: 0.5 x 0.625°) and  the 16 days normalized difference vegetation index (MODIS 
Terra Vegetation Indices 16-Day Global, spatial resolution: 1000 meters) . These data were then 
aggregated on a weekly basis. We performed linear interpolation to estimate weekly data for the 
normalized difference vegetation index (NDVI). 

 

Geographic data 

Shapefiles of Burkina Faso Health districts were extracted from the GADM (version 3.6, Davis, CA, 
USA) Center for Spatial Sciences at the University of California, Davis and Open Street Map 20 
websites.  

 

Statistical analysis 

       Temporal analysis 

We used the number of weekly malaria cases nationwide and assumed a constant yearly population to 
estimate the overall incidence time series (2013-2018), estimating trend and seasonality. 
Missing case data (weeks 12, 17, and 33 in 2015 and weeks 11, 12, 14, 18, and 38 in 2016) were 
imputed using linear interpolations. We used an additive decomposition to highlight the stable 
seasonality. The decomposed curves were smoothed using the LOESS (locally estimated scatterplot 
smoothing) method. LOESS regression is a non-parametric approach that uses a locally weighted 
regression to fit a smooth curve across the points of a scatterplot 21. We also determined the different 
transmission periods (low, intermediate and high) through a change point analysis of the mean using 
the Pruned Exact Linear Time (PELT) algorithm 22.  
The change point analysis is a method applied on a series of time-ordered data to detect whether 
changes have occurred, determining the number of changes and estimating dates of changes 23–25 
   
 
       Data description and mapping 

As the impact of meteorological data on malaria incidence being a well-documented phenomenon7,26,27 
, we then superimposed malaria incidence, rainfall and temperature data (mean, minimum and 
maximum) to assess relationships between incidence variations and meteorological factor, and lags 
between the time series. 

We observed the trend of malaria incidence, incidence density and mortality rates over the years to 
compare their dynamics. 

Finally, we produced choropleth incidence maps at the health district level for the study period in 
order to highlight the evolution of incidence across the country and possibly observe trends in spatial 
variations over years. We also produced maps of the averages of rainfall, temperature, and normalized 
difference vegetation index (NDVI) data over the entire study period to characterize the district 
environment. 

Software and packages 

The statistical analyses were carried out using the software R version 3.6.1 (R Development Core 
Team, R Foundation for Statistical Computing, Vienna, Austria) 28, with the following packages: 
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imputeTS, ggplottimeseries 29, tseries 30. The spatial analysis was performed using version 3.10 of the 
QGIS software (2019, QGIS Development Team) and R. 

 

Results 

National data description 

The national malaria control program recorded 55 417 532 cases of malaria from January 2013 to 
December 2018 for a population that grew from 17 322 796 in 2013 to 20 244 079 inhabitants in 2018. 
The median of malaria incidence was 739.06 cases per 100,000 inhabitants/week over the entire period 
(range 294.46-2427.85). The highest incidences for the years 2013 to 2015 were observed between late 
July (30th week) and early November (45th week). During the years 2016 to 2018, high incidences 
were observed between mid-June (25th week) and early November (45th week) (Figure 2). 

In addition to that from 2013 to 2016 we observed two peaks in the incidence density; the first and 
high one around 500 cases per 100,000 inhabitants/week and the second one around 1500 cases per 
100,000 inhabitants/week (Figure 4). 

 

 

Figure 2: Superposition of malaria incidence and temperature (mean, minimum, and maximum) 
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Figure 3: Superposition of malaria incidence and temperature (mean, minimum, and maximum) 

 

Figure 4: Malaria incidence density from 2013 to 2018  

 

Rainfall ranged from 0 to 111.6 mm per week with the highest rainfall recorded between late June and 
mid-September , and temperatures (mean, minimum and maximum) varied from 11.2 (minimum of 
minimum temperatures) to 41.9 (maximum of maximum temperatures) with almost constant 
amplitudes between them (Figure 2 and 3, Table 1). NDVI varied from 0.2 to 0.6 per week (Table 1) 
with the highest indices recorded between mid-July and mid-October (rainy season). 
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After superimposing malaria incidence and meteorological variables (cumulative weekly rainfall, 
average of weekly average temperatures, and mean of weekly minimum and maximum temperatures), 
malaria incidence seemed to increase, but meteorological factors seemed stable over years. (Figure 2 
and 3). 

 

Table 1: Lists of weather variables, their abbreviations and weekly descriptive statistics. Var: 
Variables; St. Dev: Standard deviation; Min: Minimum; Pctl(25): First quartile; Pctl(75): Third 
quartile; Max: Maximum 

Temporal analysis 

The decomposition in trend and season exhibits two clear phases in the time series: a stable phase with 
a constant incidence (around 800 cases / 100,000 person-years) from 2013 to 2015, followed by an 
increase phase following a nearly linear trend from 2016 to 2018 (Figure 5). 

 

 
 

 Figure 5: Time series of incidence and its seasonal and trend components. Raw time series (data 
panel). Time series noise (remainder panel). Time series seasons (seasonal panel). Time series trend 
(trend panel) 
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A more detailed analysis of the time series using the Change point method allowed us to characterize 
distinct seasonal dynamics in these two phases. 
The stable phase 1 (2013-2016) exhibited only two alternating transmission periods: low from January 
to July (included) and high from August to December (included). 
During increasing phase 2, in 2017 to 2018, an intermediate transmission period from mid-November 
to early January intercalated between the low transmission period from mid-February to early June and 
the high transmission period from July to late December (Figure 6). 
 

 

Figure 6: Trends in weekly malaria incidence and transmission periods from 2013 to 2018 with their 
duration (weeks, in blue) and the averages of the incidence rates with their standard deviation (red 
numbers). 
LTP: Low transmission period; HTP: High transmission period; ITP: Intermediate transmission 
period. 
 
 

We have previously (Figure 2) observed that the incidence of malaria had an increasing trend over the 
years. The mortality rate has a decreasing trend over the same period (Figure 7). 
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Figure 7: Incidence and Mortality by Year 

 

Spatial mapping 

 

Choropleth maps of malaria incidence showed the evolution and distribution of malaria incidence 
across the country. 

The health districts most affected over the study period vary from one year to another; from 2013 to 
2015, the most affected districts were located in the center, central-eastern and some districts in the 
north with at least 45,000 cases per 100,000 persons/year. By 2016, all districts except those located in 
the central-western and the Sahel regions were affected with at least 45,000 cases per 100,000 
persons/year, but with a particularly pronounced incidence in the southwest and in the east with at 
least 62,000 cases per 100,000 persons/year. From 2017 to 2018 all districts except those in the Sahel 
region were affected with at least 45,000 cases per 100,000 persons/year but with a particularly 
pronounced incidence in the southwest, south, central-east and east with at least 62,000 cases per 
100,000 persons/year. For this period (2017-2018), some districts in the south-west and the east 
reached 95000 cases per 100,000 persons/year. In all cases, the Sahel and the central-western region 
are the least affected regions. In addition, from 2016 onwards, the incidence maps "light up" showing 
an increase in malaria cases in Burkina Faso (Figure 8). 
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Figure 8: District level malaria incidence maps from 2013 to 2018. Each map has on the bottom right 
the overall smoothed malaria incidence time series with the 95% confidence interval. 

 

Maps of mean rainfall, temperature and normalized difference vegetation index data over the entire 
study period are shown in figures 9, 10 and 11. For the rainfall and the NDVI data, we observed a 
north-south gradient with the highest rainfall and NDVI in south-west, south, central-eastern and 
southeastern regions. The mean temperature has the same trend with the smallest temperatures 
localized in the south-west.   

 

Figure 9: Mean rainfall map from 2013 to 2018. 
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Figure 10: Mean NDVI map from 2013 to 2018. 

 

Figure 11: Mean temperature map from 2013 to 2018. 

 

 

 Discussion 
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We observed a nearly stable incidence over the period 2013 to 2015 through years and across the 
country. An increase in malaria incidence from 2016 to 2018 was observed associated to an extension 
of the most affected areas. Malaria incidence in Burkina Faso had a constant seasonality superimposed 
on periods of high rainfall with a lag even if throughout each year there are periods of low 
transmission and even intermediate transmission from 2017 onwards (Figure 6). 

This increase in the incidence may be due to a better access to diagnosis and treatment with rapid 
diagnosis tests ( RDTs)  and/or to a better surveillance and information system (thus capturing a higher 
proportion of malaria cases treated in health centers). 

Indeed, an efficient monitoring and information system gives the advantage of continuously collecting 
almost exhaustive data in each district. For most districts, these data are the only readily available 
source of malaria information that program managers can use 31,32.   

Efficient surveillance systems show regular seasonal variations in case numbers, coinciding with 
transmission patterns. They also show decreases in morbidity and mortality following interventions 
and can alert administrators to unexpected increases 31,33.  During the study period, Burkina Faso made 
efforts to improve access to care and/or the surveillance/data collection system, including the 
introduction of a second long lasting insecticidal nets (LLINs) distribution campaign in 2013, the 
coverage of seasonal chemoprevention campaigns, which increased from 7 to 65 health districts 
between 2013 and 2018, and the introduction of intermittent preventive treatment during pregnancy at 
the community level. 
 

On the other hand, an increase in the incidence could also mean that malaria is escaping prevention 
and control policies and strategies. This could be caused by inadequate implementation of malaria 
control and prevention policies, particularly the distribution of seasonal malaria chemoprevention 
(SMC) and intermittent preventive treatment (IPT) to pregnant women at the wrong time, difficulties ( 
stocks out) in accessing rapid diagnostic tests (RDTs) and artemisinin-based combination therapies 
(ACTs), and the lack of information on the use and efficient storage of LLINs may hinder the 
reduction of malaria cases because they do not have a protective effect on the population 34–39. 

It may also be that vectors have been resistant to insecticides or parasites to treatment; indeed, in the 
past decade, pyrethroids resistance in major malaria vectors in Sub-Saharan Africa (Anopheles 
gambiae (including An. gambiae sensu stricto (s.s.) and An. coluzzii), An. arabiensis and An. funestus 
s.s.)  has spread across the continent being prevalent in west 40. The pyrethroids resistance is a great 
concern because pyrethroids are the main insecticide class recommended for long lasting insecticidal 
nets impregnation 41. Resistance to long lasting insecticidal nets exposure increases mosquito survival, 
which may lead to rising malaria incidence and fatality  42. Nevertheless, parasite resistance to 
treatment seems unlikely, when most studies conducted between 2010 and 2017 show that ACTs 
remain effective, with overall efficacy rates above 95% in the WHO African regions 43. 

In addition to that, the onset of the intermediate transmission period may be contributing to an increase 
in cases due to a slower decline in incidence. 

Another unexplored avenue that could explain this almost linear increase is that, from December 2013 
to march 2016 it was the outbreak of hemorrhagic fever Ebola virus which raged in West Africa and 
which was the largest and most complex since the discovery of the virus in 1976 44. During this period, 
Burkina Faso mobilized efforts for prevention and response against Ebola 45, reducing efforts against 
other diseases such as malaria. 

 Malaria incidence in Burkina Faso had a constant seasonality superimposed on periods of high 
rainfall. Contrary to this finding, low temperatures were superimposed on the highest incidences. 
Indeed, above a certain temperature (>34°C), the development of Anopheles larvae is inhibited and 
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thus reduces the survival of adult Anopheles 46. Low temperatures therefore favor the survival of 
larvae (above a minimal temperature threshold of 18°C) 

 

The decrease in malaria mortality from 2013 to 2018, during which period the incidence gradually 
increased (Figure 7), can be explained by a better management of malaria cases. Indeed, following the 
increase in resistance to conventional treatment (chloroquine) 47–49), the WHO has in 2006 made 
recommended to rely on artemisinin-based drugs for the management of both uncomplicated and 
severe falciparum malaria cases50. In Burkina Faso, this strategy is supported by the recommendations 
of the NMCP, which recommends the following management strategies 51: early case management in 
health facilities and at the community level, with particular emphasis on children aged 3 to 59 months  
since 2009 52, intermittent preventive treatment (IPT) for pregnant women since 2017, universal access 
to rapid diagnostic tests (RDTs) since 2009 and artemisinin-based combination therapies (ACTs) since 
2006, and seasonal chemio-prevention (SCP) for children under 5 since 2013. 

In any case, the health system does not capture all cases and deaths (only cases and deaths in health 
facilities are captured). 

It is therefore imperative to conduct studies on these cases not captured by the system and especially 
to develop national approaches to take them into account while analyzing data for decision making. 

Spatial analysis has shown a heterogeneous distribution of malaria incidence. The most affected 
districts (located in the south, southeast, and east) showed little change from 2013 to 2018, although 
the intensity of infection in these areas increased during this period.  This heterogeneity can be 
explained by the fact that the health districts are spread across different climatic zones. As weather is a 
factor known to influence malaria incidence 7,26,27, different climatic zones may be affected differently 
by malaria. In addition, a number of studies have found an association between spatial inequalities in 
access to health care and spatial heterogeneity in malaria incidence 53,54. 

Also, entomological factors (heterogeneous vector abundance) and other potential explanatory factors 
should be investigated, including socioeconomic factors (level of education, income, professional 
activity, individual and societal behavior, etc…)55and factors related to LLIN use 56. 

Conclusion 

In this epidemiological study, we assessed malaria incidence and mortality in Burkina Faso. We 
compared the different trends of malaria incidence over the period 2013-2018. This work highlights 
malaria incidence increase and extension through years and across the country, together with a 
mortality reduction, suggesting an important role of the improvement of access to diagnostic and 
treatment. Malaria surveillance appears now challenged by other epidemics of acute fever diseases 
such as dengue, which have to be identified and separated from malaria. Regular analysis of spatio-
temporal data is one of the keys to improving the understanding of malaria dynamics leading to better 
preparedness and reactivity of malaria control policies.  
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