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ABSTRACT:

Introduction: Chronic kidney disease (CKD) is a common complex condition associated with
significant morbidity and mortality in the US and worldwide. Early detection is critical for effective
prevention of kidney disease progression. Polygenic prediction of CKD could enhance screening and
prevention of kidney disease progression, but this approach has not been optimized for risk prediction

in ancestrally diverse populations.

Methods: We developed and validated a genome-wide polygenic score (GPS) for CKD defined by
estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m? using common variant association
statistics from GWAS for e GFR combined with information on APOL 1 risk genotypes. The score was
designed to ensure transferability across major continental ancestries, genotyping platforms,
imputation panels, and phenotyping strategies, and was tested following ClinGen guidelines. The
polygenic component of the score was developed and optimized using 28,047 cases and 251,772
controls (70% of UK Biobank participants of European ancestry), while the weights for APOL 1 effects
were derived based on UK Biobank participants of African ancestry (967 cases and 6,191 controls).
We tested the performance of the score in 15 independent testing cohorts, including 3 cohorts of
European ancestry (total 23,364 cases and 117,883 controls), 6 cohorts of African ancestry (4,268
cases and 10,276 controls), 4 cohorts of Asian ancestry (1,030 cases and 9,896 controls), and 2
Hispanic/Latinx cohorts (1,492 cases and 2,984 controls).

Results: We demonstrated the risk score transferability with reproducible performance across all
independent testing cohorts. In the meta-analyses, disease odds ratios per standard deviation of the
score were estimated at 1.49 (95%CI: 1.47-1.50, P<1.0E-300) for European, 1.32 (95%ClI: 1.26-1.38,
P=1.8E-33) for African, 1.59 (95%CI: 1.52-1.67, P=1.3E-30) for Asian, and 1.42 (95%CI: 1.33-1.51,
P=4.1E-14) for Latinx cohorts. The top 2% cutoff of the GPS was associated with nearly 3-fold
increased risk of CKD across all major ancestral groups, the degree of risk that is equivalent to a
positive family history of kidney disease. In African-ancestry cohorts, APOL1 risk genotype and the
polygenic risk components of the GPS had additive effects on the risk of CKD with no significant
interactions. We also observed that individuals of African ancestry had a significantly higher polygenic
risk score for CKD compared to other populations, even without accounting for APOL 1 variants.

Conclusions: By combining APOL1 risk genotypes with the available GWAS for renal function, we
designed, optimized, and validated a GPS predictive of CKD across four major continental ancestries.
With the upper tail of the GPS distribution associated with disease risk equivalent to a positive family

history, this score could be used for clinically meaningful risk stratification.
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INTRODUCTION:

Chronic kidney disease (CKD) affects 10-16% of general population and has high morbidity and
mortality’3. In the US, CKD disproportionally affects African Americans (16.3%) when compared to
European Americans (12.7%), Asian Americans (12.9%), or Hispanic Americans (13.6%)

(https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html). CKD stage 3 or

greater is defined by a chronic loss of glomerular filtration rate (GFR) to under 60 mL/min/1.73m?.
Because this definition is based on estimated kidney function rather than markers of specific kidney
injury, it captures an etiologically heterogeneous set of primary and secondary kidney disorders. As
expected for a highly heterogeneous trait, CKD has a complex determination with both genetic and
environmental contributions. The observational heritability of CKD based on large-scale analysis of
medical records ranged from 25-44% depending on self-reported race and ethnicity, with higher
heritability estimated for pedigrees with majority of members self-identifying as Black*. These
heritability estimates are generally consistent with prior smaller family-based studies of CKD and

glomerular filtration rate®"".

The substantial heritability of CKD is attributed to both monogenic'>'# and polygenic causes’'°.
Moreover, in individuals of African ancestry, two common risk alleles (G1 and G2) in Apolipoprotein
L1 (APOL1) gene have been described to convey a large effect on the risk of kidney disease®?'.
While heterozygotes for G1 or G2 alleles appear to be protected from trypanosomal sleeping
sickness, kidney disease risk is conveyed under a recessive model in carriers of two risk alleles
(G1G1, G2G2, or G1G2). Because of the selective pressure exerted by endemic trypanosomal
species in certain parts of eastern and western Africa, G1 and G2 alleles are observed almost
exclusively individuals whose ancestry can be linked to those areas??23. In the US population,
frequency of APOL1 risk genotypes is estimated at approximately 15% in African Americans, 0.5-2%
in Hispanic Americans, and <0.01% in European Americans?*. These differences may be contributing
to the higher prevalence of CKD in African Americans in the US, but additional non-APOL1 genetic

risk factors have not yet been elucidated.

Genome-wide polygenic scores (GPS) have emerged as promising tools for genetic risk stratification
that can enhance traditional risk models for complex diseases. This approach has been applied to a
variety of traits, including coronary artery disease?>3°, type 2 diabetes?®-3°, hypertension337,
obesity®, schizophrenia®*-3%, and malignancies including breast, colorectal, prostate, and lung
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cancers®%46, One of the major limitations of the GPS approach is that existing GWAS are based
predominantly on European cohorts and, as a result, most GPS do not perform well in more diverse
cohorts, or in individuals with admixed ancestry*’. Similar to other complex traits, GWAS for kidney
function involved predominantly European cohorts. The latest study involved 765,348 participants,
75% of which were European, 23% East Asian, 2% African American, and <1% Hispanic'’. Notably,
this study did not capture the effects of APOL1 risk variants because of their recessive inheritance

and very low frequencies in non-African populations.

The objective of the present study is to test if the existing knowledge on polygenic contributions to
renal function is sufficient to build a clinical risk predictor for moderate-to-advanced CKD with
adequate performance across diverse ancestral groups. We specifically aimed to design, optimize,
and test a new GPS for clinical risk prediction of kidney disease that maximizes the performance
across major continental ancestries. We combined information on APOL1 risk genotypes with the
latest GWAS for renal function to formulate a GPS that can reliably discriminate moderate to
advanced CKD (stage 3 or greater) from population controls. In our approach, we took advantage of
the power of the existing GWAS for a quantitative biomarker of renal function (serum creatinine-
based eGFR) to predict a disease state. To demonstrate transferability across different genotyping
and imputation platforms, and to document comparable predictive performance by ancestry, we
performed rigorous testing of our GPS in 15 independent and ancestrally diverse case-control cohorts

following ClinGen standards*.

METHODS:

Study cohorts: genotyping, imputation, and quality control analyses

Electronic Medical Records and Genomics (eMERGE): The eMERGE network provides access to
EHR information linked to GWAS data for 102,138 individuals; detailed quality control analyses of
genetic data have been described previously*#%%. Briefly, GWAS datasets were imputed using the
latest multiethnic Haplotype Reference Consortium (HRC) panel using Michigan Imputation Server®'.
The imputation was performed in 81 batches across the 12 contributing medical centers participating
in eMERGE-I, Il, and Ill. For post-imputation analyses, we included only markers with minor allele
frequency (MAF) > 0.01 and R? > 0.8 in > 75% of batches. A total of 7,529,684 variants were
retained for the GPS analysis. For principal component analysis (PCA), we used FlashPCA%2 on a set
of 48,509 common (MAF>0.01) and independent variants (pruned in PLINK with --indep-pairwise 500
50 0.05 command). The G1 (1072A>G (rs73885319) and 1200T>G (rs60910145)) and G2 (1212-
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del6 (rs71785313)) alleles of APOL 1 were imputed separately using the TOPMed imputation server®3.
The allelic frequencies of G1 and G2 alleles were comparable to previous studies® and were
summarized in Supplementary Table 1. The analyses were performed using a combination of
VCFtools, PLINK, and custom scripts in PYTHON and R>>°7.

UK Biobank (UKBB): UKBB is a large prospective cohort based in the United Kingdom that enrolled
individuals ages 40-69 for the purpose of genetic studies®®. This cohort is comprised of 488,377
individuals recruited since 2006, genotyped with high-density SNP arrays, and linked to electronic
health record data. All individuals underwent genome-wide genotyping with UK Biobank Axiom array
from Affymetrix and UK BILEVE Axiom arrays (~825,000 markers). Genotype imputation was carried
out using a 1000 Genomes reference panel with IMPUTE4 software®®-6'. We then applied QC filters
similar to eMERGE-III, retaining 9,233,643 common (MAF > 0.01) variants imputed with high
confidence (R? > 0.8). For principal component analysis by FlashPCAS2, we used a set of 35,226
variants that were common (MAF>0.01) and pruned using the following command in PLINK --indep-
pairwise 500 50 0.05. Similar to the eMERGE-III datasets, the APOL1 G1 and G2 alleles were

imputed separately using the TOPMed imputation server®.

BioMe Biobank: The BioMe Biobank is an electronic health record (EHR)-linked biorepository that
has been enrolling participants non-selectively from across the Mount Sinai Health System (MSHS) in
New York City since 2007. There are currently over 60,000 participants enrolled in BioMe under and
Institutional Review Board (IRB) approved study protocol (IRB 07-0529). Participants consent to
provide DNA and plasma samples linked to their EHRs. Participants provide additional information on
self-reported ancestry, personal and family health history through questionnaires administered upon
enrollment. A total of 32,595 BioMe participants were genotyped on the lllumina Global Screening
Array (GSA) through a collaboration with Regeneron Genetics Center and 11,953 on the Illumina
Global Diversity Array (GDA) through a collaboration with Sema4. Population groups were
determined by self-reported race/ethnicity as published previosuly®?. Participants were removed if
genotype missing rates were > 5%, and if sex or ancestry information were missing. Variants were
removed if genotype missing rates were >5% and if HWE was less than P < 1.00E-5 for the GSA data
and p < 1.00E-6 for the GDA data within each ancestry group. Imputation (including G1 and G2
variants in APOL 1) was performed using the TOPMed Imputation Server and the TOPMed Freeze 8
reference panel. Post-imputation variants with quality scores <0.7 were removed. Participants
younger than 40 years old and individuals detected to be cryptically related (2nd degree or above)
were removed from the analysis. We additionally removed a subset of BioMe participants that were
included in the original CKDGen GWAS discovery dataset!’. After all QC steps, there were 9,154
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BioMe participants of European ancestry, 7,318 African ancestry, 11,606 Latinx ancestry, and 843

East Asian ancestry included in the analysis.

Reasons for Geographic and Racial Differences in Stroke Study (REGARDS): REGARDS is a
population-based, longitudinal study of incident stroke and associated risk factors of over 30,000
Black and White adults aged 45 years or older from all 48 contiguous US states and the District of
Columbia®. REGARDS was designed to investigate reasons underlying the higher rate of stroke
mortality among self-reported Black compared to White participants, as well as why residents of the
Southeastern US had worse death rates compared to other US regions. By design, participants were
oversampled if they were residents of the stroke belt or if they were Black®363626161 Participants
completed a computer-assisted telephone interview to collect demographic information and
medication adherence, and an in-home visit for blood pressure measurements and collection of blood
and urine samples and have been contacted at six-month intervals to obtain information on incident
stroke or secondary outcomes. Genotyping was performed on 8,916 self-identified Black participants
using lllumina MEGA-EX arrays and imputed using the NHLBI TOPMed reference panel (Freeze 8).
Participants were excluded with call rates less than 95%, if they were internal duplicates, had sex
mismatches, or were outliers on principal component analysis (outside of 6 standard deviations),
resulting in 8,669 participants with genotypes available for analysis. Imputed variants were inspected
for their imputation quality scores (R?) and it was noted that more than 99% of the variants with
MAF>1% had an imputation quality of 0.6 or higher. Given the high-quality of imputation for variants
of MAF>1%, in order to retain maximum overlap of variants with the SNPs with PRS weights,
genotypes with genotypic probability of 0.9 or higher were retained. APOL1 alleles (G1
[rs73885319A>G, S342G] and G2 [rs71785313 TTATAA/— N388Y389/-]) were genotyped directly
using TagMan SNP Genotyping Assays (Applied Biosystems/ThermoFisher Scientific).

The Hypertension Genetic Epidemiology Network (HyperGEN): HyperGEN is a cross-sectional,
population-based study and component of the NHLBI Family Blood Pressure Program that was
designed to identify genetic risk factors for hypertension and target end-organ damage due to
hypertension®. The cohort is composed of White and Black sibships in which at least two siblings
were diagnosed with hypertension (defined as either self-reported use of antihypertensive
medications or SBP >140 mmHg and/or DBP >90 mmHg at two separate evaluations) before age 60,
their unmedicated adult offspring, and age-matched controls. Later the study population was
expanded to include other siblings of the original sibling pair as well as any offspring for a total
sample size of N=5000. The Black participants underwent whole genome sequencing (WGS),
through the National Heart Lung and Blood Institute (NHLBI) WGS program. In order to harmonize
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our imputation efforts with the array-based panels of the REGARDS, GenHAT and Warfarin (see
below) studies, we compiled a set of non-monomorphic and non-multi-allelic SNPs with MAF >1%
that were genotyped for GWAS as part of those studies. This yielded a total of 2,204,415 SNPs that
were used as fence post markers for imputation. In order to maintain consistency HyperGEN samples
were then imputed into the same version of TOPMed release?2 reference panel that was adopted for
imputing REGARDS, GenHAT and Warfarin. Imputed variants were inspected for their imputation
quality scores (R?) and it was noted that more than 99% of the variants with MAF>1% had an
imputation quality of 0.6 or higher. Given the high-quality of imputation for variants of MAF>1% and to
retain maximum overlap of variants with the SNPs with PRS weights, genotypes with genotypic
probability of 0.9 or higher were retained. Participants were excluded if they were younger than 40
years at enrollment, leaving 1,898 self-identified Black participants for analysis. APOL1 genotypes

were obtained directly from the WGS data.

Warfarin Pharmacogenomics Cohort (WPC): WPC is a prospective cohort of first-time warfarin
users aged 19 years or older starting warfarin for anticoagulation®-8. Warfarin therapy requiring a
target international normalized ratio (INR) range of 2-3 was initiated in patients with venous
thromboembolism, stroke/transient ischemic attacks, atrial fibrillation, myocardial infarction, and/or
peripheral arterial disease. Patients requiring a higher intensity (INR 2.5 to 3.5) or lower intensity (INR
1.5 to 2.5) of anticoagulation were excluded. A detailed history was obtained that included baseline
demographics, as well as medication history and compliance. Changes in INR, medications and
laboratory parameters were documented at each clinical visit as reported previously. The WPC
includes genotyped data using the Illlumina MEGA-EX array, as well as an lllumina IM duo array for
599 and 297 Black participants, respectively. Imputation was performed using the NHLBI TOPMed r2
reference panel (Freeze 8). Imputed variants were inspected for their imputation quality scores (R?)
and it was noted that more than 99% of the variants with MAF>1% had an imputation quality of 0.6 or
higher. Given the high-quality of imputation for variants of MAF>1%, in order to retain maximum
overlap of variants with the SNPs with PRS weights, genotypes with genotypic probability of 0.9 or
higher were retained. This strategy retained highest-quality genotype calls for the SNPs that were
employed for the PRS derivation. Ten principal components (PCs) were calculated using a program
EIGENSOFT (version 6.1.4) selecting directly genotyped SNPs (MAF = 5%, missing data < 5%, and
HWE p-value >1E-04) based on pairwise linkage disequilibrium (LD, using r2 < 0.05). This resulted in
44,137 tagged SNPs in African American samples. APOL 1 information was obtained from genotypic
array data; rs143830837 (bp hg38 36265995) was used as a proxy for rs71785313 (bp hg38
36265996) since these SNPs represent the same G2 variant and were recently merged in the NCBI
dbSNP database (https://www.ncbi.nlm.nih.gov/snp/?term=rs143830837). For this analysis, only
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participants aged 40 years or older were included, leaving a total of 448 self-identified Black
participants.

The Genetics of Hypertension Associated Treatments (GenHAT) Study: GenHAT is an ancillary
study to the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT)®".
ALLHAT was a randomized, double blind, multicenter clinical trial with over 42,000 high-risk
individuals with hypertension, aged 55 years or older, and had at least one additional risk factor for
CVD. ALLHAT is the largest antihypertensive treatment trial to date and was ethnically diverse,
enrolling over 15,000 Black participants®. Participants were randomized into four groups defined by
the class of assigned antihypertensive medication including chlorthalidone, lisinopril, amlodipine, and
doxazosin at a ratio of 1.7:1:1:1, respectively. The original GenHAT study (N=39,114) evaluated the
effect of the interaction between candidate hypertensive genetic variants and different
antihypertensive treatments on the risk of fatal and non-fatal CVD outcomes®’. In an ancillary study to
the original GenHAT study, participants self-identified as Black were genotyped for GWAS to better
understand genes involved in response to chlorthalidone and lisinopril. Genotyping using Illumina
MEGA-EX arrays was performed on 7,546 Black adults who met these criteria. Upon genotyping
completion samples that failed or had low call rate (<95%) were excluded. Participants were also
excluded with sex mismatches, or if they were an outlier on principal component analysis (outside of
6 standard deviations), which resulted in 6,919 Black GenHAT participants with genotypes available
for analysis. Imputation was carried out using the NHLBI TOPMed release 2 (r2) reference panel
(Freeze 8). Imputed variants were inspected for their imputation quality scores (R?) and more than
99% of the variants with MAF>1% had an imputation quality of 0.6 or higher. Given the high-quality of
imputation for variants of MAF>1%, in order to retain maximum overlap of variants with the SNPs with
PRS weights, genotypes with genotypic probability of 0.9 or higher were retained. APOL 1 information
was extracted from the genotypic array data. Similar to WPC, rs143830837 variant was used as a
proxy for the APOL1 G2 allele.

Ancestry definitions

In UKBB and eMERGE-IIl datasets, the ancestry sub-cohorts were defined based on clustering on
principal component analysis of genetic markers. We grouped all individuals into major continental
ancestry clusters: European, African, Hispanic/Latinx, South Asian, and East Asian. This was done by
projecting each sample onto the reference principal components calculated from the 1000G reference
panel®. Briefly, we merged our UKBB and eMERGE samples with 1000G samples and kept only
SNPs in common between the two datasets. We used common variants between UKBB and
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eMERGE with 1000G following command in PLINK --indep-pairwise 500 50 0.05. The numbers of
pruned variants for UKBB and eMERGE were 35,091 and 43,080 respectively. We then calculated
principal components (PCs) for the 1000G samples using FlashPCA and projected each of our
samples onto those PCs. Ancestry assignments were then performed by co-clustering of the 1000G
reference populations and ancestry memberships were verified by visual inspection of PCA plots.
Ancestry in BioMe, REGARDS, HyperGEN, WPC, and GenHAT was determined by self-reported
race/ethnicity, and PCA was subsequently performed for verification and to exclude outliers.

CKD phenotyping and case-control definitions

For CKD phenotyping based on EHR data, we used a computable CKD phenotype recently
developed and extensively validated by the eMERGE-III network®. In the population-based UKBB
datasets, we defined cases as those having CKD stage 3 or above (based on eGFR estimated with
CKD-EPI equation’, and including patients on chronic dialysis or after a kidney transplant) and
compared them to population controls. In all other case-control testing datasets, we defined cases
using the same definition (CKD stage 3 or above based on CKD-EPI eGFR°, or patients on chronic
dialysis or after a kidney transplant), while controls were defined as those without known CKD and
eGFR > 90 mL/min/1.73m? based on the latest serum Cr available. While reducing the overall sample
size of our control datasets, the exclusion of individuals with CKD stage 2 (eGFR 60-90
mL/min/1.73m?) aimed to minimize any potential misclassification of the case-control status. Only
individuals 40 years of age or older were included across all datasets for consistency with the UKBB
ascertainment strategy. Additional covariates used in the predictive models included age, sex,
diabetes (type | or Il), and principal components of ancestry. The diagnosis of diabetes type | or Il
was added as an important covariate, given that it represents an established large-effect risk factor
for CKD and kidney failure. The diagnosis of hypertension was not added as a covariate to avoid
over-adjustment, since case-effect relationship of hypertension to CKD is usually not clear in
electronic health records, and CKD itself represents the most common cause of secondary

hypertension.

Polygenic score design and optimization

We used 70% Europeans of UKBB (28,047 cases and 251,772 controls) to optimize the GWAS-
based polygenic component of the GPS by selecting the best model between two commonly used
methods and a range of input parameters (“Optimization Dataset”, Table 1, Supplementary Table
2). We used the summary statistics for 8.2 million common variants from the CKDGen consortium
GWAS for eGFR"" in combination with the diverse LD reference panel from phase 3 1000G project
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(all populations, N=2,504)%°. We first computed 7 candidate GPSes using the LDPred computational
algorithm’! across the following range of rho (fraction of casual variants): 1.00E+00, 1.00E-01, 1.00E-
02, 1.00E-03, 3.00E-01, 3.00E-02 and 3.00E-03. We also generated 12 pruning and thresholding
(P+T) scores with r’=0.2 and P-value thresholds of 1.0, 1.00E-02, 1.00E-03, 1.00E-04, 1.00E-05,
1.00E-06, 1.00E-07, 1.00E-08, 3.00E-02, 3.00E-03, 3.00E-04 and 3.00E-05. Based on the above
parameters, each GPS was expressed as a weighted sum of alleles with weights based on the
GWAS for the eGFR study:

M
GPS = — z B; X (dosage;j or genotype;;)
j=1

where M is number of variants in the model and g; is the weight based on GWAS summary statistics

and the negative sign reflects an inverse relationship between eGFR and CKD.

Each of the 19 scores derived above was subsequently assessed for discrimination of CKD cases
from population controls in the first UKBB optimization dataset after adjustment for age, sex, diabetes
status and four principal components of ancestry. The score with the best performance was defined
by the maximal area under the receiver operator curve and the largest fraction of variance explained
(Supplementary Table 2). The best performing score was normal-standardized (by subtracting
control mean and dividing by control standard deviation) and advanced for testing in the second
UKBB optimization cohort of African ancestry.

Modeling the effects of APOL1 risk genotypes

To optimize trans-ethnic performance, our final score was further optimized using the second, smaller
UKBB optimization dataset of African ancestry (967 cases and 6,191 controls). We aimed to assess if
adding APOL1 risk genotype (under a recessive model) enhanced CKD risk prediction. For this
purpose, we first removed any variants in the APOL1 region from the GWAS-based GPS equation.
Next, we tested the GPS and APOL1 risk genotype jointly for association with CKD in this dataset.
The GPS (without APOL1 region) and recessive APOL1 risk genotypes both represented
independently significant predictors of CKD before and after adjustment for age, sex, diabetes (Type |
or 1), and 4 principal components of ancestry. The risk effects of APOL7 and GPS were additive, with
one SD unit of the standard-normalized GPS conveying the risk that was approximately equivalent to
APOL1 risk genotype (Supplemental Table 3). We also tested for effect modification of APOL1 risk
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genotype by the polygenic component in CKD prediction, but we detected no significant interactive
effects (P interaction = 0.29). To best account for an independent additive effect of recessive APOL1
risk genotypes, we therefore updated the CKD GPS for each subject using the following equation:

Standardized GPS + 1, if APOL1 Risk Genotype

GPS = {Standardized GPS + 0, Else

Predictive performance in independent testing datasets:

The predictive performance of the final risk score formulation was assessed in 15 ancestrally diverse
testing datasets, including 3 cohorts of European ancestry (by genetic or self-reported European
ancestry, 23,364 cases and 117,883 controls in total), 6 cohorts of African ancestry (4,268 cases and
10,276 controls), 4 cohorts of Asian (East and South-West) ancestry (1,030 cases and 9,896
controls), and 2 Hispanic/Latinx ancestry cohorts (1,492 cases and 2,984 controls). We calculated a
full set of standardized risk score performance metrics following eMERGE-IV and ClinGen
guidelines*®. Logistic regression models were used for predicting case-control status with adjustment
for age, sex, diabetes (Type | or Il), center and genotype/imputation batch (if relevant), and four

principal components of ancestry using glm function in R.

We used pROC R package to calculate the receiver operating characteristics area under curve
(AUC), using logistic regression model with CKD case status as an outcome and the GPS, age, sex,
center, batch, and four significant PCs as predictors. We calculated variance explained using the
Nagelkerke’'s pseudo-R?, including for the full model (GPS plus covariates), for the covariates-only
model, and for the GPS component alone expressed as the R? difference between the full and the
covariates-only model. We also expressed the effect of standardized risk score as odds ratios (with
95% confidence intervals) per standard deviation unit of the control standard normalized risk score
distribution in each of the validation cohorts. We examined the risk score discrimination at tail cut-offs
corresponding to the top 20%, 10%, 5%, 2%, 1% of the GPS distribution by deriving odds ratios of
disease for each tail of the distribution compared to all other individuals in each cohort. We also
calculated sensitivities and specificities for each cut-off point in each testing cohort.

The performance metrics were then meta-analyzed across ancestry-defined testing cohorts using an
inverse variance weighed fixed-effects method to derive pooled performance metrics for each
ancestral grouping’. Finally, we calculated ancestry-specific prevalence-adjusted positive and
negative predictive values for each GPS cut-off based on pooled estimates of sensitivity and


https://doi.org/10.1101/2021.10.25.21265398
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.10.25.21265398; this version posted October 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

specificity and known CKD prevalence in US population
(https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html). Statistical

analyses were conducted using R version 3.6.3 (2019-02-29) software.

Comparing GPS distributions in the 1000G reference populations

To assess differences in the distributions of GPS by ancestry, we computed risk scores for the
multiethnic reference of all 1000G phase 3 participants using our final optimized CKD GPS equation:

m
Score = z w; X d]
J

where w; are optimized weights from CKD GWAS summary statistics for each marker included in the
score, d; is dosage or genotypes (0, 1 and 2) for 1000G samples and m is the total number of
variants from GWAS summary statistics included in our final GPS (m=471,316). The distributions
were examined visually in the form of histograms, and distributional differences by ancestry were
tested using ANOVA.

Post-hoc ancestry adjustment

In order to express GPS effects on the same scale across ancestrally diverse individuals and select a
single cut-off for clinical implementation of the GPS, we adjusted for differences in the first two
moments of the GPS distributions by ancestry. Using multiethnic eMERGE cohorts, we tested two
different regression-based genetic ancestry adjustment strategies that utilize 1000G (all populations)
reference: method 1 which adjusts for differences in mean and method 2 which adjusts for both

differences in mean and variance.

For method 1, we first regressed the GPS of 1000G participants against the first five PCs as

proposed previously”>:
5
Score ~ ay + z a; X PC;

i=1

Fitting the model to 1000G reference panel allows us to find a’s and generate residuals. Next, we
used the predicated o’s to calculate the adjusted score for any individual projected onto the same

PCA space:
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ZIJW=1W] X D] - (0(0 + ZiS:l ai X PCL)
o

Adjusted Z score (method 1) =

where YL, w; x D; is the raw GPS, a, + ¥.?_; a; X PC; is the predicted (ancestry-adjusted) mean, and

o'is the residual standard deviation from the 1000G model (all populations).

To adjust for ancestral differences in both mean and variance (method 2), we used the same method

as above, but we also modeled residual variance (§2) as a function of PCs of ancestry:

5
52~ﬁ0+z B; x PC;
i=1

Next, we used the predicated a’s and £’s to calculate the adjusted Z-score:

ZIJW=1W] X D] - (0(0 + ZiS:l ai X PCL)

Adjusted Z score (method 2) =
\[ﬂO + Z?=1 ﬂi X PCi

Where 3, + Y?_, B; X PC; is the predicted (ancestry-adjusted) residual variance.

The distributional transformations achieved by these methods were examined visually. We then
compared the effects of these adjustments for the top percentile cut-offs in eMERGE-IIl cohorts. We
also assessed the overall GPS calibration across all eMERGE cohorts after final ancestry adjustment.

RESULTS:

GPS Optimization

The flowchart summary of the GPS derivation and testing strategy is provided in Figure 1. In the
optimization step, a total of 19 candidate risk scores were generated based on multiethnic LD
reference panel and summary statistics from GWAS for eGFR'. We then used a large optimization
dataset comprised of 70% of European UK Biobank participants to select the best performing model
(Table 1, Supplementary Table 2). The best model was based on the P+T method and involved
471,316 markers selected based on r2 = 0.2 and P < 0.03. The score was standardized to zero-mean

and unit-variance based on ancestry-matched population controls. In the optimization dataset, the
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polygenic component of the risk score explained 3% of variance (R?), with one standard deviation of
the score increasing CKD risk by 60% (OR=1.60, 95%CI 1.59-1.61, P <1.00E-300) after controlling
for age, sex, diabetes, genotyping batch, and genetic ancestry (Supplementary Table 2).

The second optimization step involved testing for independent contributions of APOL1 risk genotypes
and included 7,158 UKBB participants of genetically defined African ancestry (967 cases and 6,191
controls). In the model adjusted for age, sex, diabetes (Type | and Il), batch, and PCs of ancestry, we
observed statistically significant independent effects of the polygenic component (OR per SD =1.16,
95%Cl: 1.09-1.25, P=1.00E-04) and the recessive APOL1 risk genotype (OR=1.19, 95%ClI: 1.01-
1.38, P=4.00E-02), but no significant multiplicative interactions between the two predictors (P
interaction=0.29) (Supplementary Table 3). Given these findings, we subsequently modeled APOL1
risk as additive to the polygenic component, with the recessive risk genotype effects approximately
equivalent to one standard deviation of the standard normalized polygenic score (a weight of one
standard deviation unit was selected because the 3 per standard deviation of the polygenic score and

the B for APOL1 risk genotype were comparable in magnitude).

Population differences in GPS distributions

We next examined the distributions of the polygenic risk component (without APOL 1), as well as the
final combined GPS (with APOL1) in the reference populations of 1000 Genomes. We detected
significant differences in the mean polygenic risk across reference populations (Figure 2, ANOVA
P=3.40E-154), with a notable shift towards higher average risk in the African population compared to
all other populations (P=4.92E-163). This shift became even more pronounced after the inclusion of
APOL1 risk genotype information in the combined GPS (P=1.58E-168). These results suggest that
the polygenic risk for CKD is considerably higher in African compared to non-African populations
independent of APOL1.

Given that the weights of the polygenic score equation are fixed and derived based on the GWAS
performed predominantly in European cohorts, we hypothesized that these distributional differences
are likely driven by a higher frequency of CKD risk alleles in African genomes. Therefore, we
examined the overall frequency spectrum of CKD risk alleles included in the GPS between European
and African reference populations (Supplemental Figure S2). As expected for variants selected
based on European GWAS, we observed a greater number of risk alleles at the extremes of the
frequency spectrum (RAF < 0.01 or > 0.099) in the African compared to European populations of
1000G. This observation is likely due to the routine use of MAF filter of 0.01 in the individual
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European GWAS discovery cohorts contributed to the GWAS meta-analysis for eGFR. Across all
variants included in the score, the mean difference in risk allele frequencies (RAF) between African
and European populations was positive (i.e. greater than the expected mean=0), and this rightward
shift in the distribution of RAF difference is indicative of higher average frequency of risk alleles in
African genomes. We further observed that the risk alleles with largest weights (effect sizes in
GWAS) had a significantly higher frequency in African genomes compared to those with low effect
sizes (P=0.02), or intermediate effect sizes (P=0.018) (Supplemental Figure S2d). Thus, it appears
that the observed GPS distributional shifts between European and African populations are driven
predominantly by frequency differences of large effect risk alleles.

GPS Testing in cohorts of European ancestry

We next tested the final GPS in three European cohorts, including the remaining 30% of the UKBB
(11,922 cases and 108,002 controls) and two large US-based European ancestry cohorts, eMERGE-
[II (10,572 cases and 8,030 controls) and BioMe (870 cases and 1,851 controls). In the combined
meta-analysis across the three testing cohorts, the GPS exhibited highly reproducible performance,
with pooled OR per SD = 1.49, 95%Cl: 1.47-1.50, P < 1.00E-300 and ROC AUC=0.75, 95%ClI: 0.75-
0.76 (Supplemental Table 4). While the UKBB testing cohort had nearly identical performance
metrics to the UKBB optimization cohort (OR per SD = 1.60, 95%CI: 1.58-1.62, P < 1.00E-300) the
effect sizes were slightly attenuated in the US-based cohorts (eMERGE-III: OR per SD=1.38,
95%Cl:1.35-1.40, P=1.58E-83 and BioMe: OR per SD=1.58, 95%Cl:1.46-1.70, P=2.50E-14. We also
note that the frequency of APOL 1 risk genotype was extremely low, thus its effect was negligible in

European cohorts.

GPS testing in cohorts of African ancestry

The GPS was tested in six independent African ancestry cohorts, including eMERGE-III (1,143 cases
and 1,600 controls), BioMe (729 cases and 1,149 controls), HyperGEN (109 cases and 619 controls),
REGARDS (1,055 cases and 4,314 controls), GenHat (924 cases and 2,454 controls) and Warfarin
(308 cases and 140 controls). In the combined meta-analysis, the GPS had pooled OR per SD =
1.32, 95%CI: 1.26-1.38, P =1.77E-33 and ROC AUC=0.78, 95%CI: 0.77-0.79 (Table 2 and
Supplemental Table 5). We note that the inclusion of APOL1 risk genotype in the GPS considerably
enhanced CKD risk prediction across all cohorts of African ancestry, substantially improving tail cut-
off discrimination i.e., the risk for the top 2% was approximately 1.8-fold higher in the model without
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APOL1 and 2.7-fold higher in the model with APOL1, when compared to the remaining 98% of
individuals (Table 3).

GPS testing in cohorts of Hispanic/Latinx ancestry

The GPS was also tested in two Hispanic/Latinx cohorts from eMERGE-III (488 cases and 639
controls) and BioMe (1,004 cases and 2,345 controls). The combined meta-analysis of these cohorts
resulted in pooled OR per SD =1.42, 95%CI: 1.33-1.51, P=4.10E-14 and ROC AUC 0.88, 95%ClI:
0.85-0.89 (Supplementary Table 6). As expected, due to high rates of African admixture in the
Latinx population, the inclusion of APOL1 risk genotypes in the GPS also improved predictive
performance and tail discrimination of the GPS in these cohorts (Table 3).

GPS testing in cohorts of Asian ancestry

Lastly, we evaluated GPS performance in four diverse Asian cohorts including UKBB South Asian
(797 cases and 7,698 controls), UKBB East Asian (74 cases and 1,740 controls), eMERGE-IIl East
Asian (98 cases and 105 controls) and BioMe East Asian (61 cases and 353 controls) cohorts. The
combined meta-analysis revealed results that were very similar to Europeans, with pooled OR per SD
=1.59, 95%ClI: 1.52-1.67, P =1.30E-30 and ROC AUC=0.90, 95%CI: 0.87-0.92 (Supplementary
Table 7). APOL1 risk genotypes were absent in the Asian cohorts, thus the modelled risk was entirely
attributable to the polygenic component.

Tail discrimination performance by ancestry

For each individual testing cohort, we derived risk estimates comparing extreme tails of the risk score
distribution to all other cohort members, and estimated sensitivity and specificity for a range of tail
cutoffs (20%, 10%, 5%, 2% and 1%). These metrics were meta-analyzed by ancestry and are
summarized in Table 2 and Supplemental Tables 4-7. Depending on ancestry, the top 2% tail of the
risk score distribution was associated with 2-4 fold higher risk of CKD than the remaining 98% of
individuals, including European (OR=3.09, 95%CIl: 2.98-3.19, P=3.22E-98), African (OR=2.66,
95%CI: 2.01-3.51, P=4.93E-12), Latinx (OR=4.27, 95%CI: 2.21-8.25, P=1.59E-05) and Asian
(OR=2.95, 95%CI: 1.93-4.50, P=5.91E-07) cohorts. We have therefore selected this cut-off as
potentially clinically meaningful, since this degree of risk is approximately equivalent to the risk
conferred by a positive family history of kidney disease. In Table 4, we summarize various metrics of
diagnostic performance for this cut-off by ancestry, including sensitivity, specificity, as well as
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prevalence-adjusted positive and negative predictive values. For comparison, we also provide similar

metrics for the cut-offs of top 5% of the risk score distribution in controls.

Ancestry adjustments and GPS calibration

We next compared the effect of two different ancestry adjustment methods on the GPS distributions
in 1000G, eMERGE-IIl, and UKBB testing cohorts (Figure 2 and Supplemental Figure S1).
Adjusting for mean only (method 1, see methods) eliminated major distributional shifts by ancestry,
but did not fully resolve the observed tail differences. The ancestry adjustment method 2 (adjusting
for both mean and variance) results in comparable shapes of the GPS distributions by ancestry and
facilitates the selection of a single trans-ancestry cut-off to define a “high risk” group. Both methods
result in comparably good risk score calibration when applied to the combined multiethnic eMERGE-
lIl dataset (Supplementary Figure S3). As a trade-off, however, the ancestry adjustment methods
reduce tail discrimination at extreme cut-offs as summarized Supplementary Table 8. This trade-off
appears most pronounced for method 2 and for more admixed cohorts (African-American and

Latinx).

Comparison with existing studies

While our manuscript was in preparation, an alternative version of a polygenic score for renal function
was published by Yu et al.” This score was based on the combined GWAS meta-analysis for eGFR
involving the CKDGen consortium study'” and 90% of the UK Biobank, resulting in larger sample size
but also higher proportion of Europeans (82%) contributing to summary statistics. Notably, the GPS
designed by Yu et al. did not include APOL1 risk genotype and was not optimized for transethnic
prediction of CKD. The key design and validation differences between our GPS and the one by Yu et

al. are summarized in Supplementary Table 9.

Because the score by Yu et al. has not been tested in multi-ethic cohorts, we next tested its
performance in our independent eMERGE-III cohorts (Supplementary Table 10). As expected given
the design differences, the score by Yu et al. performed better in cohorts of European ancestry (R?
3.5% vs. 2.2%), comparably well in Hispanic cohorts (R? 1.2% vs. 1.1%), but was less predictive in
cohorts of African (R? 1.0% vs. 1.4%) or East Asian ancestry (R?1.0% vs. 2.6%). In the African
ancestry testing cohort, individuals in the top 2% of the GPS distribution by Yu et al. had 92%
increase in the risk of CKD (OR 1.92, 95%ClI: 1.03-3.59, P=0.039), compared to 2.6-fold increased
risk using the GPS developed in this study (OR 2.60, 95%CI: 1.38-4.90, P=0.0031). Lastly, we note
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that the African ancestry distribution of the GPS by Yu et al. was also shifted towards higher values in
compared to other ancestries (Supplementary Figure 4), confirming that the observed distributional
shift is independent of any specific method used to design the score.

DISCUSSION:

We developed a genome-wide polygenic score for CKD that captures the most recent data on the
polygenic determinants of renal function, predicts CKD across four major continental ancestry groups,
and is transferable across various genotyping platforms and imputation methods. We also developed
a continuous ancestry adjustment to allow for trans-ancestry standardization of the risk score. Our
score was designed and validated following the ClinGen and the PRS Catalogue guidelines and can
be implemented as a clinical test for individual level risk prediction*®. Importantly, our testing studies
demonstrated that extreme tails of the risk score distribution (top 2%) convey over 2-3-fold increase in
the disease risk across the four major continental ancestries. From the clinical perspective, this
magnitude of risk could be considered as actionable given its equivalence to a positive family history

of kidney disease’®.

Although our risk score is based on a multiethnic GWAS for eGFR, we recognize that the allelic
effects used to develop our GPS are heavily biased by the predominant Euro-Asian composition of
the discovery GWAS, including approximately 75% European, 23% East Asian, 2% African, and only
<1% Hispanic ancestry participants. Because there are currently no studies of similar size performed
in African American and Hispanic participants that could be used to improve the accuracy of effect
estimates in these populations, our model assumes fixed allelic effects across all ancestral groups.
Nevertheless, we used a diverse linkage disequilibrium reference panel in order to improve the trans-
ethnic performance of the score, and we further enhanced the model by including African ancestry-
specific recessive APOL1 risk genotypes known to have large effects on the risk of kidney disease.
We demonstrated that APOL 1 risk genotypes (coded under a recessive model) have an additive
effect with the polygenic component, and significantly enhance case-control discrimination in cohorts
of African and Hispanic ancestry. We additionally tested two post-hoc ancestry corrections that
improve comparability of the scores across diverse populations.

Several important limitations of this work need to be discussed. First, we are most limited by the lack

of large-scale GWAS for renal function in non-European populations, as well as small size of existing
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cohorts that could be used for performance optimization in non-Europeans’®. As a result, the largest
cohorts presently available for robust risk score optimization are also of predominantly European
ancestry. The assumption of fixed allelic effects across different ancestral groups is likely inaccurate,
because many disease-related lifestyle factors and environmental exposures correlated with ancestry
could modify allelic effects. Although it is not possible to overcome this limitation in the present study,
our GPS approach could be enhanced in the future by inclusion of larger non-European GWAS
studies for eGFR or CKD.

Second, the performance comparisons between different ancestral groups could be biased by
differences in genotyping platforms and ascertainment methods employed by various biobanks and
studies used for testing. For example, the eMERGE-IIl| and BioMe cohorts are ascertained among
patients receiving care at tertiary medical centers in the US and are enriched in diseased individuals
attending subspecialty clinics. As a result, these cohorts have higher rates of CKD and comorbidities
when compared to population-based studies, such as UKBB.

Third, the ancestry definitions varied in our testing cohorts. For eMERGE and UKBB, the ancestry
was defined agnostically using genetic approaches. In contrast, our analysis of the BioMe,
REGARDS, GenHAT, HyperGEN, and WPC cohorts relied on self-report. Despite these cohort
differences, the risk score performance was similar in most testing cohorts regardless of the specific

ancestry definition employed to define testing cohort.

Fourth, by design, our score models polygenic effects from GWAS for renal function as approximated
by estimated GFR from serum Cr (filtration biomarker) rather than CKD itself. We recognize multiple
limitations to the use of estimated GFR as a phenotype in GWAS, including the fact that serum Cr
level is influenced by the rate of Cr production and metabolism in addition to kidney clearance.
Accordingly, we designed the score to predict moderately advanced CKD (stage 3 and above) rather
than a mild degree of renal dysfunction, to capture a clinically meaningful disease state. Notably, our
risk score does not incorporate available information on the polygenic determination of albuminuria’”
or primary kidney diseases’®7°. However, GWAS for these traits that are published to date remain
several orders of magnitude smaller in sample size compared to the GWAS for eGFR and thus

incorporation of such data must await more powerful studies.

Fifth, we observed significant differences in the mean and variance of the GPS distributions by
ancestry. The observed shift in the mean GPS towards higher values in individuals of African
ancestry is independent of APOL1 and is driven by a higher average RAF in the African genomes.
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The inter-population RAF differences are greatest for the risk alleles with largest effects. This pattern
may be consistent with polygenic adaptation, but the effects of uncorrected population stratification in
the discovery GWAS may also potentially explain this phenomenon®.

We note that the observed differences in the GPS distributions by ancestry represent a significant
challenge for the clinical implementation of polygenic risk scores. The key problem is that it is not
possible to select a single GPS threshold for all ancestries that results in the similar magnitude of risk.
Therefore, we have explored several approaches that could be used to overcome this issue. One
approach involves classifying anyone undergoing GPS testing into one of the four continental
ancestry groups based on self-report, then using ancestry-specific risk score cut-offs to interpret the
results. However, because of a potential for racial bias, the use of race in clinical algorithms has been
discouraged.®’ One could also classify a tested individual based on inferred genetic ancestry from
SNP data and subsequently apply ancestry-specific cut-offs. This approach still categorizes
individuals into distinct groups and can be inaccurate, especially for those individuals with highly
admixed genomes. We have therefore tested two different regression-based ancestry correction
methods that model a continuous spectrum of genetic ancestry based on the diverse reference panel
of 1000 Genomes. We demonstrate that the reference population-based correction for both mean and
variance can best align distribution tails for the purpose of selecting a single trans-ancestry cut-off to
define individuals with comparable risk of CKD. This however, results in some performance trade-
offs, especially in admixed populations. Although imperfect, this ancestry adjustment may be helpful

in improving risk score standardization for clinical use in diverse populations.

In summary, we derived, optimized, and tested a new GPS for CKD across major ancestries and
suggested new methods for its trans-ethnic standardization. We demonstrated that the effects of the
polygenic component and APOL1 risk genotypes on the risk of CKD are additive. We also observed
that the polygenic component of the score is significantly higher in individuals of African ancestry
compared to other ancestral groups. Our study also demonstrated that individuals in the highest 2%
of the risk score distribution have nearly 3-fold increase in the disease risk, the degree of relative risk
that is equivalent to a positive family history of kidney disease. Our results suggest that at the
extreme tail cutoff of the GPS may provide a clinically actionable genetic test for screening and early
detection of CKD. Other potential applications of the GPS may include improved risk stratification of
potential living kidney donors, or enhanced quality assessment of deceased donor kidneys in the
setting of transplant. The clinical utility of the GPS in these clinical settings will require further testing
in large prospective studies.
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Data sharing: GPS catalogue deposition

The final formulation of the GPS for CKD along with the standardized metrics of performance were
deposited in the GPS catalogue, accession number pending.
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Web Resources
eMERGE: https://emerge.mc.vanderbilt.edu/
UKBB: https://www.ukbiobank.ac.uk/

BioMe: https://icahn.mssm.edu/research/ipm/programs/biome-biobank

PLINK: https://www.cog-genomics.org/plink2
PYTHON: https://www.python.org/

R: https://www.r-project.org/

KING: http://people.virginia.edu/~wc9c/KING/
FlashPCA: https://github.com/gabraham/flashpca

Michigan Imputation Server: https://imputationserver.sph.umich.edu

Human Reference Consortium: http://www.haplotype-reference-consortium.org

TOPMed Imputation Server: https://imputation.biodatacatalyst.nhlbi.nih.gov/
LDPred: https://github.com/bvilhjal/ldpred
GPS catalogue: https://www.pgscatalog.org/
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1000G Reference Panel
All Populations (N=2504)

Summary Statistics
CKDGen GWAS for eGFR

Derive & select the best GPS
UK Biobank Europeans (70%)

28,047 cases 251,772 controls (70%)
Best GPS: P+T (r2<0.2, P<0.03)
471,316 variants

|

APOL1 effects derivation
UK Biobank African-European

GPS Derivation and Optimization

967 cases 6,191 controls

____________________________________________________________ T

GPS Validation l 1 l l

UK Biobank eMERGE-III BioMe UAB (African-American ONLY)

European 11,922 cases, 108,002 controls (30%)

East Asian 74 cases, 1,740 controls

European 10,572 cases, 8,030 controls

European 870 cases, 1,851 controls

HyperGEN 109 cases, 619 controls

African American 1,143 cases, 1,600 controls

African American 729 cases, 1,149 controls

REGARDS 1055 cases, 4314 controls

SW Asian 797 cases, 7,698 controls

East Asian 98 cases, 105 controls

East Asian 61 cases, 353 controls

GenHAT 924 cases, 2,454 controls

Latinx 488 cases, 639 controls

Latinx 1,004 cases, 1,706 controls

WARFARIN 308 cases, 140 controls

Figure 1: Overview of the study design. The CKD GPS was designed based on CKDGen GWAS
summary statistics for eGFR and a cosmopolitan LD reference panel of 1000 Genomes (all
populations); optimization was performed in two stages using UKBB participants of European
(optimization 1) and African (optimization 2) ancestries; GPS performance validation was conducted
in 15 additional independent testing cohorts of diverse ancestries.
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Figure 2: Risk score distributions in five 1000 Genomes populations: (a) raw polygenic score
without APOL1; (b) ancestry-adjusted polygenic score without APOL7 (method 1: mean only); (c)
ancestry-adjusted polygenic score without APOL1 (method 2: mean and variance); (d) raw combined
GPS with APOL1; (e) ancestry-adjusted combined GPS with APOL1 (method 1) and (f) ancestry-
adjusted combined GPS with APOL1 (method 2). AFR: African, AMR: Native American, EAS: East
Asian, EUR: European, and SAS: South Asian.



Table 1: Summary of study cohorts used for GPS optimization and testing.

o L L S
Optimization 1: European Ancestry (70%) 28,047 251,772 46 5 56.65
Optimization 2: African Ancestry 967 6,191 42 12 51.77
UKBB Testing 1: European Ancestry (30%) 11,922 108,002 46 5 56.64
Testing 2: East Asian Ancestry 74 1,740 32 5 52.37
Testing 3: South Asian Ancestry 797 7,698 54 18 53.32
Testing 4: European Ancestry 10,572 8,030 48 35 71.23
oMERGE Testing 5: African Ancestry 1,143 1,600 30 40 66.76
Testing 6: Hispanic Ancestry 488 639 37 36 67.75
Testing 7: East Asian Ancestry 98 105 39 26 72.27
Testing 8: Warfarin: African Ancestry 308 140 58 50 61.48
UAB Testing 9: REGARDS: African Ancestry 1,055 4,314 63 31 62.30
Testing 10: GenHAT: African Ancestry 924 2,454 58 45 65.74
Testing 11: HyperGEN: African Ancestry 109 619 62 31 52.23
Testing 12: European Ancestry 870 1,851 38 14 61.87
BioMe Testing 13: African Ancestry 729 1,149 56 32 61.65
Testing 14: Hispanic Ancestry 1,004 1,706 38 33 62.04

Testing 15: East Asian Ancestry 61 353 41 15 55.75




Table 2: The performance metrics of the GPS in the testing cohorts meta-analyzed by continental
ancestry. For performance testing in individual cohorts, please refer to Supplemental Tables 4-7.

Meta-analysis

Case/control

OR per SD (95% Cl), P-value

AUC
(Crude)

PRS Threshold

Odds ratio (95% Cl), P-value

European (3 cohorts)

23,364/117,883

1.49 (1.47-1.50), P<1.00E-300

0.75 (0.61)

Top 20% vs. other 80%
Top 10% vs. other 90%

Top 5% vs. other 95%

Top 2% vs. other 98%
Top 1% vs. other 99%

2.14 (2.10-2.18), P=1.04E-300
2.35(2.30-2.40), P=6.09E-234

2.59 (2.52-2.66), P=3.83E-161

3.09 (2.98-3.19), P=3.22E-98
3.63 (3.49-3.78), P=5.09E-68

African (6 cohorts)

4,268/10,276

1.32 (1.26-1.38), P=1.78E-33

0.78 (0.57)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.65 (1.49-1.82), P=1.17E-22
1.84 (1.61-2.09), P=9.26E-20
2.06 (1.72-2.47), P=2.11E-15
2.66 (2.01-3.51), P= 4.93E-12
3.51(2.37-5.22), P=4.21E-10

Latinx (2 cohorts)

1,492/2,984

1.42 (1.33-1.51), P=4.10E-14

0.88 (0.61)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%

Top 2% vs. other 98%
Top 1% vs. other 99%

1.96 (1.57-2.46), P=3.40E-09
2.31(1.72-3.11), P=3.01E-08
2.79 (1.85-4.22), P=1.13E-06

4.27 (2.21-8.25), P=1.59E-05
6.66 (2.48-17.83), P=1.63E-04

Asian (4 cohorts)

1,030/9,896

1.59 (1.52-1.67), P=1.30E-30

0.90 (0.60)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%

Top 2% vs. other 98%
Top 1% vs. other 99%

2.03 (1.71-2.41), P=3.76E-16
2.38 (1.93-2.96), P=1.69E-15
2.67 (2.01-3.54), P=6.42E-12

2.95 (1.93-4.50), P=5.91E-07
3.91(2.22-6.91), P=2.66E-06

All 15 cohorts

30,174/141,039

1.48 (1.46-1.50), P<1.00E-300

0.77 (0.60)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%

Top 2% vs. other 98%
Top 1% vs. other 99%

2.11(2.03-2.19), P=6.68e-331
2.24 (2.14-2.34), P=7.78E-269
2.46 (2.32-2.61), P=4.99E-187

2.98 (2.71-3.26), P=3.04E-119
3.69 (3.22-4.23), P=1.80E-78

OR: Odds ratio for the model adjusted for age, sex, diabetes, principal components of ancestry and genotyping array or clinical site; SD: standard
deviation of the GPS distribution in controls; AUC: area under the receiver-operator curve for the model adjusted for age, sex, diabetes, principal
components of ancestry and genotyping array or clinical site (crude: AUC for GPS alone without any covariates).



Table 3: Added value APOL1 risk genotype to polygenic risk components in predicting CKD using
extreme tail (98" percentile) of the risk score distribution in African-American (4,268 cases and
10,276 controls) and Hispanic (1,492 cases and 2,984 controls) cohorts. All effect estimates are
adjusted for age, sex, diabetes, and principal components of ancestry.

Cohorts APOL1 Risk Genotype Top 2% PRS without APOL1 Top 2% PRS with APOL1
OR (95%Cl), P-value OR (95%Cl), P-value OR (95%Cl), P-value
African Ancestry:
eMERGE 1.64 (1.42-1.86), P=2.0E-05 2.10 (1.46-2.74), P=2.0E-02 2.60 (1.38-4.90), P=3.10E-03
BioMe 1.38 (1.28-1.48), P=3.3E-10 2.70 (1.93-3.47), P=1.0E-02 5.75 (4.96-6.54), P=1.00E-05

UAB HyperGen
UAB REGARDS
UAB GenHAT
UAB Warfarin

Meta-analysis

1.71 (0.93-3.12), P=8.2E-02
1.35(1.08-1.77), P=6.9E-03
1.43 (1.12-1.81), P=3.2E-03
1.93 (1.07-3.49), P=2.9E-02
1.46 (1.38-1.54), P=2.7E-19

2.22 (0.59-8.44), P=2.4E-01
1.26 (0.76-2.07), P=3.6E-01
2.80(1.64-4.77), P=1.5E-04

1.76 (1.41-2.20), P=5.9-07

1.64 (0.43-6.20), P=4.65E-01
1.56 (0.97-2.59), P=6.52E-02
4.38 (2.56-7.50), P=6.80E-08
1.59 (0.28-8.73), P=5.96E-01
2.66 (2.01-3.51), P=4.93E-12

Hispanic Ancestry:
eMERGE
BioMe

Meta-analysis

15.8 (3.11-80.9), P=9.1E-04
1.17 (1.10-1.24), P=2.4E-06
1.18 (1.09-1.26), P=4.5E-05

1.58 (0.55-2.60), P=3.8E-01
2.72 (1.97-3.47), P=1.0E-02
2.72 (2.19-3.25), P=2.0E-04

3.82(1.15-12.62), P=2.83E-02
4.48 (3.69-5.27), P=2.10E-04
4.27 (2.21-8.25), P=1.59E-05




Table 4: Pooled sensitivity, specificity, and prevalence-adjusted PPV and NPV for extreme tail cut-
offs (95 and 98™ percentile) of the GPS distribution in controls. The CKD prevalence was assumed
to be 12.7% in European Americans; 16.3% in African Americans; 13.60% in Hispanic Americans,

and 12.9% in Asian Americans as per the most recent CDC data (2021).

. P T Prevalence- Prevalence-

Ancestry GPS Tail Cut-off Sensitivity Specificity adjusted PPV* adjusted NPV*
European Top 5% vs. other 95% 0.543 0.961 0.671 0.935
, 7, op 2% vs. other o .5 . . 935

23,364/117,883 Top 2% her 98% 0.541 0.961 0.668 0.93

African Top 5% vs. other 95% 0.286 0.922 0.416 0.868
(4,268/10,276) Top 2% vs. other 98% 0.160 0.972 0.526 0.855
Asian Top 5% vs. other 95% 0.473 0.986 0.833 0.926
(1,030/9,896) Top 2% vs. other 98% 0.475 0.987 0.844 0.926
Latinx Top 5% vs. other 95% 0.730 0.860 0.450 0.952
(1,492/2,984) Top 2% vs. other 98% 0.735 0.865 0.461 0.953
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Supplemental Figure S1: Risk score distributions eMERGE-IIl and UKBB datasets: (a)
ancestry PCA projection of UKBB participants on all 1000G samples; (b) the distribution of raw
polygenic score without APOL17 in UKBB by ancestry; (c) the distribution of ancestry-adjusted
polygenic score (method 1: mean-adjusted) in UKBB by ancestry; (d) the distribution of ancestry-
adjusted polygenic score (method 2: mean and variance-adjusted) in UKBB by ancestry. Panels
(e), (f), (g) and (h) show the same analyses for the eMERGE-III dataset, respectively.
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Supplemental Figure S2. Distribution of risk allele frequencies (RAF) and their effect sizes
for the variants included in the GPS (a) comparison of RAF distributions for the risk variants
included in the CKD GPS demonstrates higher frequency of rare (RAF<0.01) and common
(RAF>0.99) risk alleles in African compared to European genomes (based on 1000G reference
populations); this may be explained by the exclusion of variants with MAF<0.01 in European
discovery GWAS; (b) highly skewed effect size (weight) distribution for the variants included in the
GPS for CKD; (c) Distribution of RAF difference (AFR-EUR) demonstrating higher average
frequency of risk alleles in African genomes (mean RAF difference = 0.002) and a slight rightward
shift of the RAF difference distribution from the expected mean of 0; (d) Mean RAF difference
(AFR-EUR) as a function of effect size binned into three categories (high, intermediate, and low)
based on the observed distribution of effects sizes in panel b, demonstrating that the risk alleles
with larger effect size have higher average frequency in African compared to European genomes.
EUR: European and AFR: African. The bars represent 95% confidence intervals around the mean
RAF difference estimate for each bin.
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Supplemental Figure S3: Final GPS calibration analysis in eMERGE-III cohorts combined:
predicted risk (X-axis) as a function of the observed risk (Y-axis) in the multiethnic eMERGE-III

dataset after ancestry adjustment with (a) method 1 and (b) method 2.



Population

0.0

05 10 15 20
Genome-wide polygenic score

Supplemental Figure S4: Distributions of the raw (non-standardized) genome-wide
polygenic score (GPS) by Yu et al. in the eMERGE-IlIl dataset by ancestry.



Supplementary Table 1: Overall frequencies of APOL1 G1 and G2 risk alleles and APOL1 risk
genotypes in African American and Latinx cohorts included in the study.

Cohorts (cases and APOL1 APOL1 APOL1 APOL1

Ancestry controls combined) 1072A>G 1200T>G 1212-del6 computed risk genotype
(rs73885319) (rs60910145) (rs71785313) (G1G1, G1G2, or G2G2)

UKBB (N=7,158) 0.28 0.28 0.15 0.12

eMERGE (N=2,743) 0.23 0.22 0.13 0.18

BioMe (N=1,878) 0.23 0.23 0.13 0.14

African  HyperGEN (N=728) 0.23 0.23 0.15 0.14

REGARDS (N=5,369) 0.22 0.21 0.13 0.12

GenHat (N=3,378) 0.21 0.20 0.13 0.12

Warfarin (N=448) 0.25 0.24 0.14 0.18

. eMERGE (N=1,127) 0.04 0.04 0.04 0.02

Latinx

BioMe (N=2,710) 0.05 0.05 0.04 0.01




Supplementary Table 2: Association of candidate polygenic scores with CKD in the first UKBB
optimization dataset (70% of UKBB Europeans). Odds ratio (OR) per standard deviation (SD) of
each risk score, and area under the receiver-operator curve (AUC) were calculated in the UKBB
optimization dataset of 279,819 Europeans with adjustment for age, sex, diabetes, first four
principal components of ancestry and genotyping batch; AUC crude and variance explained are
calculated for the risk score component alone without any covariates; r: linkage disequilibrium
pruning threshold; p-tuning parameter to model the proportion of variants assumed to be causal,
the best performing score is highlighted in red. Variance explained is estimated as a Nagelkerke
pseudo R?and refers to the variance in case-control status.

Method Tuning N OR* per SD P-value .{\UC AUC Varia_nce
parameter variants of GPS (Adjusted®) (Crude) Explained
P+T P=1.0E-01 958,747 1.60 P<1E-300 0.7244 0.6115 0.0301
P+T P=1.0E-02 280,537 1.60 P<1E-300 0.7246 0.6115 0.0303
P+T P=1.0E-03 125,944 1.57 P<1E-300 0.7224 0.6066 0.0276
P+T P=1.0E-04 73,199 1.56 P<1E-300 0.7217 0.6047 0.0268
P+T P=1.0E-05 47,967 1.53 P<1E-300 0.7199 0.6003 0.0248
P+T P=1.0E-06 33,414 1.52 P<1E-300 0.7194 0.599 0.0241
P+T P=1.0E-07 23,534 1.52 P<1E-300 0.7192 0.5986 0.0241
P+T P=1.0E-08 17,160 1.51 P<1E-300 0.7181 0.5959 0.0229
P+T P=3.0E-02 471,316 1.60 P<1E-300 0.7246 0.6118 0.0304
P+T P=3.0E-03 176,651 1.58 P<1E-300 0.7236 0.6095 0.029
P+T P=3.0E-04 92,957 1.56 P<1E-300 0.7221 0.6058 0.0273
P+T P=3.0E-05 58,204 1.54 P<1E-300 0.7206 0.6021 0.0256
LDPred p=1.0E+00 5,440,627 1.58 P<1E-300 0.7233 0.6093 0.0288
LDPred p=1.0E-01 5,440,627 1.15 P=2.51E-97 0.6997 0.5346 0.0029
LDPred p=1.0E-02 5,440,627 1.12 P=3.20E-60 0.6985 0.5273 0.0018
LDPred p=1.0E-03 5,440,627 1.11 P=2.58E-56 0.6984 0.5266 0.0016
LDPred p=3.0E-01 5,440,627 1.51 P<1E-300 0.7183 0.5975 0.0232
LDPred p=3.0E-02 5,440,627 1.08 P=4.31E-30 0.6976 0.5187 9.00E-04
LDPred p=3.0E-03 5,440,627 1.12 P=9.13E-58 0.6985 0.5263 0.0017

* Adjusted for age, sex, diabetes, the first four principal components of ancestry and genotyping batch.



Supplementary Table 3: Mutually-adjusted effects for APOL 1 risk genotype and the best GPS
from the first optimization cohort when tested in the second optimization cohort of African ancestry.

Model * Effect (B) 95% ClI P-value
Standardized GPS 0.15 0.09-0.22 P=1.0E-04
APOL1 risk genotype 0.17 0.01-0.32 P=4.0E-02
GPS and APOL1 risk genotype interaction 0.09 -0.07-0.25 P=0.29 (NS)

* adjusted for age, sex, diabetes, four principal components of ancestry, and genotyping batch.



Supplemental Table 4: GPS performance meta-analysis for testing cohorts of European ancestry
(23,364 cases and 117,883 controls in total)

Cohort

Case/control

OR per SD (95% Cl), P-value

AUC (Crude)

PRS Threshold

Odds ratio (95% CI), P value

UKBB

11,922/108,002 1.60 (1.58-1.62), P<1.0E-300

0.72 (0.61)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

2.23 (2.18-2.28), P=4.33E-254
2.48 (2.42-2.54), P=1.42E-206
2.72 (2.64-2.80), P=8.46E-144
3.16 (3.04-3.28), P=3.66E-86
3.67 (3.51-3.83), P=1.29E-58

eMERGE

10,572/8,030

1.38 (1.35-140), P=1.58E-83

0.77 (0.60)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.84 (1.69-2.00), P=1.54E-45
1.90 (1.70-2.14), P=5.87E-28
2.15(1.83-2.54), P=7.49E-20
2.65 (2.02-3.48), P=1.35E-12
3.22 (2.17-4.78), P=6.80E-09

BioME

870/1,851

1.58 (1.46-1.70), P=2.50E-14

0.91 (0.65)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

2.42 (2.13-2.71), P=1.39E-09
2.31 (1.94-2.68), P=7.88E-06
1.99 (1.50-2.48), P=5.57E-03
3.39 (2.60-4.18), P=2.54E-03
5.87 (4.74-7.00), P=2.01E-03

Meta

23,364/117,883 1.49 (1.47-1.50), P<1.0E-300

0.75 (0.61)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

2.14 (2.10-2.18), P=1.04E-300
2.35 (2.30-2.40), P=6.09E-234
2.59 (2.52-2.66), P=3.83E-161
3.09 (2.98-3.19), P=3.22E-98
3.63 (3.49-3.78), P=5.09E-68

OR: Odds ratio for the model adjusted for age, sex, diabetes, principal components of ancestry and genotyping array or clinical site; SD: standard
deviation of the GPS distribution in controls; AUC: area under the receiver-operator curve for the model adjusted for age, sex, diabetes, principal

components of ancestry and genotyping array or clinical site (crude: AUC for GPS alone without any covariates).



Supplementary Table 5: GPS performance meta-analysis for testing cohorts of African ancestry
(4,268 cases and 10,276 controls in total).

Cohort

Case/control

OR per SD (95% Cl), P-value

AUC
(Crude)

PRS Threshold

Odds ratio (95% ClI), P value

eMEGRE

1,143/1,600

1.31 (1.09-1.56), P=1.30E-09

0.79 (0.57)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.56 (1.26-1.94), P=5.52E-05
1.71 (1.28-2.28), P=2.50E-04
2.16 (1.45-3.23), P=1.77E-04
2.60 (1.38-4.90), P=3.10E-03
2.51(1.02-6.14), P=4.41E-02

BioME

729/1,149

1.44 (1.33-1.55), P=7.70E-11

0.81 (0.57)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

2.05 (1.78-2.32), P=2.00E-07
2.70 (2.34-3.06), P=6.00E-08
3.46 (2.97-3.95), P=8.00E-07
5.75 (4.96-6.54), P=1.00E-05
7.10 (5.93-8.27), P=1.00E-03

HyperGen

109/619

1.26 (1.01-1.57), P=3.79E-02

0.77 (0.56)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.37 (0.81-2.31), P=2.30E-01
1.91 (1.00-3.66), P=4.97E-02
1.92 (0.78-4.73), P=1.53E-01
1.64 (0.43-6.20), P=4.65E-01
1.28 (0.20-8.09), P=7.91E-01

REGARDS

1,055/4,314

1.22 (1.13-1.32), P=3.45E-07

0.77 (0.56)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.46 (1.23-1.75), P=2.04E-05
1.47 (1.16-1.85), P=1.03E-03
1.52 (1.11-2.07), P=7.49E-03
1.56 (0.97-2.59), P=6.52E-02
2.44 (1.29-4.58), P=5.54E-03

GenHat

924/2,454

1.39 (1.27-1.52), P=1.43E-12

0.75 (0.61)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.78 (1.47-2.17), P=5.18E-09
2.16 (1.68-2.78), P=2.05E-09
2.17 (1.54-3.05), P=8.69E-06
4.38 (2.56-7.50), P=6.80E-08
7.02 (3.20-15.3), P=1.08E-06

Warfarin

308/140

1.18 (0.94-1.46), P=1.45E-01

0.71 (0.53)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.76 (0.98-3.14), P=5.52E-02
1.24 (0.59-2.61), P=5.66E-01
3.52 (0.94-13.1), P=6.10E-02
1.59 (0.28-8.73), P=5.96E-01

Meta

4,268/10,276

1.32 (1.26-1.38), P=1.78E-33

0.78 (0.57)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.65 (1.49-1.82), P=1.17E-22
1.84 (1.61-2.09), P=9.26E-20
2.06 (1.72-2.47), P=2.11E-15
2.66 (2.01-3.51), P= 4.93E-12
3.51 (2.37-5.22), P=4.21E-10

OR: Odds ratio for the model adjusted for age, sex, diabetes, principal components of ancestry and genotyping array or clinical site; SD: standard
deviation of the GPS distribution in controls; AUC: area under the receiver-operator curve for the model adjusted for age, sex, diabetes, principal

components of ancestry and genotyping array or clinical site (crude: AUC for GPS alone without any covariates).



Supplementary Table 6: GPS performance meta-analysis for testing cohorts of Latinx/Hispanic
ancestry (1,492 cases and 2,984 controls in total).

Cohort Case/control OR per SD (95% Cl), P-value AUC PRS Threshold Odds ratio (95% CI), P value
(Crude)
eMEGRE 488/639 1.39 (1.22-1.56), P=1.04E-04 0.87 (0.57) Top 20% vs. other 80% 2.56 (1.71-3.81), P=4.06E-06

Top 10% vs. other 90%  2.42 (1.43-4.07), P=8.69E-04
Top 5% vs. other 95% 2.83 (1.36-5.89), P=5.25E-03
Top 2% vs. other 98%  3.82 (1.15-12.62), P=2.83E-02
Top 1% vs. other 99% 7.61 (1.22-47.37), P=2.96E-02

BioME 1,004/2,345 1.47 (1.35-1.59), P=8.0E-10 0.89 (0.63) Top 20% vs. other 80%  1.74 (1.47-2.01), P=5.34E-05
Top 10% vs. other 90%  2.26 (1.90-2.62), P=7.77E-06
Top 5% vs. other 95% 2.77 (2.27-3.27), P=6.27E-05
Top 2% vs. other 98%  4.48 (3.69-5.27), P=2.10E-04
Top 1% vs. other 99% 6.30 (5.13-7.47), P=2.07E-02

Meta 1,492/2,984 1.42 (1.33-1.51), P=4.10E-14 0.88 (0.61) Top 20% vs. other 80%  1.96 (1.57-2.46), P=3.40E-09
Top 10% vs. other 90%  2.31 (1.72-3.11), P=3.01E-08
Top 5% vs. other 95% 2.79 (1.85-4.22), P=1.13E-06
Top 2% vs. other 98%  4.27 (2.21-8.25), P=1.59E-05
Top 1% vs. other 99% 6.66 (2.48-17.8), P=1.63E-04

OR: Odds ratio for the model adjusted for age, sex, diabetes, principal components of ancestry and genotyping array or clinical site; SD: standard
deviation of the GPS distribution in controls; AUC: area under the receiver-operator curve for the model adjusted for age, sex, diabetes, principal
components of ancestry and genotyping array or clinical site (crude: AUC for GPS alone without any covariates).



Supplementary Table 7: GPS performance meta-analysis for testing cohorts of Asian continental

ancestry (1,030 cases and 9,896 controls in total).

OR per SD (95% Cl), P-
value

AUC (Crude)

PRS Threshold

Odds ratio (95% CI), P value

1.90 (1.43-2.37), P=7.00E-03

0.92 (0.59)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

3.86 (1.23-12.07), P=2.05E-02
5.93 (1.44-24.32), P=1.33E-02
5.58 (3.75-7.41), P=6.57E-02

10.6 (0.58-192.8), P=1.10E-01
2.86 (0.04-205.1), P=6.31E-01

1.46 (1.17-1.75), P=1.00E-02

0.86 (0.58)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

1.27 (0.61-1.93), P=4.84E-01
1.41 (0.60-2.22), P=4.07E-01
2.21 (1.23-3.19), P=1.15E-01
3.32 (1.85-4.79), P=1.10E-01
4.90 (3.03-6.77), P=9.42E-02

1.58 (1.50-1.66), P=3.50E-27

0.75 (0.60)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

2.14 (1.96-2.32), P=4.01E-16
2.37 (2.14-2.60), P=1.78E-13
2.66 (2.36-2.96), P=1.76E-10
2.70 (2.24-3.16), P=2.06E-05
3.49 (2.87-4.11), P=8.25E-05

1.89 (1.43-2.35), P=6.89E-03

0.89 (0.63)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

2.61 (1.66-3.56), P=4.83E-02
4.57 (3.41-5.73), P=1.05E-01
3.13 (1.11-5.15), P=2.65E-01
10.1 (7.71-12.5), P=5.78E-02
20.9 (18.3-23.5), P=2.26E-02

Cohort Case/Control
eMERGE (E.Asian) 98/105
UKBB (E.Asian) 74/1,740
UKBB (SW Asian) 797/7,698
BioMe (E. Asian) 61/353
Meta 1,030/9,896

1.59 (1.52-1.67), P=1.30E-30

0.90 (0.60)

Top 20% vs. other 80%
Top 10% vs. other 90%
Top 5% vs. other 95%
Top 2% vs. other 98%
Top 1% vs. other 99%

2.03 (1.71-2.41), P=3.76E-16
2.38 (1.93-2.96), P=1.69E-15
2.67 (2.01-3.54), P=6.42E-12
2.95 (1.93-4.50), P=5.91E-07
3.91 (2.22-6.91), P=2.66E-06

OR: Odds ratio for the model adjusted for age, sex, diabetes, principal components of ancestry and genotyping array or clinical site; SD: standard
deviation of the GPS distribution in controls; AUC: area under the receiver-operator curve for the model adjusted for age, sex, diabetes, principal
components of ancestry and genotyping array or clinical site (crude: AUC for GPS alone without any covariates).



Supplementary Table 8: Comparison of the changes in GPS effects for the top 1%, 2%, and 5%

tail cut-offs using different ancestry adjustment methods in the eMERGE-III dataset.

Unadjusted . .
Conoris_ (Sendardzedisinganeesty  ighoat) gt
Cut-off Ancestry Z-score OR (95%Cl) Z-score OR (95%Cl) Z-score OR (95%Cl)
European 1.90 2.15 (1.83-2.54) 2.88 2.15 (1.99-2.31) 2.77 2.30 (2.13-2.47)
African 1.80 2.16 (1.45-3.23) 2.76 2.12 (1.72-2.52) 3.18 1.91 (1.51-2.31)
Top 5% Latinx 1.86 2.83 (1.36-5.89) 2.70 2.19 (1.81-2.87) 2.61 2.14 (1.47-2.81)
E.Asian 1.87 5.58 (3.75-7.41) 2.54 11 (4.30-7.92) 2.70 5.26 (3.53-6.99)
Combined 1.85 2.06 (1.79-2.39) 3.26 2.10 (1.95-2.25) 2.82 2.19 (2.04-2.34)
European 2.38 2.65 (2.02-3.48) 3.89 3.16 (2.88-3.44) 3.21 2.92 (2.64-3.20)
African 2.23 2.60 (1.38-4.90) 3.14 2.39 (1.76-3.02) 3.62 1.83 (1.21-2.45)
Top 2% Latinx 2.29 3.82 (1.15-12.62) 3.14 2.92 (1.82-4.02) 3.03 2.92 (1.82-4.02)
E.Asian 2.29 10.6 (0.58-192.8) 2.94 10.6 (7.70-13.50) 3.13 10.6 (7.70-13.50)
Combined 2.27 2.80 (2.20-3.56) 3.77 2.89 (2.64-3.14) 3.27 2.80 (2.56-3.04)
European 2.60 3.22 (2.17-4.78) 4.25 2.97 (2.58-3.36) 3.51 3.06 (2.66-3.46)
African 2.51 2.51 (1.02-6.14) 3.39 3.29 (2.37-4.21) 3.91 1.46 (0.60-2.32)
Top 1% Latinx 2.57 7.61 (1.22-47.37) 3.43 5.81 (4.26-7.36) 3.31 4.22 (2.74-5.70)
E.Asian 2.58 2.86 (0.04-205.1) 3.21 2.86 (1.41-7.13) 3.41 2.86 (1.41-7.13)
Combined 2.55 3.25 (2.30-4.59) 4.11 3.10 (2.74-3.46) 3.57 2.89 (2.55-3.23)




Supplementary Table 9. Comparison of the design, optimization, and testing strategies for the
polygenic risk score published by Yu et al. with the score from the present study.

Yu et al. (JASN 2021)

Khan et al. (present study)

Design
GWAS summary statistics
GWAS phenotype
GWAS sample size
GWAS ancestral
composition

External LD reference
APOL1 risk genotype
Covariates

CKDGen without ARIC + 90% of UKBB
Estimated GFR

N=1,159,871

82% European

16% Asian

1.5% African

<1% Hispanic

N=608 (1000G multiethnic subset)

Not included

Age, sex, diabetes, PCs of ancestry

CKDGen meta-analysis GWAS for eGFR
Estimated GFR

N=765,348

75% European

23% Asian

2% African

<1% Hispanic

N=2,504 (1000G all populations)
Included under a recessive model

Age, sex, diabetes, PCs of ancestry

Optimization
Best performing model
Optimization datasets

LDpred (1.5M variants)
10% of UKBB (N=45,158)

P+T (471K variants)
70% UKBB European ancestry (N=279,819) AND
100% UKBB African ancestry (N=7,158)

Testing
Overall Strategy
Outcome definition

European ancestry
African ancestry
Hispanic/Latinx ancestry
Asian ancestry

ARIC prospective cohort (total N=11,737)
Incident CKD (eGFR <60 mL/min/1.73 m2

plus 230% eGFR decline during follow-up).

ARIC Europeans (N=8,866)

ARIC African Americans (N=2,871)
NA

NA

15 Case-Control Cohorts (total N=171,213)
CKD stage 3 or above (eGFR <60 mL/min/1.73)
including ESRD (chronic dialysis, transplant)

3 European ancestry cohorts (N=141,247)

6 African ancestry cohorts (N=14,544)

2 Latinx cohorts (N=4,476)

4 Asian cohorts (N=10,926)




Supplementary Table 10. Comparison of the performance characteristics of the polygenic score
published by Yu et al. with the score from the present study across the ancestry-defined eMERGE-
lll case-control cohorts. Adjusted AUC refers to the area under the receiver operating curve for the
full model (PRS, age, sex, diabetes, and ancestry PCs). Crude AUC (in parenthesis) refers to the
area under the receiver operating curve for the PRS predictor alone. Variance explained was
estimated as a Nagelkerke pseudo-R?and refers to the variance in case-control status explained
by the PRS predictor alone. Performance differences in the African-ancestry testing cohort
highlighted in red.

Performance Metrics Yu et al. (JASN 2021) Khan et al. (present study)

Adjusted AUC (Crude AUC), Pseudo R?

European (N case/control = 10,572/8,030) AUC 0.78 (0.61), R?0.035 AUC 0.77 (0.60), R?0.022
African (N case/control = 1,143/1,600) AUC 0.78 (0.55), R?0.010 AUC 0.78 (0.57), R?0.014
Latinx (N case/control = 488/639) AUC 0.87 (0.58), R?0.012 AUC 0.87 (0.57), R?0.011
Asian (N case/control = 98/105) AUC 0.91 (0.58), R?0.010 AUC 0.92 (0.59), R?0.026
OR per SD (95% Cl), P-value
European (N case/control = 10,572/8,030) 1.51 (1.46-1.56), P=6.25E-129 1.38 (1.35-1.40), P=1.58E-83
African (N case/control = 1,143/1,600) 1.28 (1.17-1.41), P=1.07E-07 1.31 (1.09-1.56), P=1.30E-09
Latinx (N case/control = 488/639) 1.45 (1.21-1.73), P=6.77E-05 1.39 (1.22-1.56), P=1.04E-04
Asian (N case/control = 98/105) 1.53 (0.94-2.49), P=8.60E-02 1.90 (1.43-2.37), P=7.00E-03
OR for top 2% (95% Cl), P-value
European (N case/control = 10,572/8,030) 3.60 (2.70-4.79), P=1.25E-18 2.65 (2.02-3.48), P=1.35E-12
African (N case/control = 1,143/1,600) 1.92 (1.03-3.59), P=3.93E-02 2.60 (1.38-4.90), P=3.10E-03
Latinx (N case/control = 488/639) 1.35 (0.44-4.17), P=6.05E-01 3.82 (1.15-12.6), P=2.83E-02
Asian (N case/control = 98/105) 2.92 (0.07-118.0), P=5.70E-01 10.6 (0.58-192.8), P=1.10E-01




