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Abstract 27 

The prediction of pathogenic human missense variants has improved in recent years, but a more granular 28 

level of variant characterization is required. Further axes of information need to be incorporated in order 29 

to advance the genotype-to-phenotype map. Recent efforts have developed mode of inheritance prediction 30 

tools; however, these lack robust validation and their discrimination performance does not support clinical 31 

utility, with evidence of them being fundamentally insensitive to recessive acting diseases. Here, we 32 

present MOI-Pred, a three-way variant-level mode of inheritance prediction tool aimed at recessive 33 

identification for missense variants. MOI-Pred shows strong ability to discriminate missense variants 34 

causing autosomal recessive disease (area under the receiver operating characteristic (AUROC)=0.99 and 35 

sensitivity=0.85) in an external validation set. Additionally, we introduce an electronic health record 36 

(EHR)-based validation approach using real-world clinical data and show that our recessive predictions 37 

are enriched for recessive associations with human diseases, demonstrating utility of our method. Mode of 38 

inheritance predictions - pathogenic for autosomal recessive (AR) disease, pathogenic for autosomal 39 

dominant (AD) disease, or benign – for all possible missense variants in the human genome are available 40 

at https://github.com/rondolab/MOI-Pred/. 41 
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Introduction 53 

Computational methods to predict the effect of coding variants have numerous applications, such 54 

as the diagnosis of genetic diseases1-4, genetic association studies5-8, and drug design9,10. Currently 55 

available methods perform very well at discriminating pathogenic and benign missense variants, typically 56 

reporting accuracy in the range of 58-86%11-13. Each prediction uses a unique set of variant characteristics 57 

and shows different performances across datasets making ensemble approaches more accurate14-16. On the 58 

same basis, current guidelines recommend considering multiple prediction tools to inform decision 59 

making13. While these methods may perform very well, they do not consider granularity of a variant’s 60 

effect on disease. The vast majority of these methods make a simple binary prediction: is the variant 61 

pathogenic, or is it benign? Some methods make more specific predictions about whether variants cause 62 

particular phenotypes17, but even these are generally still binary predictions about a single phenotype. The 63 

true shape of the genotype-to-phenotype map is much more complex and highly dimensional. A full 64 

assessment of a variant’s effect on phenotype would include potentially pleiotropic effects on a variety of 65 

different phenotypes, from the molecular level to the systems level, as well as features that modify its 66 

genetic impact, such as penetrance and mode of inheritance. Large-scale computational approaches that 67 

incorporate different axes of genomic information can potentially be used to inform various aspects of 68 

variant function18. 69 

Here, we focus on mode of inheritance as the next level of granularity to include in computational 70 

prediction of variant effect. The concept behind mode of inheritance is foundational to the field of 71 

genetics and in classical medical genetics it is considered one of the most important features to report 72 

about a pathogenic variant13,19,20. Studies have shown that disease diagnosis can be largely improved by 73 

incorporating pedigree information21-24. In spite of this, mode of inheritance has practically no role in 74 

current variant annotation pipelines. Efforts to resolve mode of inheritance mechanisms have fallen 75 

behind the gene discovery rate25, limiting the availability of such information in databases of validated 76 

clinically relevant variants. Even among databases that do provide mode of inheritance information, most 77 

notably Online Mendelian Inheritance in Man (OMIM)26, these annotations are present only for a small 78 
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fraction of 4,417 genes. They are also not necessarily reliable, since they derive almost entirely from 79 

anecdotal case reports with small pedigrees, and very few have been replicated across studies. Currently, 80 

35.5% of variants reported as “Pathogenic” or “Likely Pathogenic” in ClinVar27 have no annotated mode 81 

of inheritance and cannot confidently be assigned one based on existing annotations. While some 82 

molecular and evolutionary features are known to be enriched in genes implicated in autosomal recessive 83 

(AR) disease28-33, these features are not widely used at the variant level to distinguish variants causing AR 84 

disease from variants causing autosomal dominant (AD) disease or benign variants. Additionally, there is 85 

some evidence that current variant effect prediction methods may be fundamentally insensitive to AR 86 

disease34,35, reinforcing the need for new methods specifically aimed at predicting variants causing AR 87 

disease36. Previous efforts at developing such methods underperform binary prediction tools, lack robust 88 

validation and have not achieved widespread use in the field16,37-39. 89 

Here we present MOI-Pred, a three-way prediction method that labels missense variants as 90 

pathogenic for AR disease, pathogenic for AD disease, or benign. The method uses a random forest 91 

classifier to combine variant effect estimations with gene-level features that are predictive of AR or AD 92 

disease. The resulting predictor identifies pathogenic mutations with performance comparable to state-of-93 

the-art binary prediction methods and distinguishes mode of inheritance at the variant level. Moreover, 94 

the tool accurately predicts disease case-control status for the three classes of mutations in an external 95 

validation using real-world electronic health record (EHR)-based clinical data. MOI-Pred addresses a 96 

shortcoming in current annotation pipelines by accurately predicting mode of inheritance, especially 97 

differentiating AR pathogenic variants from benign variants, while simultaneously improving granular 98 

predictions of variant effect crucial to achieve clinically relevant levels of accuracy. 99 

 100 

Results 101 

Clinical variants missing mode of inheritance information 102 

 ClinVar does not explicitly annotate mode of inheritance. Instead, this information is extracted 103 

from external resources such as OMIM or the Human Gene Mutation Database (HGMD)40. These 104 
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databases provide mainly gene-level information and only for a subset of diseases. Thus, most variants in 105 

ClinVar either lack a mode of inheritance annotation entirely or are simply labelled with the annotation of 106 

their corresponding gene. Only 4,126 genes in ClinVar have inheritance information, resulting in 37.63% 107 

of variants with undetermined mode of inheritance (Supplementary Table 2). Out of a total of 307,800 108 

unlabelled variants, 49,745 are Pathogenic (35.51% of all Pathogenic), 119,532 are Benign (41.38% of all 109 

Benign), 122,600 have Uncertain significance (35.30% of all Uncertain significance) and 15,923 have 110 

Conflicting interpretation of pathogenicity (38.19% of all Conflicting interpretation) (Supplementary 111 

Table 2). 112 

 113 

Model Training 114 

 We collected a training set of 2,481 Recessive and 1,248 Dominant pathogenic missense variants 115 

from ExoVar16 and 3,729 Benign missense variants from gnomAD41, annotated with a wide range of 116 

features capturing functional and biological aspects of mode of inheritance. We fitted a random forest 117 

model on this training set, using 10-fold cross-validation and 100 different random train-test splits to 118 

assess performance. Feature selection was performed independently on each iteration, reducing the 119 

number of features to a minimum of 10 and a maximum of 18 (median across 100 models is 13 features 120 

(Supplementary Figure 1). In total, 19 unique features were selected across all 100 iterations for 121 

training, incorporating a range of functional, evolutionary and combined information (Methods, 122 

Supplementary Table 1). 123 

 The prediction models performed well in the Test set, with a mean area under the receiver 124 

operator characteristic (AUROC)=0.94/0.96/0.95 (standard deviation (SD)=1.2 x 10-2/6.8 x 10-3 /1.3 x 10-
125 

2), sensitivity=0.75/0.76/0.92 (SD=3.8 x 10-2/3.0 x 10-2/2.8 x 10-2), and specificity=0.94/0.95/0.82 126 

(SD=1.3 x 10-2/1.4 x 10-2/2.2 x 10-2) for Recessive/Dominant/Benign classes, respectively (Figure 2). 127 

This represents good overall performance with similar discrimination power across classes. Benign has 128 

higher sensitivity and lower specificity than the other two classes, representing a higher rate of false 129 

positives for Benign variants and a higher rate of false negatives for both classes of pathogenic variants. 130 
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 131 

External Validation 132 

To assess the model’s performance on external data sources, we collected an external Validation 133 

set containing 261 Recessive and 255 Dominant pathogenic missense variants from ClinVar and 1,010 134 

Benign missense variants from the Japan Whole Genome Aggregation panel v.1 (GEM)42, in addition to 135 

the internal Train/Test set. Performance on this external Validation set was similar to performance 136 

measured on the Test set, with AUROC=0.99/0.99/0.96 (SD=2.7 x 10-3/1.8 x 10-3/6.9 x 10-3), sensitivity 137 

0.85/0.87/0.93 (SD 1.8 x 10-2/2.8 x 10-2/1.7 x 10-2), and specificity 0.98/0.99/0.86 (SD 7.4 x 10-3/4.8 x 10-
138 

3/1.5 x 10-2) for Recessive/Dominant/Benign classes (Figure 2). This suggests that the model is not 139 

overfitting the data sources used for training and testing (ExoVar and gnomAD), which would be 140 

indicated by a significant drop in performance between the internal blind Test set and external validation. 141 

Indeed, the model appears to perform better on the external validation set. This may reflect the fact that 142 

the ClinVar datasets used for external validation contain more confident annotations and less noise than 143 

the ExoVar datasets used for training and testing. 144 

To expand on this observation, we grouped variants by ClinVar review status (level of evidence 145 

for pathogenicity) and assessed how the confidence of variant annotations affects the sensitivity of our 146 

predictions. We found that sensitivity improved with higher review status: sensitivity for the 147 

Recessive/Dominant classes was 0.58/0.49 (SD 0.03/0.00) for 0-star review status, 0.68/0.59 (SD 148 

0.04/0.00) for 1-star review status, and 0.86/0.89 (SD 0.04/0.00) for 2-star or higher review status 149 

(Supplementary Figure 2). This is as expected if lower-confidence variants are less likely to be truly 150 

pathogenic. In this case, an accurate predictor would predict a smaller fraction of 0-star variants to be 151 

pathogenic, because the fraction of those variants that are truly pathogenic is smaller. 152 

 We also tested the inheritance prediction model on variants unique to a single ancestry group 153 

(European American, African American, or Hispanic American) to evaluate whether performance is 154 

consistent across ancestries. We found that sensitivity was uniformly high across all three ancestries, with 155 

no specific ancestry having substantially higher power (Supplementary Figure 3, 4 and 5). We also 156 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.21265472doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.25.21265472
http://creativecommons.org/licenses/by-nc-nd/4.0/


found that ancestry-specific variants across all three ancestries showed the same trend as the full dataset, 157 

with sensitivity improving in higher confidence annotations. This demonstrates that MOI-Pred is not 158 

primarily powered to detect variants observed in Europeans, but has similar performance regardless of 159 

ancestry. 160 

 161 

Model interpretation 162 

 Examining the importance of different features in the model shows the union of functional, 163 

evolutionary and combined information that are driving the inheritance prediction. One functional feature 164 

(AD.rank with 23.8%), two combined features (MutPred and MCAP with 14.2% and 13.6%, respectively) 165 

and two evolutionary features (OE and FATHMM with 11.2% and 11% respectively) carry 73.8% of the 166 

models’ weight (Figure 3. A).  167 

These feature weights represent the overall importance of features to the three-way classifier. To 168 

examine which features are important to identify each individual class, we trained three two-way 169 

classifiers to distinguish Dominant from Benign, Recessive from Benign, and Dominant from Recessive. 170 

Both Benign-Pathogenic binary prediction models (Benign-Dominant and Benign-Recessive) are 171 

dominated by features carrying combined functional and evolutionary information, namely MCAP, 172 

MutPred and VEST3, in addition to FATHMM which primarily carries evolutionary information (Figure 173 

3. B, Supplementary Figure 6 and 7). In contrast, the Dominant-Recessive prediction is mainly driven 174 

by gene-level features carrying either functional or evolutionary information like AD.rank and O/E  175 

(Figure 3. B, Supplementary Figure 8).  176 

 177 

Clinical validation using EHR 178 

To test the performance of the model on real-world clinical data, we collected a total of 1,845,623 179 

variants present in patients from the BioMe biobank43. Of these, 56,706 were missense variants present in 180 

ClinVar (2,301 Pathogenic, 9,865 Benign, 35,629 Uncertain significance and 8,911 Conflicting 181 

interpretation), and 19,134 remain after restricting to 2-star or higher in ClinVar review status (1,047 182 
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Pathogenic, 6,303 Benign and 11,784 Uncertain significance) (Supplementary Table 3). The model used 183 

to predict all variants shows good performance in the Train/Test and Validation sets (Supplementary 184 

Table 4). For each variant, we marked each patient as positive if the EHR included a diagnosis reported 185 

for the variant in ClinVar, and negative otherwise. We then used a Cochran-Mantel-Haenszel (CMH) 186 

stratified contingency test to assess the association between homozygous or heterozygous carriers of 187 

ClinVar-annotated variants and actual diagnoses, stratified by disease. An association between carrier 188 

status and disease status indicates that the variants being tested are, in aggregate, associated with disease 189 

with the specified mode of inheritance. By separating variants that receive different predictions from our 190 

model, we can test whether our model’s prediction is actually predictive of carrier disease status in a real 191 

clinical population. 192 

The contingency table analysis showed that our model is highly predictive, with all ClinVar 193 

categories showing associations in the expected directions. We found that a Recessive prediction 194 

significantly increases the association between homozygous carrier status and disease status for all 195 

ClinVar Pathogenic (OR=4.30 [95% CI=4.07 to 4.55] and OR=1.07 [95% CI=1.04 to 1.09]), Uncertain 196 

Significance (OR=5.45 [95% CI=5.13 to 5.77] and OR=0.31 [95% CI=0.30 to 0.32]) and Conflicting 197 

Interpretation (OR=4.11 [95% CI=3.94 to 4.28] and OR=1.11 [95% CI=1.09 to 1.13]) annotations. A 198 

Dominant prediction significantly increases the association between homozygous or heterozygous carrier 199 

status and disease status for ClinVar Pathogenic (Odds ratio (OR)=1.98 for MOI-Pred’s prediction [95% 200 

confidence interval (CI)=1.96 to 2.00] and OR=1.56 [95% CI=1.55 to 1.57] for all other variants) and 201 

Uncertain Significance (OR=1.40 [95% CI=1.39 to 1.41 and OR=0.87 [95% CI=0.87 to 0.87]) 202 

annotations. And as expected, a Benign prediction significantly decreases the association between 203 

homozygous or heterozygous carrier status and disease status for ClinVar Pathogenic (OR=1.23 [95% 204 

CI=1.22 to 1.24] and OR=2.97 [95% CI=2.94 to 2.99]) and Uncertain Significance (OR=0.87 [95% 205 

CI=0.87 to 0.88] and OR=1.02 [95% CI=1.01 to 1.02]) annotations (Figure 4, Supplementary Table 5-206 

7). Restricting to ClinVar variants with 2-star or higher review status showed similar results 207 

(Supplementary Figure 9, Supplementary Table 8-10). Notably, we observed a particularly strong 208 
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protective association of variants on disease that are not predicted recessive for “Uncertain Significance” 209 

variants (Figure 4C).  210 

To compare MOI-Pred with a previously developed mode of inheritance prediction tool 211 

(MAPPIN), we also performed the same EHR-based clinical validation analyses using MAPPIN 212 

predictions (Supplementary Figure 10, Supplementary Table 11-13). MAPPIN shows weaker 213 

enrichment for recessive association with disease of ClinVar Pathogenic predicted recessive (OR=3.61 214 

[95% CI=3.41 to 3.80] for MAPPIN vs. OR=4.31 [95% CI=4.07 to 4.55] for MOI-Pred) and no 215 

enrichment for recessive association with disease of ClinVar Uncertain Significance and Conflicting 216 

Interpretation variants (OR=0.35 [95% CI=0.33 to 0.36] for MAPPIN vs. OR=5.45 [95% CI=5.13 to 217 

5.77] for MOI-Pred and OR=1.15 [95% CI=1.11 to 1.18] for MAPPIN vs. OR=4.11 [95% CI=3.94 to 218 

4.28] for MOI-Pred, respectively) (Supplementary Figure 10, Supplementary Table 11). As expected, 219 

MAPPIN shows similar or stronger enrichment for dominant association with disease for various ClinVar 220 

classes (Supplementary Figure 10, Supplementary Table 12). 221 

 222 

Discovery of individual variants 223 

To test the utility of MOI-Pred for clinical assessment of individual variants, we performed single 224 

variant association tests in the BioMe biobank and identified 18 variants showing significant associations 225 

with a single phenotype (p-value corrected for 455 recessive association tests=1.09 x 10-4; p-value 226 

corrected for 455 recessive association tests for 6,382 dominant association tests=7.83 x 10-6) (Table 1 227 

and Supplementary Table 14-17). Three variants were found to have significant recessive associations 228 

with disease. Interestingly, none of these are labelled as Pathogenic in ClinVar as two are labelled Benign 229 

and one is labelled Conflicting Interpretation of Pathogenicity. Moreover, 15 variants showed dominant 230 

association with disease, 12 of which do not correspond with their clinical annotation using 231 

ClinVar/OMIM, showing the potential utility of MOI-Pred for discovery of novel associations with 232 

disease (Table 1).  233 

 234 
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Discussion 235 

Here we present MOI-Pred, a computational tool that jointly predicts pathogenicity and mode of 236 

inheritance for missense variants. Our tool uses a random forest classifier trained on known variants to 237 

combine multiple sources of annotation into a single prediction. Compared to other existing methods, 238 

MOI-Pred benefits from several key innovations. First and foremost, where most methods produce a 239 

binary prediction of pathogenic or benign, our method produces a three-way prediction, classifying each 240 

variant as pathogenic for AR disease, pathogenic for AD disease, or benign. In particular, while many 241 

existing methods perform well at predicting pathogenic variants in AD disease (e.g. O/E 41, CADD 44, 242 

phyloP 45, etc.), MOI-Pred specifically targets the problem of discriminating AR pathogenic variants from 243 

benign, a long-lasting issue in genetics unattended by current annotation pipelines. Only one pre-existing 244 

method makes three-class predictions, MAPPIN38. MOI-Pred performs substantially better than MAPPIN 245 

at identifying variants associated with recessive-acting diseases in both prediction performance 246 

(Precision=0.79 on the training set for MAPPIN recessive predictions based on Gosalia et al. 201738) and 247 

when testing on real-world clinical data in the current study. 248 

Second, MOI-Pred combines evolutionary and functional annotations on both the gene and 249 

variant level to produce a combined variant-level prediction. This gives an important advantage in 250 

predicting mode of inheritance, since different annotation sources are known to have different error 251 

profiles. In particular, it has recently been shown that evolutionary scores are primarily sensitive to 252 

heterozygote effects, making these methods very likely to misclassify AR pathogenic variants as 253 

benign34,35. Most predictors of pathogenicity rely primarily on these scores, and therefore may be 254 

systematically insensitive to AR pathogenic variants. By combining multiple different scores in a random 255 

forest framework, MOI-Pred is able to learn which scores are most sensitive to each mode of inheritance. 256 

For example, O/E, which relies exclusively on evolutionary constraint, is very likely to confuse AR with 257 

benign, while MutPred, which incorporates biophysical properties of proteins46,47, is more likely to 258 

categorize AR variants as pathogenic. Accordingly, in our method, O/E is an important feature separating 259 

AD from benign, while MutPred is an important feature separating AR from benign. 260 
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Third, MOI-Pred is trained with a population-derived list of benign variants, and validated on 261 

novel population-derived benign variants unknown to its constituent scores. Because the most difficult 262 

classification task is distinguishing AR from benign, the choice of benign training data is vitally 263 

important. Since we use clinically validated pathogenic variants for training, it is tempting to use 264 

clinically validated benign variants as well, but this can bias the training set. These were suspected being 265 

pathogenic at some point and therefore may have features that are not typical of benign variants48. The 266 

ideal source of benign variants should be found at sufficiently high frequency in a healthy human 267 

population13,49. We used frequency-matched variants from a large population database (gnomAD) as 268 

presumed benign controls in our training set, an approach that has been used by previous methods such as 269 

CADD44 and VEST350,51. However, using these variants introduces an additional problem: population 270 

genetics scores used as components in our prediction model are often themselves derived from the same 271 

populations, introducing bias and the risk of overfitting52. We addressed this problem by using common 272 

variants from a recently published cohort of healthy Japanese adults as a validation set. At the time of 273 

analysis, this population had not yet been incorporated into widely used population databases, and all 274 

genetics scores were therefore naïve to it. Our classifier performed better on these population-derived 275 

benign variants than an equivalent classifier trained on clinically validated benign variants, and also 276 

performed well on clinically validated benign variants. 277 

Finally, we validated our method by using it to predict disease case-control status in EHR data 278 

from the BioMe biobank43. We demonstrated that our predictions of mode of inheritance are significantly 279 

associated with the likelihood of carriers developing Mendelian disease in a real-world clinical setting. 280 

This is true for variants annotated as pathogenic, variants of unknown significance, as well as novel and 281 

ancestry-specific variants. This analysis also revealed that some variants with a Benign prediction appear 282 

to protect against disease, particularly in variants with “Uncertain significance” (Figure 4C).  Since the 283 

“Uncertain significance” ClinVar class necessarily contains variants without clear evidence for or against 284 

pathogenicity, it is possible that disease modifier variants or variants with protective effects in 285 

heterozygous or homozygous form (underdominance or overdominance) may frequently be classified as 286 
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“Uncertain significance.”  Similarly, these variants lack normal signatures of natural selection and so may 287 

be likely to receive a Benign prediction in MOI-Pred. In general, the properties of these variants are not 288 

well understood, including whether they can be predicted by computational methods, and further 289 

investigation is warranted53. We also found individual variants where the prediction made by MOI-Pred 290 

differed from their clinical annotations using ClinVar/OMIM, and we verified using the same EHR 291 

database that both the pathogenicity and the mode of inheritance predicted by our method is likely to be 292 

correct. These analyses demonstrate the applicability of our method to real clinical data and decision-293 

making particularly with respect to large-scale electronic health systems. Such clinical validation is only 294 

possible thanks to increasingly available EHR-linked biobanks, and we anticipate it being applied more 295 

broadly to variant prediction tools in the future. 296 

 Our method has several limitations and areas for future work. First, it remains uncertain whether 297 

the performance we observe in the test and validation sets will hold in real applications. Many existing 298 

tools have reported similarly high performance in their authors’ internal testing and lower performance in 299 

unbiased replication analyses12. Many have also failed to find clinical utility despite numerically high 300 

performance54,55. Our EHR-based clinical validation suggests that results will hold56 in real-world clinical 301 

data, but validation in other clinical datasets and by other groups is needed. Second, our three-way 302 

predictions, though more complete than typical binary predictions, do not completely account for all 303 

forms of mode of inheritance. Phenomena such as incomplete dominance, overdominance, and 304 

heterozygote advantage, all of which are well documented in human disease56-58, are unaccounted for in 305 

our simple recessive-dominant-benign classification. Likewise, mode of inheritance itself is far from the 306 

only refinement that can be added to variant effect predictions. The field would benefit enormously from 307 

methods to predict gain-of-function variants, disease suppressor variants, or uniparental imprinted 308 

variants, to name just a few. Third, there is room for innovation and improvement in the method. We used 309 

only a subset of applicable ML methods and available features. Furthermore, we focus only on missense 310 

variants, primarily because this is the largest class of variation for clinical variants and most applicable to 311 

mode of inheritance prediction. Most coding annotations are available for missense variants, while a 312 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.21265472doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.25.21265472
http://creativecommons.org/licenses/by-nc-nd/4.0/


much smaller number are available for other forms of variation including synonymous, loss-of-function, 313 

non-coding, or multi-nucleotide variants. Ultimately, MOI-Pred is meant to be used in combination with 314 

other methods to form a holistic picture of the effects of variants. This is true for even the most widely-315 

used prediction methods, which are rarely relied on individually. We believe that this method, together 316 

with MAPPIN and others, will enable variant function prediction to go beyond a binary prediction of 317 

pathogenicity so that the picture of variant effects formed by computational annotation begins to resemble 318 

the true complexity of actual phenotypes. 319 

 320 

Methods 321 

Variant collection 322 

Missense variants from publicly available resources were used to generate all datasets. For the 323 

training set, pathogenic variants were obtained from ExoVar16. Presumed non-pathogenic variants were 324 

selected from the Genome Aggregation Database (gnomAD)41 v2.1.1. GnomAD variants were chosen to 325 

match the allele frequency (AF) of pathogenic variants to within 0.1%, based on minor allele frequency in 326 

the entire gnomAD population; singletons were chosen to match variants not present in gnomAD. For the 327 

validation set, pathogenic variants with review status “reviewed by expert panel” were selected from 328 

ClinVar27 (release June 2020), and presumed non-pathogenic variants were selected from GEM42, defined 329 

as variants with AF >= 1% in GEM and absent or singleton in gnomAD. Gene-level mode of inheritance 330 

information for pathogenic variants was obtained from OMIM26 (release May 2020). 331 

 332 

Variant annotation 333 

Variants were characterized using functional and evolutionary information. ANNOVAR59 was 334 

used to annotate variant-level features. We included all available features from ANNOVAR that could be 335 

applied to all or nearly all missense variants. This includes 15 features built on evolutionary information 336 

(e.g. phyloP45, FATHMM60, GERP61, PROVEAN62, etc.), 42 features built on both evolutionary and 337 

functional information (e.g. M-CAP63, CADD44, VEST350, MutationTaster64, etc.) and 14 population 338 
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frequency features (e.g. cg6965, Kaviar66, GME67, etc.). We added to this, 7 gene-level features which 339 

were retrieved manually from their original sources. This includes 2 gene level features built on 340 

evolutionary information (OE score41 and s_het68), 4 gene level features built on functional information 341 

(Episcore69, AD rank70, StringAD and StringAR71) and 1 gene level feature combining the two 342 

annotations (HI72). The full list of features and their source of information can be found in 343 

Supplementary Table 1. 344 

 345 

Data trimming and imputation 346 

Features with more than 60% missing values and/or high correlation (Pearson’s r >= 0.8) in the 347 

training set were removed. In two correlated features, the one with higher mean absolute correlation 348 

across all features was removed. Variants with more than 60% missing values in the remaining set of 349 

features were removed from both the training and external validation sets. Missing values were imputed 350 

first on variant-level features. The resulting dataset was then used to impute gene-level features, ensuring 351 

low intra-gene variation in these annotations. A random forest-based algorithm (missForest v1.473) was 352 

used for both imputations. The final dataset was comprised of 30 features on 5,872 and 1,526 variants 353 

from the training and external validation sets respectively. 354 

 355 

Workflow to train inheritance prediction models 356 

A machine learning (ML) approach was used to develop mode of inheritance prediction models. 357 

To minimize sampling biases, 100 models were trained, tested and validated using random sets of 358 

variants. The workflow is described below for a single iteration. A random sample of 90% of available 359 

Dominant variants from the training set plus equal numbers of Recessive and Benign variants constituted 360 

a balanced Train set. The remaining variants from the training set were used to sample a balanced 10% 361 

Test set. The Validation set consisted of all Dominant variants available in the external validation dataset 362 

plus equal numbers of randomly sampled Recessive and Benign variants. Scaling and feature selection 363 

(using a wrapper random forest-based approach, recursive feature elimination) were performed on the 364 
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Train set using the caret package v6.0.8474 available in R, then applied accordingly to the Test and 365 

Validation sets. A three-class (Recessive, Dominant, Benign) random forest algorithm75 was then fitted to 366 

the Train set using 10-fold cross validation to optimize parameter tuning and limit overfitting. Three two-367 

class random forest algorithms (Dominant vs. Recessive, Dominant vs. Benign, Recessive vs. Benign) 368 

were fitted in parallel for subsequent feature importance analyses. Mode of inheritance label was then 369 

predicted on the Test and Validation sets to compute performance metrics. This entire procedure was 370 

repeated 100 times; reported performance statistics (see Results) correspond to the mean and standard 371 

deviation (SD) across all 100 runs. 372 

The AUROC was calculated using the pROC package v1.14.076 available in R v3.5.377. To obtain 373 

a per-class discrimination metric the remaining two labels were treated as negative classes. Accuracy, 374 

sensitivity, specificity and positive/negative predictive values (PPV/NPV) as well as the ML framework 375 

was implemented using the caret package. 376 

Three-way variant-level mode of inheritance predictions (pathogenic for autosomal recessive 377 

(AR) disease, pathogenic for autosomal dominant (AD) disease, or benign) for all possible missense 378 

variants in the human genome build hg38 are available at https://github.com/rondolab/MOI-Pred/. 379 

 380 

Clinical validation of inheritance prediction models in electronic health records 381 

A single three-class random forest algorithm was fitted, tested and validated as described above 382 

to predict mode of inheritance in genotype data from 29,981 individuals in the BioMe biobank43. BioMe is 383 

a multiethnic, EHR-linked, clinical care biobank of more than 60,000 samples from individuals recruited 384 

at the Mount Sinai Health System between 2007 and 2015. Participants were genotyped using the 385 

Illumina Global Screening Array, imputation was performed using the 1000 Genomes Phase 3 reference 386 

panel, and genetic ancestry was determined through k-means clustering of principal components. 387 

Longitudinal biomedical traits including diagnostic codes and laboratory test results were obtained mainly 388 

through ambulatory care practices resulting in a high median number of encounters per patient78. Only 389 

variants present in ClinVar (release June 2020) were considered for posterior analyses. ClinVar’s 390 
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phenotype information was mapped to 456 categories of International Classification of Disease 10 (ICD-391 

10) diagnostic codes using information from the Systematized Nomenclature of Medicine Clinical Terms 392 

(SNOMED-CT)79 and Orphanet80. 393 

Contingency table analyses were performed to test recessive, dominant and benign models on 394 

variants predicted with the corresponding mode of inheritance. Each table evaluates a subset of variants 395 

having the same inheritance prediction, same clinical significance label in ClinVar, and mapped to the 396 

same set of billing codes. An individual was considered “affected” if diagnosed with an ICD-10 code 397 

mapped to the above-mentioned subset of variants. Likewise, an individual was considered a “carrier” if 398 

homozygous for the pathogenic allele for the recessive model, homozygous for the pathogenic allele or 399 

heterozygous for the dominant model, and homozygous for the pathogenic allele or heterozygous for the 400 

benign model. An individual was considered a ‘non-carrier’ if heterozygous for the recessive model, 401 

homozygous for the non-pathogenic allele for the dominant model, and homozygous for the non-402 

pathogenic allele for the benign model. Each 2x2 table of carrier status vs. phenotype case/control status 403 

was restricted to individuals from independent ancestries and weighted by the prevalence of the 404 

corresponding set of ICD-10 codes in each of the ancestries in the BioMe EHR data. The analysis was 405 

repeated twice, once for variants with predicted mode of inheritance corresponding to the model (e.g. 406 

variants predicted Recessive when evaluating on the recessive model) and once for all variants not 407 

predicted in the respective model (e.g. variants predicted Benign and Dominant when evaluating on the 408 

recessive model). Furthermore, a secondary analysis restricting to variants with ClinVar review status of 409 

two stars or higher was performed. 410 

A CMH test was applied to the ancestry-specific tables from the same predicted mode of 411 

inheritance and clinical significance to obtain OR, 95% CI and corresponding p-values. The results were 412 

then aggregated across ancestries using an inverse variance meta-analysis. A Q-test was performed to 413 

evaluate heterogeneity between ORs of variants predicted and not predicted in the respective models. The 414 

stats package v3.6.277 was used to perform the CMH test and the metafor package v3.0.281 was used for 415 

the Q-test. 416 
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 417 

Single nucleotide variant association discovery 418 

A total of 433 groups of ICD-10 codes were tested for dominant and recessive association with 419 

6,382 variants present in ClinVar, having an ICD-10 code mapping and MOI-Pred prediction. The 420 

analysis was performed in individual ancestries (European-American, African-American, Hispanic-421 

American and other ancestries) and meta-analyzed using plink v1.982. Whole exome sequencing data and 422 

EHR from the BioMe biobank were used in the analysis; 10 principal components were used as covariates 423 

to account for population stratification. 424 

 425 

 426 

 427 

 428 

 429 

 430 
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 432 
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Figure 1. Study design and machine learning workflow. 650 

 651 

 652 

Train and Test sets correspond to the 90% and 10% balanced datasets, built from ExoVar and gnomAD 653 

variants, used for training and testing respectively. Validation set corresponds to the balanced dataset, 654 

built from ClinVar and GEM variants, used for external validation. EHR corresponds to electronic health 655 

records. 656 
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Figure 2. Receiver operator characteristic curves for 3-class mode of inheritance prediction models (A). 666 

Bar-plots showing sensitivity and specificity for 3-class mode of inheritance prediction models (B). 667 

 668 
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 673 

 674 

Test set corresponds to the 10% balanced dataset, built from ExoVar and gnomAD variants, used for 675 

testing. Validation set corresponds to the balanced dataset, built from ClinVar and GEM variants, used for 676 

external validation. Reported AUC corresponds to the mean across 100 models. Reported Sensitivity and 677 

Specificity corresponds to mean (standard deviation) across 100 models. AUC corresponds to area under 678 

the receiver operator characteristic curve.  679 
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Figure 3: Bar-plot showing feature importance on 3-class mode of inheritance prediction models (A). 701 

Word-clouds representing feature importance on 2-class mode of inheritance prediction models (B). 702 

 703 

 704 

Feature importance is reported as the median across 100 models. Word-clouds represent feature 705 

importance on Benign-Dominant (left), Benign-Recessive (middle) and Dominant-Recessive (right) 706 

models respectively. Exact feature importance values in 2-class prediction models can be found in 707 

Supplementary Figure 6-8. 708 

 709 
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 711 

Figure 4: Forest plots showing disease association with variants predicted to be Recessive (A), Dominant 712 

(B) and Benign (C). 713 
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 718 

 719 

Effect sizes (Odds ratios) and 95% confidence intervals were obtained for individual ancestries using a 720 

Cochran-Mantel-Haenszel (CMH) test. The reported effect sizes correspond to an inverse variance meta-721 

analysis across ancestries. P values for heterogeneity between Odds ratios are derived from a Q-test Test 722 

set. 723 
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 744 

Table 1: Description of significant variant associations with disease. 745 

 746 

Variant ID Gene AF ICD10 codes P value OR (95% CI) MOI-
Pred 

OMIM  ClinVar 

rs79985808 SUMF1 0.016 Other degenerative diseases 
of basal ganglia (G23) and 
Disorders of sphingolipid 

metabolism and other lipid 
storage disorders (E75) 

4.03 x 10-5 126.7 (118.5 to 
134.9) 

AR Recessive Benign 

rs17144835 DNAH11 0.061 Other congenital 
malformations of respiratory 

system (Q34) 

4.04 x 10-7 35.9 (31.9 to 
39.9) 

AR Recessive Benign 

rs1800562 HFE 0.022 Disorders of mineral 
metabolism (E83) and 

Genetic susceptibility to 
disease (Z15) 

1.10 x 10-9 13.7 (10.7 to 
16.7) 

AR Conflicting Conflicting 
interpretations 

of 
pathogenicity 

rs145214720 COL10A1 3.41 x 10-4 Osteochondrodysplasias 
(Q78) and 

osteochondrodysplasia with 
defects of growth of tubular 

bones and spine (Q77) 

3.64 x 10-8 352.3 (348.9 to 
355.7) 

AD Dominant Likely benign 

rs34539681 COL10A1 3.90 x 10-3 2.03 x 10-6 23.4 (15.5 to 
31.3) 

AD Dominant Benign  

rs140075817 EXT2 2.27 x 10-4 2.39 x 10-6 248.1 (239.8 to 
256.4) 

AD Conflicting Conflicting 
interpretations 

of 
pathogenicity 

rs770821909 EXT2 1.30 x 10-4 2.36 x 10-6 471.8 (461.1 to 
482.4) 

AD Conflicting Uncertain 
significance 

rs146098187 EXT2 3.57 x 10-4 3.17 x 10-6 262.8 (254.2 to 
271.4) 

AD Conflicting Benign 

rs138495222 EXT2 3.57 x 10-4 5.93 x 10-7 161.0 (153.9 to 
168.1) 

AD Conflicting Conflicting 
interpretations 

of 
pathogenicity 

rs35221558 LEMD3 1.99 x 10-3 4.24 x 10-7 40.3 (36.1 to 
44.5) 

AD Dominant Likely benign 

rs36105360 LMNB1 9.89 x 10-3 Degenerative diseases of 
basal ganglia (G23) and 
disorders of sphingolipid 

metabolism and other lipid 
storage disorders (E75) 

7.74 x 10-7 7.7 (5.4 to 9.9) AD Dominant Benign 

rs139644798 RARS1 3.40 x 10-4 2.39 x 10-6 98.1 (91.5 to 
104.6) 

AD Recessive Likely 
pathogenic 

rs34637584 LRRK2 1.78 x 10-3 Neoplasms of unspecified 
behavior (D49), parkinson's 

1.61 x 10-6 4.7 (2.4 to 6.9) AD Dominant Pathogenic 
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disease (G20) and leprosy 
[Hansen's disease] (A30) 

rs141230910 SDHB 5.84 x 10-4 Genetic susceptibility to 
disease (Z15), 

phakomatoses (Q85), 
malignant neoplasm of other 

endocrine glands and 
related structures (C74), 
neoplasm of uncertain 
behavior of endocrine 

glands (D44) and malignant 
neoplasm of other and ill-
defined digestive organs 

(C26) 

1.98 x 10-6 18.4 (14.9 to 
21.8) 

AD Dominant Conflicting 
interpretations 

of 
pathogenicity 

rs372115732 TBX4 1.13 x 10-4 Primary disorders of 
muscles (G71) and 

congenital malformations of 
limb(s) (Q74) 

8.81 x 10-7 228.6 (220.1 to 
237.1) 

AD Conflicting Likely benign 

rs141707850 FBN2 1.29 x 10-4 Other congenital 
musculoskeletal deformities 
(Q68) and other specified 
congenital malformation 

syndromes affecting multiple 
systems (Q87) 

1.34 x 10-6 153.3 (145.6 to 
160.9) 

AD Dominant Uncertain 
significance 

rs147272790 MBD5 2.75 x 10-4 Nonrheumatic aortic valve 
disorders (I35), congenital 

malformations of great 
arteries (Q25), monosomies 

and deletions from the 
autosomes, not elsewhere 
classified (Q93) and other 

congenital malformations of 
skin (Q82) 

1.42 x 10-6 19.2 (15.6 to 
22.8) 

AD Dominant Conflicting 
interpretations 

of 
pathogenicity 

rs77375493 JAK2 6.00 x 10-4 Other venous embolism and 
thrombosis (I82), 

polycythemia vera (D45), 
mast cell neoplasms of 

uncertain behavior (D47), 
myeloid leukemia (C92) and 

other and unspecified 
diseases of blood and blood-

forming organs (D75) 

3.84 x 10-13 18.9 (16.6 to 
21.2) 

AD Dominant Pathogenic 
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 754 

 755 

The significance threshold is set to p=1.09 x 10-4 for the recessive association test and p=7.83 x 10-6 for 756 

the dominant association test after a Bonferroni correction based on 455 and 6,382 tests respectively. AF 757 

corresponds to allele frequency, OR corresponds to odds ratio, CI corresponds to confidence interval, 758 

MOI-Pred corresponds to Mode Of Inheritance Predictor, AR corresponds to variants having autosomal 759 

recessive prediction in MOI-Pred, AD corresponds to variants having autosomal dominant prediction in 760 

MOI-Pred, OMIM corresponds to Online Mendelian Inheritance in Man, Conflicting corresponds to 761 

genes having autosomal dominant and autosomal recessive inheritance label in OMIM, Dominant 762 

corresponds to genes having autosomal dominant inheritance label in OMIM, Recessive corresponds to 763 

genes having autosomal recessive inheritance label in OMIM, Conf. Int. corresponds to variants having 764 

conflicting interpretation of pathogenicity label in ClinVar, Benign corresponds to variants having 765 

Benign, Likely benign and/or Benign/Likely benign label in ClinVar, Pathogenic corresponds to variants 766 

having Pathogenic, Likely pathogenic and/or Pathogenic/Likely pathogenic label in ClinVar. 767 

 768 
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