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Abstract  

 

Abdominal magnetic resonance imaging (MRI) represents a non-invasive approach allowing the extraction of 

clinically informative phenotypes. We developed an automated pipeline to segment liver pixels from abdominal 

MRI images and apply published models to approximate fat fraction, extracellular fluid fraction and iron content 

in 40,058 MRIs from the UK Biobank. We then conducted a genome-wide association of these traits using 

imputed variants (N=37,250 individuals, 11,914,698 variants) and exome sequence data (N=35,274 individuals, 

8,287,315 variants). For liver fat we identified 8 novel loci in or near genes MARC1, GCKR, ADH1B, MTTP, 

TRIB1, GPAM, PNPLA2 and APOH. For liver iron we identified 1 novel locus between the genes ASNSD1 and 

SLC40A1, an iron transporter involved in hemochromatosis. For extracellular fluid fraction we identified 6 novel 

loci in or near genes AGMAT, NAT2, MRPL4-S1PR2, FADS1, ABO and HFE, with almost all having prior 

associations to obesity, liver, iron, or lipid traits.  
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Introduction  

 

Chronic liver disease is among the leading causes of morbidity and mortality, is often underdiagnosed and poses 

a substantial unmet clinical need1. Magnetic resonance imaging of the liver is able to capture liver fat and mark 

features of inflammation and fibrosis of the liver in a non-invasive manner and is therefore a powerful tool to 

study the genetic drivers of liver disease. The UK Biobank (UKB) is an ambitious research initiative aiming to 

characterize 500,000 individuals via extensive phenotyping together with genetic information2. A subset of 

100,000 subjects are undergoing multiple MRI sessions of the abdomen and liver3, providing a rich resource to 

study genetics of well measured quantitative liver phenotypes, such as liver fat by proton density fat fraction 

(PDFF), hepatic iron content (HIC) and extracellular fluid fraction (ECF).  

 

PDFF by MRI is considered a gold standard to quantify liver fat and has been demonstrated to be accurate when 

applied to MRI scans from the UKB4. Fatty liver is a key feature of chronic liver conditions such as non-alcoholic 

fatty liver disease (NAFLD) and the buildup of liver fat is an important precursor to steatohepatitis and liver 

fibrosis, which affects approximately 10% off middle-aged adults, and can lead to cirrhosis, hepatocellular 

carcinoma, and death. HIC, or hepatic iron content, marks iron concentrations in the liver. Excess iron, or iron 

overload, is associated with a range of liver conditions and metabolic disorders, including diabetes, high blood 

pressure, and cardiomyopathy5. Wilman and colleagues6 conducted a genome-wide association study (GWAS) of 

UKB MRI-derived liver iron among eight thousand individuals. They reported three genetic variants across HFE 

(2 independent variants) and TMPRSS6 that replicated in an independent dataset. ECF, or extracellular fraction, 

marks water accumulation and has previously shown to correlate with liver inflammation and fibrosis on 

histology7.  

 

In this work, we present an automated workflow (Figure 1 and Methods) to segment the liver from MRI images 

of 40,058 UKB participants and calculate PDFF, ECF and HIC by applying pre-defined mathematical models 8-

10. We build on previous work on the genetics of liver MRI-derived traits by increasing sample size (over forty 

thousand samples) and analyze both rare exome and common imputed variants and report several novel 

associations. 
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Results 

 

Imaging processing to extract liver MRI phenotypes 

 

We developed an automated image processing pipeline to estimate liver fat, iron and extracellular fluid fraction 

by applying pre-defined mathematical models8-10 (Figure 1 and Methods). We applied this pipeline to liver MRI 

images from 40,058 UKB participants. We compared our estimates of PDFF and cT1 phenotypes to those 

calculated by other groups and available directly from the UKB resource in much smaller subsets (<10,000 

subjects) of participants (UKB data fields 22436, 22417). We would not expect perfect agreement due to 

differences in the processing pipelines. The Spearman rank correlation was 0.94 between our PDFF measure and 

that of “Liver_proton_density_fat_fraction (AMRA)” (UKB ID 22436). For cT1 (UKB ID 22417), the correlation 

was 0.88.  

 

Discovery analysis with imputed genetic data 

 

We performed GWAS of PDFF, HIC and ECF using an imputed dataset of 11,914,698 variants and 37,250 

individuals of European ancestry (see Methods). We ran two versions of the analysis the first adjusting for basic 

confounders (sex, age, age-squared, age*sex, top 20 principal components for ancestry, imaging center, imaging 

protocol) which we refer to as the baseline analysis, the second adjusting for additional confounders including 

body mass index (BMI), alcohol and other relevant comorbidity (BMI, BMI-squared, alcohol intake, weight 

loss/gain, diabetes, heart attack, angina, stroke, high blood pressure), which we refer to as the adjusted analysis. 

The inclusion of heritable covariates can bias effect estimates and increase false discovery rates if the variant 

being tested is associated with the covariate, but can also lead to an increase in power11. 

 

Loci with statistically significant variants for each liver trait in the adjusted analysis are shown in Figure 2. The 

baseline analysis without adjustment for alcohol and disease confounders is summarized in Supplementary 

Figures 1-3. We used GCTA-COJO methodology12 to summarize the association results down to a set of 

approximately independent set of markers, and these are reported in Table 1. We used the software FINEMAP13 

to refine these associated loci and estimate the most likely causal variants from the imputed data. Results of these 

analyses are shown in Supplementary Figures 4-5. 
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Figure 1 Summary of automated liver segmentation and derivation of liver image phenotypes. Three distinct 
phenotypes were derived from two abdominal MRIs acquisition, one for estimating fat content and the other a 
quantitative T1 mapping sequence: proton density fat fraction (PDFF), hepatic iron content (HIC) and 
extracellular fluid fraction (ECF, a proxy for liver fibrosis and inflammation). Pixels belonging to the liver were 
segmented using a thresholding approach, Li thresholding for PDFF maps to identify liver tissue, and Otsu 
thresholding for T1 maps to exclude larger vessels (see Methods). PDFF was estimated as the fraction of fat 
signal relative to total fat plus water signal. R2* was converted to HIC by a published linear model. ECF was 
estimated by interpolation from their published table containing grid points of a non-linear numerical model 
describing ECF as a function of T1 (from ShMOLLI MRI) and HIC (from IDEAL MRI), correcting for field 
strength. 
 

 

 

 

1. Input
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Wood et al. 2005, Tunnicliffe et al. 2017

PDFF = FAT/(FAT+WATER)
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Tunnicliffe et al. 2017
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Keep low values (Li threshold: minimum cross entropy)
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Table  1. Sentinel SNPs from imputed GWAS. Independent genome-wide significant associations for PDFF, 
HIC, ECF. Results shown include additional covariate adjustment for BMI, alcohol, and additional covariates. 
Results for models without additional adjustment for BMI, alcohol, and additional covariates. Regional 
association plots are shown in Supplementary Figures 5-7. Association results at the associated loci for a 
carefully selected set of traits are shown in Figure 4. 

Rsid Chr Bp Ref Alt AAF N P Beta SE gene(s) P, no BMI, 
alc. adj.

Beta, no 
BMI, alc. 

adj.,

rs2642438 1 220796686 A G 0.704 37437 3.93E-12 0.040 0.006 MARC1. 7.12E-09 0.041
rs1260326 2 27508073 T C 0.606 37483 3.18E-25 -0.056 0.005 GCKR 1.80E-14 -0.050
rs5835988 2 164645417 T TG 0.407 37602 5.97E-14 -0.040 0.005 GRB14, COBLL1 1.45E-07 -0.034
rs58177947 2 226187680 C A 0.509 28528 1.25E-10 0.039 0.006 (near)NYAP2 1.14E-06 0.036
rs62271373 3 150348753 T A 0.060 36360 5.13E-10 0.070 0.011 TSC22D2 1.72E-07 0.072
rs1229984 4 99318162 T C 0.971 38483 1.06E-10 0.101 0.016 ADH1B 5.04E-10 0.118
rs11274750 4 99551072 0.255 37244 6.46E-11 -0.040 0.006 MTTP 5.00E-08 -0.040
rs1800562 6 26092913 G A 0.074 36415 8.36E-09 0.059 0.010 HFE 1.74E-05 0.053
rs702814 7 28133113 C T 0.508 37432 9.32E-11 -0.034 0.005 JAZF1 7.30E-07 -0.032
rs62465482 7 66151677 G C 0.504 31906 3.64E-09 -0.034 0.006 CRCP/ASL/GUSB 2.31E-05 -0.029
rs112875651 8 125494452 G A 0.392 36653 3.88E-24 -0.055 0.005 TRIB1 1.66E-12 -0.047
rs7029757 9 129804387 G A 0.096 37053 1.70E-09 -0.054 0.009 TOR1B 2.20E-07 -0.056
rs10883451 10 100164661 T C 0.500 37897 3.38E-08 -0.029 0.005 ERLIN1,CHUK 5.30E-06 -0.029
rs4918722 10 112187282 C T 0.726 37694 3.23E-16 -0.048 0.006 GPAM 7.14E-11 -0.046
rs7086979 10 112255259 C T 0.285 37273 5.69E-10 -0.036 0.006 5' of GPAM 1.14E-05 -0.031
rs140201358 11 823586 C G 0.014 37462 1.44E-12 0.157 0.022 PNPLA2,CRACR2B 6.20E-09 0.156
rs796185754 12 124019256 CAA C 0.563 36593 9.00E-09 0.031 0.005 ZNF664, RFLNA 0.00016299 0.025
rs879799930 17 43133637 C CT 0.216 33391 1.72E-08 0.038 0.007 NBR2,BRCA1 1.51E-06 0.040
rs1801689 17 66214462 A C 0.030 37586 4.82E-15 0.122 0.016 APOH 7.22E-11 0.122
rs761269475 19 7223962 TTTG T 0.421 36544 2.45E-08 0.030 0.005 INSR 4.11E-06 0.030
rs58542926 19 19268740 C T 0.073 36482 3.09E-141 0.258 0.010 TM6SF2 4.20E-96 0.256
rs187429064 19 19269704 A G 0.014 33751 5.64E-36 0.293 0.023 TM6SF2 1.37E-20 0.264
rs543667961 19 19317718 T C 0.009 24658 1.23E-25 0.354 0.034 TM6SF2 8.74E-13 0.291
rs429358 19 44908684 T C 0.151 37163 4.17E-27 -0.080 0.007 APOE,TOMM40 8.79E-30 -0.101
rs4806498 19 54171009 T C 0.574 37203 2.37E-10 -0.034 0.005 MBOAT7, TMC4 1.58E-06 -0.031
rs738408 22 43928850 C T 0.214 36039 5.45E-254 0.220 0.006 PNPLA3 4.31E-161 0.211

rs149682241 2 189526237 G C 0.023 37018 1.47E-09 0.145 0.024 ASNSD1 6.63E-10 0.146
rs61487110 2 189652952 G A 0.773 37585 8.38E-11 0.055 0.008 ASNSD1 1.06E-10 0.054
rs70977239 6 25897971 G GA 0.971 23187 4.61E-17 -0.224 0.027 HFE 1.85E-17 -0.225
rs1799945 6 26090951 C G 0.150 37059 7.40E-72 0.178 0.010 HFE 4.33E-72 0.177
rs1800562 6 26092913 G A 0.074 35880 8.82E-118 0.317 0.014 HFE 1.29E-114 0.311
rs539633309 6 26118327 0.713 25456 2.29E-70 -0.168 0.009 HFE 1.80E-67 -0.163
rs190942379 6 26910015 A G 0.063 23275 1.60E-33 0.222 0.018 HFE 1.67E-32 0.217
rs191672352 6 27010208 G T 0.031 26793 1.18E-12 0.173 0.024 HFE 3.36E-13 0.175
rs562180185 6 28831535 C T 0.026 26008 1.07E-12 0.191 0.027 HFE 2.02E-13 0.196
rs778393561 6 32657458 A G 0.348 28798 1.36E-11 -0.057 0.008 HFE 8.47E-12 -0.057
rs855791 22 37066896 A G 0.565 37014 3.36E-36 0.090 0.007 KCTD17,TMPRSS6 1.07E-38 0.093

rs10159271 1 15586626 G A 0.544 36858 1.52E-10 0.042 0.006 AGMAT 2.27E-08 0.039
rs576957427 1 219927155 CA C 0.055 35779 9.08E-20 0.131 0.014 EPRS,MARC1,SLC30A10 2.18E-16 0.126
rs2789796 1 219986920 T C 0.703 37466 7.59E-06 -0.031 0.007 EPRS,MARC1,SLC30A10 3.93E-05 -0.031
rs12123589 1 220844364 A G 0.209 31457 3.33E-08 -0.047 0.009 EPRS,MARC1,SLC30A10 3.51E-08 -0.050
rs200537727 4 101759883 C T 0.041 25325 3.26E-98 0.409 0.019 BANK1,SLC39A8 2.09E-90 0.416
rs189325813 4 101926985 C T 0.007 22338 4.87E-48 0.744 0.051 BANK1,SLC39A8 1.86E-43 0.747
rs35225200 4 102225731 A C 0.079 32911 7.06E-297 0.457 0.012 BANK1,SLC39A8 5.87E-279 0.469
rs112519623 4 102263082 G A 0.016 36398 2.71E-23 0.260 0.026 BANK1,SLC39A8 8.49E-23 0.272
rs13107325 4 102267552 C T 0.070 28232 2.23E-307 0.528 0.014 BANK1,SLC39A8 2.23E-307 0.539
rs62327954 4 102310770 A G 0.123 35627 2.13E-19 -0.090 0.010 BANK1,SLC39A8 9.93E-19 -0.094
rs79747645 4 102345323 G A 0.019 29623 4.45E-13 -0.189 0.026 BANK1,SLC39A8 1.95E-10 -0.175
rs537107181 4 102372581 T C 0.012 24347 4.02E-60 0.592 0.036 BANK1,SLC39A8 5.64E-58 0.616
rs80215559 6 25917997 T C 0.073 36585 7.48E-11 -0.081 0.012 HFE 9.21E-11 -0.086
rs375701159 6 26118309 0.815 32600 8.88E-17 0.074 0.009 HFE 2.14E-12 0.066
rs721399 8 18401856 C T 0.717 37837 5.36E-12 0.049 0.007 NAT2 4.96E-09 0.044
rs61457395 9 133270497 G GA 0.316 37624 1.85E-21 0.065 0.007 ABO 2.03E-19 0.066
rs174556 11 61813163 C T 0.311 37777 1.55E-12 0.049 0.007 FADS2,FADS1 1.09E-10 0.047
rs111723834 14 24103723 G A 0.016 37287 5.75E-42 0.347 0.026 PCK2 2.99E-37 0.346
rs111558803 14 24171524 C A 0.005 26735 4.65E-24 0.538 0.053 PCK2 3.72E-22 0.545
rs137875818 14 32583925 T C 0.021 31395 3.42E-08 -0.136 0.025 AKAP6 3.66E-05 -0.108
rs796156584 18 44986618 AT A 0.890 32985 3.73E-08 -0.060 0.011 SETBP1 2.09E-06 -0.055
rs57026311 19 10238949 CA C 0.190 36668 4.23E-09 -0.049 0.008 MRPL4,S1PR2 7.54E-08 -0.047
rs58542926 19 19268740 C T 0.073 37393 1.99E-19 0.111 0.012 TM6SF2 4.42E-18 0.114
rs679574 19 48702851 C G 0.507 37816 7.06E-12 0.044 0.006 FUT2 5.40E-10 0.042
rs6000553 22 37073152 A G 0.535 37046 9.84E-15 -0.050 0.006 TMPRSS6 3.37E-14 -0.052
rs6519133 22 38700597 T C 0.394 37205 3.95E-08 -0.036 0.007 JOSD1 1.39E-06 -0.011
rs738408 22 43928850 C T 0.214 37691 2.75E-33 0.094 0.008 PNPLA3 1.31E-27 0.090

delAGATCAGTTTGGTCAA

PDFF

HIC

ECF

delTTATAGTTCAGAGAAT

delAAAGATCAGTTTGGT
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For PDFF we identified 11 associated loci in the baseline analyses (Table 1). These included previously reported 

risk loci (PNPLA3, TM6SF2, APOE/TOMM40) for liver fat and related traits14 15, and 8 novel loci that highlight 

a central theme for lipid metabolism and in particular triglyceride generation and storage in regulating liver fat 

accumulation in humans. The SNP rs4918722 lies in the intronic region of GPAM, encoding an enzyme 

responsible for catalysis in phospholipid biosynthesis and is responsible for the first step in triglycerides 

synthesis. Rats overexpressing GPAM in the hepatocytes show steatosis and hepatic insulin resistance in absence 

of obesity or high fat diet16. On the other hand, GPAM knockout mice are protected against diet-induced steatosis 

by reducing triglyceride synthesis and storage17. The missense SNP rs1801689 is situated in APOH, which 

encodes for beta-2 glycoprotein that plays a role in various physiological processes including hemostasis and lipid 

metabolism such as triglyceride-rich lipoprotein clearance18,19. APOH is exclusively expressed in the liver. The 

intergenic SNP rs112875651 lies near TRIB1 (Tribbles-1), another gene involved in hepatic lipid metabolism and 

lipid homeostasis, the locus was first found to be associated with circulating lipid levels, primarily triglycerides 

levels20. The missense SNP rs140201358 is situated in PNPLA2, encoding for a key enzyme for intracellular 

hydrolysis of stored triglyceride in the liver (adipose triglyceride lipase, ATGL), and is closely related to 

PNPLA3. ATGL‐deficient humans are presenting with lipid myopathy, in mice, generalized ATGL deficiency 

causes triglyceride deposition and progressive hepatic steatosis21. 

 

The missense SNP rs2642438 in MARC1 was previously found to be protective for all cause 

cirrhosis22, decreased severity of NAFLD and hepatic lipid composition23. The missense SNP rs1229984 in the 

ADH1B gene, encoding alcohol dehydrogenase 1B, is a key enzyme in ethanol metabolism and reflecting alcohol-

induced fatty liver. This SNP has recently been shown to modify the risk of NASH and fibrosis in adults with 

NAFLD regardless of alcohol consumption status24. The missense SNP rs1260326 in GCKR is well known to be 

associated with triglyceride levels25 and non-alcoholic fatty liver disease26. GCKR encodes for “glucokinase 

regulatory protein” which regulates glucokinase, a phosphorylating enzyme that modulates hepatic glucose 

metabolism and hepatic lipogenesis27. Our analysis identified common variant associations in and around the 

MTTP gene, encoding the microsomal triglyceride transfer protein, that are characterized by two causal sets in a 

fine-mapping analysis (Supplementary Figure 4). 

 

Our analysis of PDFF that conditions on BMI, alcohol and disease variables also identified the loci GRB14-

COBLL1, JAZF1, TOR1B, VKORC1L1-GUSB-ASL, NYAP2, TSC22D2, ZNF664-RFLNA, HFE (Table 1). 

Most of these loci (COBLL1, JAZF1, NYAP2, TSC22D2, ZNF664, ERLIN1, INSR (insulin receptor)) have lipid, 

BMI, T2D or waist-hip ratio associations in the GWAS catalog (see URLs). The SNP rs4806498 near MBOAT7 

has been previously identified by other studies on liver fat26,28-31. 
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(a) 

 
(b) 

 
(c) 

 
Figure 2 Manhattan plots for (a) PDFF, (b) HIC, (c) ECF. Results shown for GWAS of imputed data and include 
additional covariate adjustment for BMI and alcohol. Nearest genes are labeled.  
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We note that rs62465482 in/near the gene ASL which encodes argininosuccinate lyase, and has been proposed as 

a superior biomarker to AST and ALT for the diagnosis of liver disease32. Fine mapping identified one credible 

interval of 629 variants spanning the interval chr7:65,719,502-67,229,875, with rs62465482 having the highest 

posterior probability of being causal. The nearby gene VKORC1L1 encodes an enzyme important in the vitamin 

K cycle. In a recent publication, Vkorc1l1 mouse knockouts displayed a considerably lower fat to body weight 

ratio, substantially decreased plasma leptin, and significantly underdeveloped white adipose tissue, suggesting 

that Vkorc1l1 promotes adipogenesis and possibly obesity and downregulation of Vkorc1l1 increases intracellular 

vitamin K2 level and impedes preadipocyte differentiation33. An additional locus implicated for PDFF is the gene 

HFE, a gene well-known to reflect iron levels.  

 

Not adjusting for BMI or alcohol had a profound effect on the significance of many of the associated loci with 

(Table 1, Supplementary Figure 2), with most becoming no longer genome-wide significant. Several loci were 

not genome-wide significant in the base model but were in the model with additional covariates, by at least five 

orders of magnitude. These loci include variants in intervals spanning chr2:164645417-164811133 (COBLL1), 

chr2:27412596-27636484 (GCKR), chr8:125464631-125495147 (adjacent to TRIB1), chr10:112266288 

(upstream of TECTB), chr19:18941011-20369092 (TM6SF2 and others), and chr22:43929868-44016312 

(PNPLA3). The exception is APOE-TOMM40, with a p-value decreasing from 4.2x10-27 to 8.8x10-30 and effect 

estimate in standard deviation units going from -0.08 to -0.1 (not shown).   

 

To examine the similarities and differences between SNPs associated with PDFF we carried out a clustering 

analysis of the association signals across a range of 52 traits. For each SNP-trait association we calculated the 

proportion of variance explained (PVE), either on the linear or liability scale. We rescaled the PVEs across the 

traits for each SNP using the maximum value, and then signed the PVEs according to direction of effect. We then 

applied bi-clustering to the resulting matrix of signed PVE estimates and visualized the result as heatmap in 

Figure 3. This figure highlights the widespread pleiotropy across the majority of PDFF associated variants. 

Notably, the majority of the PDFF associated loci do have a primary effect on PDFF, with some exceptions such 

as ADH1B on alcoholic liver disease, ERLIN1 on alanine transferase, APOE on c-reactive protein, TRIB1 and 

GCKR on triglyceride levels.  

 

We also examined variants in our data that were previously reported to affect liver fat or risk of NAFLD 

(Supplementary Table 1). At the level of genome-wide significance (5x10-8), we replicate associations to 

GCKR30,31, NCAN26, MBOAT7-TMC428,29 and ERLIN134. Other known loci just below genome-wide significant 

associations but significant after multiple testing were PPP1R3B (P=2.7x10-6) and CHUK (P=1.3x10-7)26,30. 
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CHUK is adjacent to ERLIN1 which is genome-wide significant in our data; fine-mapping of the ERLIN1 locus 

revealed most likely two credible intervals: chr7:100057584-100279430 encompassing ERLIN1 and CHUK (85 

markers, mean absolute Pearson correlation among genetic variants in the credible set, computed from the same 

individual-level genotype that was used to generate the summary statistics (mean LD = 0.86), and 

chr10:99998189-100009635 encompassing DNMBP (852 markers, mean LD 0.08). Consistent with previous 

reports we do not see associations for HSD17B13, likely reflecting the role of the splice variant in affecting 

progression from steatosis to more severe liver pathology, but not in modulating fat fraction in the liver35-38.  

 

For HIC, we identify 3 distinct genome-wide significant loci (Figure 2). The two associations in genes HFE and 

TMPRSS6 have been previously reported6. We identify one novel locus (rs149682241, between ASNSD1 and 

SLC40A1, Supplementary Figures 5a-c). The variant rs149682241 lies in the promoter region of SLC40A1, 

previously known as ferroportin, that has been implicated in hemochromatosis, Type 439. The locus is a gene-

dense region with multiple other potential causal candidate genes: a variant (rs6756571) in high LD (r2=0.96) 

with rs149682241 is a top eQTL for ORMDL1 in GTeX liver tissue (P=1.9x10-18), a gene approximately 150Kb 

from this locus. PMS1, a gene adjacent to ORMDL1 and 200Kb from the index variant was associated with 

ferritin levels in a GWAS of Chinese individuals40. Fine-mapping of this locus revealed two likely signals, 

chr2:189640971-189656328 (9 markers, mean LD 0.99, promoter region of ASNSD1) and chr2:189524434-

189544472 (7 markers, mean LD 0.96, downstream of SLC40A1) (Supplementary Figure 5c). Neither ASNSD1 

nor SLC40A1 have, to our knowledge, been linked by GWAS to iron or hepatic iron levels, though they have 

been associated with red blood cell, hematocrit and hemoglobin traits in the GWAS catalog (see URLs). In 

contrast to PDFF, not adjusting HIC for BMI, alcohol or additional ‘extra’ disease covariates generally improved 

significance of associated variants (Table 1). All loci had a primary effect on HIC and red blood cell related traits, 

except for the locus encompassing ASNSD1 and SLC40A1 showing more specificity for HIC and T1 alone 

(Figure 3). One marker (2:27517013:CT:C) at GCKR was significant at 5x10-8 but this association was not 

supported by other genetic variants (Supplemental Figure 5d). 
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Figure 3. Phenome-wide association results for the associated loci. The heatmap shows the proportion of variance 
explained (PVE) across traits of interest by top sentinel variants from the analysis of (a) PDFF, (b) HIC and (c) 
ECF, signed by the direction of effect. The PVE values were normalized to have maximum at 1 and then signed 
depending on the direction of effect to compare association patterns between variants. Red colors indicate positive 
associations between the trait increasing allele and the other diseases or traits, blue colors indicate inverse 
associations and white colors indicate non-significant associations (P>0.005).  
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For ECF, we identify 16 and 12 distinct loci in adjusted and baseline analyses (Table 1, Figure 2, Supplementary 

Figure 6). In our baseline analysis there are 6 novel loci in or near genes AGMAT, NAT2, MRPL4-S1PR2, 

FADS1, ABO and HFE. As we see for PDFF, most loci are more significant when adjusted for BMI or alcohol 

(Table 1). Almost all these loci have prior associations to obesity, liver, iron and/or lipid traits, including 

PNPLA3, TM6SF2, TMPRSS6, HFE, FUT2, NAT2, MRPL4-S1PR2, FADS1 and SETBP1, which are also 

observed in our phenome wide analyses (Figure 3). A locus that departs from this theme is AGMAT which has 

been linked to urate levels, glomerular filtration rate and alcoholic chronic pancreatitis (see GWAS catalog and 

URLs). Fine-mapping of this locus reveals one credible interval of 68 genetic variants (chr1:15487474-15597035, 

mean LD 0.96), encompassing DNAJC16 and AGMAT, top genetic variant being in the 5’ region of AGMAT. 

 

The SNP rs721399 is near the gene NAT2 which is a phase II drug metabolizing enzyme responsible for 

detoxification of many commonly used hydrazine and arylamine drugs as well as common carcinogens 41. The 

observed associations in the HFE gene with ECF is expected since the encoded protein of HFE is a master 

regulator of iron metabolism and ECF is a measure corrected for liver iron31. 

 

The genes PCK2, SLC39A8, TM6SF2, PNPLA3, TMPRSS6 and SLC30A10 were also identified by Parisinos 

and colleagues in a GWAS of cT131. Fine mapping of the SLC30A10 association (Supplementary Figure 6e) 

reveals three credible intervals, two of which were at SLC30A10 and the third at MARC2-MARC1-HLX. 

SLC39A8 has been linked to schizophrenia, BMI, blood pressure cholesterol, blood manganese and, by extension, 

idiopathic scoliosis42 and loss-of-function mutations at the gene can cause undetectable serum manganese and 

disorders of glycosylation43. The top variant at this locus, rs13107325, has recently been implicated in the 

disruption of manganese homeostasis and intestinal barrier integrity44. Manganese is a cofactor for many 

enzymes, such as glycosyltransferases, and disruption to manganese transport by haploinsufficiency of SLC39A8 

function might thus help cause a range of disorders of glycosylation. The liver has been implicated in 

approximately 22% of congenital disorders of glycosylation45, with symptoms ranging from anemia to fibrosis to 

hypoglycemia. These fall into liver specific and non-specific groups, see Marques-da-Silva and colleagues for 

details45.    

 

The association at JOSD1 (rs6519133), which is only genome-wide significant in our adjusted analysis, was 

reported in a study of C-reactive protein (CRP)46. CRP is synthesized by the liver in response to inflammation, it 

is a general marker for inflammatory diseases and an independent predictor of coronary events47. The strong 

associations between JOSD1 (rs6519133), CRP, and ECF may point to an underlying molecular process involving 

inflammation or infection of the liver. Fine-mapping of the JOSD1 locus revealed one likely credible region: 
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chr22:38525079-38745595, 240 variants, mean LD 0.9, spanning DMC1-SUN2, consistent with Supplementary 

Figure 6o and not offering a clear indication of any key gene(s) driving the signal.  

 

PDFF is a more powerful marker to detect genetic loci for liver fat than ALT or AST  

 

Elevated levels of the enzymes alanine transaminase (ALT) and aspartate transaminase (AST) are indicative of 

(subclinical) liver damage caused by fat build up in the liver. To provide insights into the relationship between 

increased liver fat and elevated AST or ALT levels, we carried out GWAS experiments of AST and ALT in the 

same 32,726 individuals with PDFF measurements. Using a dataset of exome and array variants (PDFF values 

for 32,726 individuals, AST values for 31,411 individuals and ALT values for 31,499 individuals). Figure 5 

highlights top associations for each of these traits. We note 3-20x stronger associations at the loci PNPLA3, 

GPAM, MARC1(MTARC1), TM6SF2, APOE and GCKR (Supplementary Table 3). For PNPLA3, the p-value 

was at least 7x stronger in PDFF compared to AST or ALT. Similarly, for TM6SF2 we see at least 10 orders of 

magnitude stronger p-values in PDFF. For more recently discovered candidates of interest in liver disease, GPAM 

and MTARC1(MARC1), we see at least 2 orders of magnitude stronger p-values for PDFF. APOE and GPAM 

signals appear to be specific to PDFF, and a number of signals appear to be specific for AST and ALT.  

 

Polygenic risk scores predict liver disease traits in an independent dataset 

 

We generated polygenic risk scores (PRS) from lead, COJO-independent and genome-wide significant associated 

genetic variants for PDFF (N=24 markers), ECF (N=23 markers) and HIC (N=7 markers) using the –score option 

in PLINK. We scored these variants in data from the Geisinger Health System (N=141,971 individuals), a merged 

dataset of exome and GWAS variants imputed into HRC with imputation quality 0.3 and above (22,258,434 total 

variants)). We then fitted a logistic model of the binary traits against the risk score, adjusting for on sex, age, age-

squared and 4 principal components. 

 

The PDFF PRS was associated with a range of non-alcoholic liver disease phenotypes (Table 2). The strongest 

associations occurred with the NAFLD, liver fibrosis and cirrhosis diagnoses. One standard deviation genetically 

determined higher PDFF was associated with 5.33 (95% CI 4.71-6.04) higher odds of NAFLD and steatohepatitis. 

There were also significant associations with liver cell carcinoma, Type 2 Diabetes and iron metabolism 

phenotypes. The ECF PRS had a similar, albeit less strong, pattern of association with the disease phenotypes. 

The HIC PRS exhibited the strongest association with ICD10 code E831 indicating individuals diagnosed with 
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hemochromatosis (p-value = 7.8e-264, OR = 63.9[50.1-81.5]), other associations where with disorders of mineral 

metabolism and anemias.  

(a) 

 
(b) 

 
(c) 

 
Figure 5. Comparisons of downsampled GWAS between (a) ALT, (b) AST, (c) PDFF.   
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Table 2. Polygenic scoring of select traits in Geisinger Health System (GHS) data. A genetic risk score was 
constructed from independent genome-wide significant genetic variants from PDFF, ECF and HIC GWAS and 
scores were derived in genetic data from GHS.    
 

Analysis of rare variants from exome data 

 

For the exome data, we tested single variants and performed rare variant burden tests for all traits tested, using a 

significance threshold of P<=4.3x10-7 48,49 (Supplementary Methods). Exome-wide significant results for rare 

variants are shown in Table 3. Among these single markers, we identify 2 different loss-of-function mutations at 

PCK2 (rs61752842 and rs138881435, for ECF) and one at APOB (rs982371659, for PDFF). The enrichment of 

inactivating mutations at APOB associating to liver fat was also identified by a recent report35 and PCK2 was 

reported by Parisinos and colleagues in a GWAS of cT131. APOB is reported to associate to several lipid traits in 

the GWAS (see URLs). We identify a missense mutation, rs188273166, at SLC30A10 for ECF (also reported by 

Parisinos and colleagues31) and a splice region association, rs200744015, at TMEM161A for PDFF. The gene 

TMEM161A, is located adjacent to TM6SF2 and unlikely to reflect an independent locus, supported by fine-

mapping of common variants that revealed 2 credible intervals near TM6SF2: one variant - rs58542926 - at 

TM6SF2, and an interval of two variants chr19:19269704-19285807 in the 5’ region of TM6SF2 and overlapping 

SUGP1 (mean LD 0.99) (Supplementary Figure 4b). Similarly, MAU2 appears to be part of the TM6SF2 

associated region. Finally, we note associations for variants at PHLPP2 and AP1G1 for ECF and OBSCN and 

SFT2D1 for PDFF. PHLPP2 has been implicated in BMI50 and AP1G1 has recently been implicated in HDL 

levels51. OBSCN does not appear to have an obvious connection to liver fat, though RNA-seq has implicated 

OBSCN among 1,185 genes with significant differences between subcutaneous and visceral fat52. A recent study 

of glucose-induced changes in gene expression in pancreatic islets, specifically gene expression in individuals 

with normal glucose tolerance versus individuals with hyperglycemia, highlighted increased expression of 

Phenotype Description Case N Control N Pvalue OR Conf2.5 Conf97.5 Pvalue OR Conf2.5 Conf97.5 Pvalue OR Conf2.5 Conf97.5
Non-Alcoholic Fatty Liver Disease and Steatohepatitis RGC Composite Definition 5681 74303 1.53E-152 5.33 4.71 6.04 1.06E-11 1.42 1.28 1.57 0.6887 0.97 0.84 1.12
ICD 9 : 571 - Chronic liver disease and cirrhosis 10955 97683 9.53E-146 3.39 3.09 3.72 6.63E-14 1.33 1.24 1.44 0.4073 0.96 0.86 1.06
Non-Alcoholic Liver Disease RGC Composite Definition 9357 74303 9.42E-128 3.47 3.14 3.84 6.78E-12 1.33 1.23 1.45 0.4104 0.95 0.85 1.07
ICD 10 : K758 - Other specified inflammatory liver diseases 1435 117880 1.42E-98 11.77 9.35 14.79 2.30E-12 1.94 1.61 2.34 0.9794 1.00 0.76 1.33
ICD 10 : K75 - Other inflammatory liver diseases 2404 117880 1.09E-76 5.64 4.69 6.77 7.70E-09 1.55 1.33 1.80 0.4902 0.93 0.74 1.15
Non-Alcoholic Liver Cirrhosis RGC Definition 1166 74303 5.16E-72 10.49 8.11 13.55 0.0006 1.46 1.17 1.80 0.1704 1.24 0.91 1.68
ICD 10 : K74 - Fibrosis and cirrhosis of liver 1992 118231 5.78E-66 5.81 4.75 7.10 4.58E-05 1.41 1.19 1.66 0.1238 1.20 0.95 1.52
ICD 10 : K746 - Other and unspecified cirrhosis of liver 1740 118231 5.35E-62 6.16 4.97 7.63 0.0005 1.37 1.15 1.64 0.0508 1.28 1.00 1.65
ICD 10 : E11 - Type 2 Diabetes RGC_T2D_new 31178 96581 2.65E-27 1.43 1.34 1.52 5.62E-06 1.13 1.07 1.19 0.2270 0.96 0.89 1.03
Alcoholic Liver Disease RGC Composite Definition 623 74303 4.05E-26 6.78 4.75 9.65 0.1120 1.27 0.94 1.71 0.3483 0.81 0.52 1.25
ICD 10 : K703 - Alcoholic cirrhosis of liver 659 118508 1.43E-24 6.06 4.29 8.55 0.0556 1.33 0.99 1.76 0.6626 0.91 0.60 1.38
Type 2 Diabetes by RGC EMR Phenotype Algorithm 28155 68554 1.36E-23 1.44 1.34 1.55 6.19E-06 1.14 1.08 1.21 0.0200 0.91 0.84 0.98
Type 2 Diabetes by RGC-modified eMERGE Network EMR Phenotype Algorithm 22520 90681 1.18E-20 1.42 1.32 1.52 8.72E-05 1.13 1.06 1.19 0.4974 0.97 0.89 1.06
ICD 10 : C220 - Liver cell carcinoma 177 128883 1.56E-13 11.04 5.80 20.76 0.4410 1.25 0.70 2.15 0.0967 1.89 0.87 3.93
ICD 10 : E831 - Disorders of iron metabolism 972 89150 2.04E-12 2.85 2.13 3.81 6.66E-06 0.54 0.41 0.70 7.76E-246 63.89 50.07 81.47
ICD 10 : E83 - Disorders of mineral metabolism 7430 89150 2.19E-08 1.39 1.24 1.56 0.1009 0.92 0.84 1.02 1.89E-40 2.28 2.02 2.57
ICD 10 : K740 - Hepatic fibrosis 224 118231 0.0017 2.67 1.44 4.91 0.5269 1.18 0.70 1.92 0.8755 0.94 0.45 1.90
ICD 10 : K743 - PBC 92 118231 0.0058 3.74 1.44 9.43 0.0243 2.25 1.08 4.44 0.7426 0.83 0.25 2.47
ICD 10 : D64 - Other anemias 25495 92350 0.0370 1.08 1.00 1.15 0.4512 1.02 0.97 1.08 1.35E-32 0.61 0.56 0.66
ICD 10 : D649 - Anemia, unspecified 25098 92350 0.0404 1.08 1.00 1.15 0.4706 1.02 0.96 1.08 1.26E-32 0.61 0.56 0.66
ICD 10 : K754 - Autoimmune hepatitis 168 117880 0.1427 1.72 0.83 3.51 0.0605 1.69 0.96 2.89 0.6362 0.82 0.35 1.84
ICD 10 : D509 - Iron deficiency anemia, unspecified 11924 108801 0.1580 0.94 0.85 1.03 0.1040 1.06 0.99 1.14 1.95E-19 0.61 0.54 0.68
Atopy RGC Composite Strict Definition 15038 49105 0.1588 1.07 0.98 1.17 0.3989 1.03 0.96 1.11 0.0739 1.10 0.99 1.21
Coronary Artery Disease by RGC EMR Phenotype Algorithm 20054 104372 0.3725 1.04 0.96 1.12 0.7887 0.99 0.93 1.06 0.0013 0.86 0.79 0.94
ICD 10 : B18 - Viral hepatitis 2603 128217 0.3800 0.92 0.76 1.11 0.6600 0.97 0.83 1.13 0.3902 0.91 0.73 1.13
ICD 10 : M62 - Other disorders of muscle 13209 101995 0.3984 1.04 0.95 1.13 0.0310 1.08 1.01 1.16 0.7766 0.99 0.89 1.09
ICD 10 : B19 - Viral hepatitis 1481 128154 0.4008 0.90 0.70 1.15 0.8081 1.03 0.84 1.25 0.5827 0.92 0.69 1.22
ICD 10 : D50 - Iron deficiency anemia 14192 108801 0.5987 0.98 0.90 1.06 0.1367 1.05 0.98 1.13 1.63E-19 0.63 0.57 0.70

PDFF ECF HIC
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SFT2D1 between groups that was negatively correlated with insulin secretion53. Cross trait analyses using these 

variants are shown in Supplemental Figure 7. 

 

 
Table 3. Exome-wide significant rare variants in the exome dataset. 

 

Among gene-based burden tests, we see significant associations to PDFF for the genes APOH and APOB, also 

identified in the exome (APOB) and GWAS (APOH) single marker analysis. For ECF, we see associations for 

PCK2, SLC39A8, SLC30A10 and BDH2. SLC30A10 is a manganese transporter and has recently been 

implicated in liver health54. Autosomal mutations in SLC30A10 are linked to hypermanganesemia with dystonia, 

polycythemia, and cirrhosis (HMDPC)55 and mutant zebrafish models developed steatosis, liver fibrosis, and 

polycythemia accompanied by increased epo expression56. BDH2 is downregulated in hepatocellular carcinoma57 

and has a role in iron homeostasis and affinity for ketone bodies58-60. However, it is likely the BDH2 signal is 

reflecting associations to ECF at the nearby gene SLC39A8 – fine-mapping revealed 6 credible intervals from 

chr4:99158072-105359633, four of which (4:102267552_C_T, rs112519623, rs79747645, chr4:102310770-

102347606 (13 markers, mean LD 0.99) spanned SLC39A8, with two additional broad regions chr4:99163742-

105342002 (888 markers, mean LD 0.07) and chr4:99318162-104767470 (132 markers, mean LD 0.58). Results 

for rare variant burden tests are shown in Table 4. Cross trait analyses using these genetic variants are shown in 

Supplemental Figure 8. 

For several loci of interest with rare or common variant associations (SLC30A10, PCK2, TMEM161A, 

APOB, BDH2), we compared ECF and PDFF images between random selections of carrier and non-carrier groups 

but did not observe clear visual differences between them (data not shown). 

 

 

Trait Chr Pos Ref Alt rsID P Effect MAF MAC variantEffect variantEffectGene
ECF 1 219928157 G A rs188273166 5.06E-21 1.089 8.08E-04 57 missense SLC30A10
ECF 14 24096930 C G rs61752842 1.60E-09 0.314 3.99E-03 280 stop_gained PCK2
ECF 14 24100214 G T rs138881435 1.40E-10 0.428 2.44E-03 172 splice_donor,intronic PCK2,NRL
ECF 14 24322263 C T rs112742471 2.18E-08 0.296 3.80E-03 265 downstream,intronic LTB4R,ADCY4
ECF 16 71641052 C T rs13337162 9.12E-08 -1.131 2.41E-04 17 downstream,3_prime_UTR PHLPP2,MARVELD3
ECF 16 71669349 A G rs11075896 6.54E-08 -1.179 2.27E-04 16 synonymous PHLPP2
ECF 16 71748444 T C rs28487278 6.54E-08 -1.179 2.27E-04 16 upstream AP1G1
ECF 16 71753809 T C rs9933587 6.54E-08 -1.179 2.27E-04 16 intronic AP1G1
ECF 16 71756129 T C rs34113755 6.54E-08 -1.179 2.27E-04 16 synonymous AP1G1
ECF 16 71789541 A T rs7191105 6.54E-08 -1.179 2.27E-04 16 intronic AP1G1
PDFF 1 228224628 A G rs202097101 3.15E-07 1.636 7.09E-05 5 synonymous OBSCN
PDFF 2 21006019 CA C rs982371659 4.24E-07 1.619 7.09E-05 5 frameshift APOB
PDFF 6 166324496 C T rs750742856 2.33E-07 1.51 8.50E-05 6 intronic SFT2D1
PDFF 19 19121300 A G rs200744015 1.88E-07 0.204 4.82E-03 340 splice_region TMEM161A
PDFF 19 19271164 G A rs144821371 2.05E-10 0.296 3.40E-03 240 intronic TM6SF2
PDFF 19 19348800 T G rs188840061 1.99E-10 0.282 3.77E-03 266 intronic MAU2
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Table 4. Exome-wide significant rare variant burden tests in the exome dataset  

 

Discussion 

 

To gain more insights into the genetics of liver fat, iron and inflammation, we characterized liver MRI images 

from the UKB and conducted genetic association studies. We extracted biologically meaningful, quantitative 

traits – fat fraction, fluid fraction and iron content – from thousands of liver MRI images. Genome- and exome-

wide analyses was performed on these traits, confirming previously published associations and identify several 

new ones that provide insights into genetic factors underlying fat, iron content and inflammation in the liver. 

These analyses identified 11 genetic loci for liver fat by PDFF, 3 genetic loci for iron overload by HIC and 16 

genetic loci for liver inflammation by ECF. These results permit several conclusions. 

 

First, through genetic associations we confirm previously hypothesized biological mechanisms that contribute to 

liver diseases. For liver fat we identified 8 novel loci in or near genes containing MARC1, GCKR, ADH1B, 

MTTP, TRIB1, GPAM, PNPLA2 and APOH, that highlight a central theme for lipid metabolism and in 

particular triglyceride generation and storage in regulating liver fat accumulation in humans.  For example, the 

MTTP locus where loss of function MTTP mutations cause autosomal recessive forms of abetalipoproteinemia 

(MIM: 200100), while loss of function APOB mutations cause co-dominantly inherited forms of familial 

hypobetalipoproteinemia type 161. Genetic loss of function of these genes or the pharmacological inhibition of 

their gene products 62 results in the inability to assemble and secrete liver-synthesized apolipoprotein B-containing 

lipid particles, resulting in liver fat accumulation and damage. A separate mechanism contributing to liver fat 

accumulation was illustrated by loci containing genes that are involved in fat distribution and insulin resistance 

due to implicating impaired peripheral adipose storage63-67. These include the TRIB1, GRB14/COBLL1, PNPLA2 

and INSR loci. These associations suggest that individuals who carry alleles associated with an impaired ability 

to store fat in peripheral adipose compartments, develop more substantial ectopic fat deposition in the liver 68. 

ECF Chr Start End geneName EnsemblGeneId Mask P Effect MAF MAC
ECF 1 219915448 219928440 SLC30A10 ENSG00000196660 M3.1 2.96E-11 0.671 0.00106 75
ECF 1 219915448 219928440 SLC30A10 ENSG00000196660 M3.5 2.96E-11 0.671 0.00106 75
ECF 4 102253421 102344662 SLC39A8 ENSG00000138821 M3.5 9.56E-27 0.283 0.016 1138
ECF 4 103079701 103096254 BDH2 ENSG00000164039 M3.1 3.99E-08 0.19 0.00943 663
ECF 14 24094068 24103964 PCK2 ENSG00000100889 M3.1 5.23E-25 0.287 0.014 1011
ECF 14 24094068 24103964 PCK2 ENSG00000100889 M1.1 3.78E-22 0.325 0.00975 687
PDFF 2 21001729 21043945 APOB ENSG00000084674 M1.001 7.43E-12 0.694 0.000709 50
PDFF 2 21001729 21043945 APOB ENSG00000084674 M1.01 7.43E-12 0.694 0.000709 50
PDFF 2 21001729 21043945 APOB ENSG00000084674 M1.1 7.43E-12 0.694 0.000709 50
PDFF 2 21001729 21043945 APOB ENSG00000084674 M3.001 6.15E-09 0.291 0.00292 206
PDFF 17 66212132 66229379 APOH ENSG00000091583 M3.5 3.51E-12 0.109 0.031 2128
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Furthermore, by studying the ECF phenotype we provide insights into factors leading to liver inflammation such 

as excess liver fat, as illustrated by the PNPLA3 locus and metal accumulation, as illustrated by the HFE locus.  

 

Second, precisely measuring the genetic analyses of quantitative liver imaging traits improves our understanding 

of the common genetic basis of liver disease. The strength of our study lies in the precise measurements of liver 

MRI data. Our approach was superior to previous efforts. For example Parisinos and colleagues 31 conducted a 

GWAS on cT1, a method to grade the severity of steatohepatitis and liver fibrosis, across only fifteen thousand 

individuals, reporting six independent genome-wide significant associations – four at SLC30A10 and one at 

TM6SF2 and PNPLA3. Haas and colleagues35 performed a GWAS of liver fat in UKB by training a deep learning 

model on publicly available liver fat estimates for 4,511 UKB individuals, produced by Perspectum Diagnostics4, 

and estimating fat fraction in remaining individuals with imaging data. Some of the effect sizes that we observed 

for liver fat loci were larger compared to Haas et al, suggesting our approach more precisely measured liver fat 

from the MRI (Supplementary Table 1). To this notion, liver-fat related loci such as those implicating PNPLA3 

and GPAM, analyses of liver imaging phenotypes (particularly PDFF) had several orders of magnitude stronger 

statistical evidence of association than analyses of proxy traits such as liver transaminases. These observations, 

together with the finding of an association between liver imaging PRSs and liver disease outcomes, and the novel 

associations reported in this study suggest that the expansion of genetic data on imaging derived liver phenotypes 

will be a valuable tool to better understand the causes of liver disease. To date, only ~40% of the planned UKB 

liver MRIs have been released. As this sample size increases to 100,000 extraction of liver phenotypes will 

continue to shed new light on the genetic factors underlying the pathophysiology of liver disease.  

 

Third, through exome sequencing and rare variant association analyses, we confirm candidate genes that were 

identified in the common variant analyses such as SLC30A10 and PCSK2, illustrating the strength of 

complementing genome-wide analysis of common variants with exome-wide rare variant analyses.  

 

Altogether, by applying new sophisticated machine learning methods to analyze liver MRI and combining it with 

genetic analyses, we were able identify biological insights into liver fat, hepatic iron accumulation and liver 

inflammatory mechanisms. These data provide new opportunities to study their role in disease and drug 

development.  
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Online Methods 

 

Hepatic iron content (HIC) can be derived from MRI relaxation time techniques. Specifically, iron shortens T1, 

T2 and T2* relaxation times measured by MRI, darkening images when iron is present9. T1 relaxation time also 

reflects extracellular fluid fraction and is related to fibrosis and inflammation31. Banerjee et al. 2014 7 have 

previously reported how cT1 (T1 measurements corrected for iron) correlates positively with hepatic fibrosis. To 

better calculate ECF, a proxy for fibrosis, Tunnicliffe and coworkers10 developed a sophisticated model of the 

liver, accounting for blood, interstitium, two intracellular spaces, semisolid and liquid using volumes and other 

factors to describe ECF as a function of T1 and HIC. 

 

MRI sequences 

 

Most UKB participants selected for liver MRI underwent two acquisitions, one for estimating fat content and the 

other a quantitative T1 mapping sequence. For the former, approximately 10,000 subjects were imaged under a 

Dixon gradient echo protocol; in 2016, the acquisition protocol for measurement of fat fraction was updated to 

the IDEAL sequence (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares 

estimation). Data from this acquisition are provided as a series of complex-valued 2D images per subject. The in-

plane pixel size is 2.5x2.5 mm; slice thickness is 6 mm. The latter protocol, "ShMOLLI" (Shortened Modified 

Look-Locker Inversion recovery), has been consistent throughout the study. Data for this acquisition are provided 

as one real-valued 2D pre-computed T1 map per subject. The in-plane pixel size is 1.15x1.15 mm; slice thickness 

is 8 mm. Both MRI datasets were acquired at the same 2D cross-section per subject, intended to be through the 

porta hepatis. All images were acquired on a Siemens MAGNETOM Aera 1.5T clinical MRI scanner. 

Parameter Estimation 
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Parametric maps (pixel-wise parameter estimates) were generated for each trait, per subject, from images obtained 

from UKB. Signal magnitudes of fat and water, and relaxation rate were estimated from the earlier Dixon 

protocol via the 3-point Dixon method69 using the 2nd, 3rd, and 4th echoes, as done by Mojathed et al.70. Here, we 

briefly recapitulate the exposition of the Dixon 3-pt technique published by Ma 71. Let  be the complex value 

of pixel at co-ordinates (x,y) in a gradient echo image, 𝑊 and 𝐹 be the water and fat signal amplitudes respectively, 

then the general model is given by: 

𝑆	 = (𝑊 + 𝐹 ∙ 𝑒!") ∙ 	𝑒!# ∙ 𝑒!#! 	 

 

where 𝛼 is the phase angle between fat and water signals, 𝜙 is the error phase due to magnetic field 

inhomogeneity, and 𝜙$ is error phase due to system imperfections. Note that the parameters  are 

dependent on the co-ordinates (x,y). The phase angle 𝛼 is a user defined parameter as part of the imaging protocol. 

The signal intensities 𝑆$, 𝑆%, and 𝑆& at each pixel for echoes acquired, respectively, at 0°,180°, and 360° phase 

shifts (comprising a Dixon 3-point acquisition) can thus be written: 

𝑆$ =	 (𝑊	 + 	𝐹) ∙ 𝑒!#! 

𝑆% = (𝑊 − 𝐹) ∙ 𝑒!# ∙ 𝑒!#! 

𝑆& = (𝑊 + 𝐹) ∙ 	𝑒!&# ∙ 𝑒!#! 

𝜙 can be estimated as: 

𝜙. = 0.5 ∙ arg{𝑆& ∙ 𝑆$∗} 

From these, the following expressions for water (W) and fat (F) amplitudes in each pixel can be derived and used 

for estimation: 

   

An estimate for , which is needed to compute HIC, can be obtained by fitting a decaying exponential 

to the magnitudes of the in-phase echoes using curve_fit from the scipy.optimize Python package. 

 

The IDEAL sequence images were processed using the mixed magnitude/complex fitting method of Hernando et 

al. 2012, which is based on iterative least squares8. In this approach the signal model for image 𝑠( at echo 𝑛 is 

given by: 

𝑠((𝑊, 𝐹, 𝑅&∗ , 𝜙) = 8𝑊 + 𝐹9𝛼)𝑒!&*+",$,%
-

).%

: ∙ 𝑒/0&∗,%𝑒!&*#,% , 𝑛 = 1, . . . , 𝑁 

R2
*

S

S ,W ,F ,φ,φ0

W! = 0.5 S0 + S1
F! = 0.5 S0 − S1

R2
*(1/ T2

*)



   
 

 21 

where: 

• 𝑊 and 𝐹 are water and fat signal amplitudes, respectively 

• 𝑅&∗ is the 𝑇&∗ decay rate 

• 𝜙 is phase error due to magnetic field inhomogeneity 

• The fat signal is assumed to be comprised of 𝑃 = 6 spectral peaks at frequencies 𝑓1 =	 [−249.093,

−223.545, −172.449, −130.2948, −31.2963,			31.935]	Hz with relative amplitudes 𝛼 =

	[0.087, 0.693, 0.128, 0.004, 0.039, 0.048] 

• 𝑁 = 6 echos were acquired at echo times 𝑡	 = 	 [1.2, 3.2, 5.2, 7.2, 9.2, 11.2] 

 

Hernando et al.8 give the following expression for "mixed" (combined magnitude/complex) estimation of the 

desired parameters from measured signal 𝑠(,3456	for each of 𝑁 echos: 

J𝑊,K 𝐹., 𝑅&∗K,𝜙.	L = arg min
7,1,0&∗ ,#

PQ|𝑠%(𝑊, 𝐹, 𝑅&∗ , 𝜙)| − |𝑠%,3456|S
& +9|𝑠((𝑊, 𝐹, 𝑅&∗ , 𝜙) − 𝑠(,3456|&

8

(.&

T 

These estimates 𝑊U , 𝐹., 𝑅&∗K and 𝜙. can be obtained via non-linear least squares fitting (e.g., as implemented in 

Python's scipy.optimize package). 

 

PDFF was estimated as the fraction of fat signal relative to total fat plus water signal.  

  . 

R2* was converted to HIC by a published linear model9 

   

The implementation was validated using a publicly available phantom dataset containing vials of varying 

concentrations of fat72.  

 

Tunnicliffe and colleagues10, developed a multi-compartment model of the liver to simulate the effects of presence 

of iron and fibrosis on shortened-MOLLI (ShMOLLI) T1 measurements. This model consists of the blood, 

interstitium, and two intracellular spaces, semisolid and liquid using volumes, relaxation rates and exchange rates 

previously reported in the literature. We used interpolation applied to the published results (Table 2 in Tunnicliffe 

and colleagues10) to estimate ECF from the T1 and HIC values at each pixel, correcting for field strength (Figure 

1). ECF is used as a proxy to fibrosis and inflammation. 

 

PDFF = F!

F! +W!

HIC = 0.0254R2
*! + 0.202
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Automated Liver Segmentation 

 

Pixels belonging to the liver were automatically identified using a multi-thresholding approach across the PDFF 

and T1 parametric maps for each subject. After Gaussian smoothing, low pixel values in the PDFF map were 

identified by Li thresholding; these pixels comprise the liver, as well as other relatively low-fat regions such as 

the spleen. The corresponding subset of pixels in the T1 map were then subjected to Otsu thresholding, with the 

lower-intensity pixels retained in the liver region of interest. This step effectively excludes larger vessels and 

some other non-liver regions. Further refinement of the region was accomplished by morphological erosion, and 

finally, removal of all but the largest connected component in the resulting segmentation. To obtain a summary 

measure of each trait per subject, all pixels within the liver were averaged for each parametric map (Figure 1). 

 

Image processing quality control 

 

Quality issues encountered in this dataset included mis-positioning of plane of imaging (such that little to no liver 

was included in the field of view); poor model fits resulting from signal loss, magnetic field inhomogeneities 

and/or other phase errors (especially in larger subjects); and fat/water swapping (convergence to conjugate 

solution because of phase wrapping) (Supplementary Figure 9).  

A "quality control region of interest (QC ROI)" was defined as a circular region of fixed diameter, 

positioned according to bounding box and centroid of torso mask, based on expected positioning of liver within 

field-of-view. From this ROI, two metrics were used to filter images for quality (Supplementary Figure 10). We 

removed images with poor model fit and/or ROI placement, 4.4% of images (Supplementary Figure 10). We 

removed second scans for individuals with multiple scans, leaving 40,058 subjects/images. Demographic 

characteristics for this set of individuals, compared to the rest of participants are shown in Supplementary Table 

4. 

 

Image processing computational resources 

 

All image processing was performed with in-house Python implementations and standard libraries (scipy, numpy, 

scikit-image, etc.) in a parallelized computing environment. Initial work was done using an on-premises high-

performance computing cluster, and later work was carried out on a cloud-based high-performance computing 

cluster. Computation time was approximately 2 minutes per subject. 

 

Relationships across derived phenotypes  
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We observed modest correlations (for traits deconfounded with ‘extra’ covariates, see section on trait 

deconfounding and genetic analysis) between PDFF and ECF (Spearman rank correlation=0.35) and between 

PDFF and HIC (Spearman correlation=0.34). The correlation between ECF and HIC was weaker at 0.02 

(Supplementary Figure 11).  

 

UK Biobank data 

 

A detailed description of the UKB study design has been published previously2 and consists of over 500,000 

individuals between the ages 40-6973. A subset of individuals underwent detailed imaging across multiple 

modalities, including abdominal MRI, between years 2014 and 20193. Raw liver imaging data was downloaded 

from UKB data fields 20203, 20204, 20254. Array and imputed genetics data was downloaded from UKB data 

fields 22418 and 22828 respectively. Sample preparation, exome sequencing, QC and genotype calling were done 

at the Regeneron Genetics Center as previously described74 75.  

 

Trait deconfounding and genetic analysis 

 

All traits were deconfounded by residualizing the traits with the following covariates: sex, age, age-squared, top 

20 principal components for ancestry, age*sex, imaging center, imaging protocol. Additional covariates (referred 

to as ‘extra’ here), were BMI, BMI2, 7 binary alcohol variables (daily, 1-2 times per week, 3-4 times per week, 

1-3 times per month, special occasions, previous, current), 2 binary weight gain variables (weight gain in last 

year, weight loss in last year) and 5 binary disease variables (diabetes, heart attack, angina, stroke, high blood 

pressure). Supplementary Figure 12 shows, for the most significant covariates, the distribution of significance 

of covariate effects across the three traits, in addition to the pairwise correlations between all traits and covariates. 

GWAS and ExWAS were performed using a linear mixed model in REGENIE76 (see URLs). We included in step 

1 of REGENIE (prediction of trait based on genetic data) 211,683 variants that were directly genotyped, had a 

minor allele frequency (MAF) >5%, <1% genotype missingness, Hardy-Weinberg equilibrium test P-value>10-

15, and after linkage-disequilibrium (LD) pruning (r2<0.5). Our analysis was applied to the European subset of the 

data, defined as individuals predicted to be European by applying a linear model trained based on PC estimates 

from HapMap3 and projecting these onto our data, as described previously77. We performed genome-wide 

association scans (GWAS) on each of our liver traits (PDFF, HIC, ECF), testing against imputed array data 

(N=37,250 individuals, 11,914,698 variants) and exome sequence data (N=35,274 individuals, 8,287,315 

variants). Imputed UKB variants were filtered based on minor allele frequency (MAF≥0.5%) and Hardy-

Weinberg (P<=10-15).  
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Rare variant burden tests 

 

Rare variant burden tests were carried out as previously described{Van Hout, 2019 #44; {Backman, 2021 #97} 

}. For each gene region defined (Ensembl 2, GRCh38), genotype information from multiple rare coding variants 

was collapsed into a single burden genotype, such that individuals who were: (i) homozygous reference (Ref) for 

all variants in that gene were considered homozygous (RefRef); (ii) heterozygous for at least one variant in that 

gene were considered heterozygous (RefAlt); (iii) and only individuals that carried two copies of the alternative 

allele (Alt) of the same variant were considered homozygous for the alternative allele (AltAlt). We did not phase 

rare variants, and so compound heterozygotes, if present, were considered heterozygous (RefAlt). We did this 

separately across four classes of variants 3: (i) predicted loss of function (pLoF), which we refer to as an “M1” 

burden mask; (ii) pLoF or missense (“M2”); (iii) pLoF or missense variants predicted to be deleterious by 5/5 

prediction algorithms (“M3”); (iv) pLoF or missense variants predicted to be deleterious by 1/5 prediction 

algorithms (“M4”). The five missense deleterious algorithms used were SIFT 78, PolyPhen2 (HDIV), PolyPhen2 

(HVAR)79, LRT80, and MutationTaster81. For each gene, and for each of these four groups, we considered five 

separate burden masks, based on the frequency of the alternative allele of the variants that were screened in that 

group: <5%, <1%,, <0.1%, <0.01%, <0.001% and singletons only. In main text and tables we use a shorthand 

notation for each mask, for example, M1.01 denotes the “M1” burden mask with the <0.1% allele frequency bin. 

Each burden mask was then tested for association with the same approach used for individual variants. In 

presenting results, for single variants we used a maximum minor allele frequency of 0.005 and minimum minor 

allele count of 5 to define our rare variant set. For burden tests, we allowed a maximum minor allele frequency 

of up to 0.05 and minimum minor allele count of down to 1. 

 

Conditional Analysis of Identified Loci 

 

We identified all independent signals reaching genome-wide significance in our study with an approximate 

conditional and joint analysis (COJO) implemented in GCTA12.  We used a subset of 10,000 unrelated UKB 

participants as a reference population.  

FINEMAP13 implements a statistical algorithm for fine-mapping causal variants in genomic regions 

associated with complex traits and diseases. FINEMAP is computationally efficient by using summary statistics 

from genome-wide association studies and robust by applying a shotgun stochastic search algorithm. We ran 

FINEMAP under default settings with the option to allow for 30 causal variants. 
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URLs 

GWAS catalog: https://www.ebi.ac.uk/gwas/  

REGENIE: https://github.com/rgcgithub/regenie 
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