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NOVELTY AND IMPACT 

 

Although currently approved CAR T-cells demonstrated unprecedently high response in relapsed / refractory LBCL in the salvage setting, lack of 

outcome durability and toxicity remain. We delineated the relative clinical benefit of the innovative experimental CAR T-cell approaches to 

Yescarta for insights into the ongoing efforts to address these inadequacies. Tandem CAR T-cells may provide higher efficacy and safer profile 

than Yescarta. Toxicity attenuated CAR T-cells present remarkable safety but no Progression-Free Survival (PFS) benefit.    
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ABSTRACT 

 

Despite favorable results of CAR T-cell therapy for relapsed/refractory large B-cell lymphoma (R/R LBCL), several challenges remain, including 

incomplete response, immune-mediated toxicity, and antigen-loss relapse. We delineated the relative clinical benefit of the novel approaches 

compared to the currently approved CAR T-cell therapies. In the absence of head-to-head comparisons and randomized controlled trials, we 

performed Matching Adjusted Indirect Comparisons to quantify the relative efficacy and safety of experimental CARs against Axicabtagene 

ciloleucel (Yescarta), the first FDA-approved CAR. A total of 182 R/R LBCL patients from 15 clinical trials with individual patient data (IPD) were 

pooled into eight populations by their CAR T-cell constructs and +/- ASCT status. The study endpoints were Progression-Free Survival (PFS), 

grade ≥ 3 cytokine release syndrome (CRS), and grade ≥ 3 neurotoxicity (NT). Tandem CD19.CD20.4-1BBζ CARs indicated favorable efficacy 

and safety, whereas the co-infusion of CD19 & CD20 with 4-1BBζ showed no clinical benefit compared to Yescarta. Third generation CD19. 

CD28. 4-1BBζ, and sequential administration of autologous stem cell transplantation (ASCT) and CD19. CARs presented statistically insignificant 

yet improved PFS and safety except for ASCT combined intervention which had suggestively higher NT risk than Yescarta. CARs with modified 

co-stimulatory domains to reduce toxicity (Hu19. CD8.28Zζ and CD19. BBz.86ζ) presented remarkable safety with no severe adverse events; 

however, both presented worse PFS than Yescarta. Third-generation CARs demonstrated statistically significantly lower NT than Yescarta. CD20. 

4-1BBζ data suggested targeting CD20 antigen alone lacks clinical or safety benefit compared to Yescarta. Further comparisons with other FDA-

approved CARs are needed.  
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ABBREVIATIONS: ASCT - autologous stem cell transplantation; B-ALL - B-cell acute lymphoblastic leukemia; BCMA - B-cell maturation antigen; 

CAR - chimeric antigen receptor; CD - cluster of differentiation; ChiCTR - Chinese clinical trial registry; CI - confidence interval; CR - complete 

response; CRES - car T cell-related encephalopathy syndrome; CRR - complete response rate; CRS - cytokine release syndrome; CRS - cytokine 

release syndrome; DLBCL - diffuse large B-cell lymphoma; DOR - duration of response; EFS - event-free survival; ESS - effective sample size; 

HGBCL - high-grade B-cell lymphoma; HR - hazard ratio; Hu - human; IFN-γ - interferon-γ; IL-2 - interleukins-2; IPD - individual patient data; KM - 

Kaplan-Meier; LBCL - large B-cell lymphoma; MAIC - matching adjusted indirect comparisons; NCT - national clinical trial; NHL - non-Hodgkin 

lymphoma; NT - neurotoxicity; OR - odds ratio; ORR - objective response rate; OS - overall survival; PFS - progression free survival; PH - 

proportional hazards; PPCR - principles and practice of clinical research; PRISMA - preferred reporting items for systematic reviews and meta-

analyses; R/R LBCL - relapsed/refractory large B-cell lymphoma; RR - relative risk; RS - Richter's transformation; scFv - single-chain variable 

fragment; SD - stable disease; TNF-α - tumor necrosis factor-α; trDLBCL - transformed DLBCL; ZUMA-1 - name of Yescarta clinical trial. 
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INTRODUCTION 

 

Large B-cell lymphomas (LBCL) comprise diverse types of B-cell Non-Hodgkin Lymphoma (NHL), of which diffuse large B-cell lymphoma 

(DLBCL) is the most common histologic subtype, accounting for approximately a quarter of NHL cases worldwide (1). Survival rates have greatly 

improved over the past decades, particularly in the immunochemotherapy era, with a 5-year relative survival rate reported between 55.4% and 

62.0% in developed countries (2). However, despite the advances achieved with rituximab-based regimens, up to 50% of patients with advanced-

stage de novo DLBCL, for instance, will eventually relapse, even after achieving a complete response (CR) (3). If progression occurs during the 

initial treatment phase or soon after a brief CR, only 30% to 40% will respond to salvage chemotherapy and will be able to undergo consolidation 

with autologous stem cell transplantation (ASCT) (4). Even so, among these patients, roughly half will ultimately relapse after transplantation (5). 

The prognosis, in such cases, is poor, especially for those who have high-risk factors or relapse within 12 months post-ASCT (4,5). Thus, effective 

treatment for R/R LBCL remains a highly unmet need.  

 

To date, only three CAR T-cell products (axicabtagene ciloleucel (Axi-cel, Yescarta), tisagenlecleucel (Tisa-cel, Kymriah), lisocabtagene 

maraleucel (Liso-cel, Breyanzi) are approved by the FDA for R/R LBCL (6–8). Despite the unprecedently high efficacy of these CAR T-cell 

therapies compared to historical outcomes for patients with R/R LBCL, current challenges, such as incomplete response, immune-mediated 

toxicity, and post-treatment relapse, remain. For example, in the ZUMA-1 trial for R/R LBCL, only 39% of patients maintained a CR to the therapy 

at the median of 27-month follow-up despite the initially high (82%) objective response rate (ORR) achieved (7,9). In an attempt to optimize CAR 

T-cell characteristics to address these inadequacies, pre-clinical researches identified tumor antigen escape and CD19 antigen downregulation as 

potential causal factors for the suboptimal response and relapse observed after CAR T-cell therapy (10). Tumor antigen escape leads to low 

antigen density via transfer of target antigens from the tumor cells to the CAR T-cells. This process, known as trogocytosis, has been observed 

with CD19, CD22, mesothelin, and B-cell maturation antigen (BCMA) (11).   

 

Existing evidence prior to this study encompasses diverse strategies focused on advancing CAR T-cell performance. Specific approaches 

already notable for both their feasibility and clinical and safety benefit include (i) Multi-antigen targeting CAR T-cells obtained through co-infusion 

or sequential administration of single-targeted CAR T-cells against different antigens. Alternatively, tandem and bicistronic constructs expressing 

two different CARs on a single or a separate chimeric protein(s), respectively (12); (ii) Third and advanced generation CAR T-cells using 

integrated co-stimulatory domains (13–15);  (iii) Enhanced co-stimulatory domains intended at reducing toxicity and preserving potency (16,17); 
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(iv) Combination therapy of CAR T-cells and immune checkpoint inhibitors (18); (v) Co-administration of ASCT and CAR T-cells (19–21); (vi) 

Alternative antigen targetings (other than CD19), such as CD20, CD22, CD27, ICOS, and OX40 (22). 

 

Summary of the evidence prior to this study 

 

Dual targeting CAR T-cells: Preclinical studies demonstrated high anti-tumor potency with tandem CD19/CD20 CAR T-cells (23,24), 

sequential infusion of CD19 and CD79b CARs (25), co-infusion of CD19 and CD38 CAR T-cells (26), and CD19/CD37 constructs (27). The clinical 

benefit of tandem CD19/CD20 CARs (28–30), co-infusion of CD19 and CD20 CARs (31), and mixed infusions of CD22 and CD19 CAR T-cells 

(32,33) has been evaluated in small early phase clinical trials with demonstrated feasibility and varying levels of efficacy and safety.  

 

Among the next-generation CAR T-cells, more mature data exist for the third-generation CAR T-cells incorporating both CD28ζ and 4-

1BBζ co-stimulatory signaling domains. In mice models, third-generation CAR T-cells demonstrated improved T-cell persistence and stronger 

antitumor potency compared to second-generation constructs (34). In addition, the clinical benefits of third-generation CARs in LBCL patients were 

evaluated in early phase trials (13–15). However, whether the addition of 4-1BBζ co-stimulatory domains to a common CD28ζ domain enhances 

such clinical benefits compared to second-generation CAR T-cells in this population is still unclear.  

 

Variations of CAR T-cells with modified co-stimulatory domains aimed at reducing treatment-related toxicity include (1) Hu19. CD8.28Z, 

containing a fully human single-chain variable fragment (scFv) and CD8α-based hinge and transmembrane domains (16); (2) CD19. BBz.86, with 

an 86-amino-acid fragment from human CD8α (17); and. Both CD19. BBz.86 and Hu19. CD8.28Z CAR T-cells demonstrated exceptional safety, 

yet attenuated efficacy, based on the CR rates of 29% and 39% observed, respectively, compared to the 54% CR rate noted among the LBCL 

patients receiving Axi-cel (Yescarta).  

 

ASCT and CAR T-cell therapy: Multi-center randomized clinical trials are underway to determine the comparative efficacy and safety of 

CAR T-cell therapy alone vs. ASCT combined with systemic therapies for the treatment of R/R LBCL (refer to Discussion section for additional 

details). The study compared locally manufactured CD19. CD28ζ CAR T-cells in China to ASCT alone (NCT03196830) demonstrated superior 

efficacy and safety of the CAR T-cell product compared to ASCT in R/R NHL patients (35). Whether the sequential administration of ASCT and 
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CAR T-cells hold higher clinical benefits than CAR T-cells alone remains to be elucidated. Of note, this has already been shown to be feasible and 

safe in three clinical trials (19–21).  

 

CD20. 4-1BBζ CAR-T cells demonstrated high antitumor activity against LBCL in pre-clinical studies (36), and few clinical trials tested 

second-generation CD20 CAR T-cells in this disease (36–38). Clinical trials evaluating third-generation CD20 CARs are currently underway in 

China (NCT02710149), in the USA (NCT03277729) - evaluating MB-106, a fully human third-generation CD20.4-1BBζ.CD28 ζ CAR T-cell 

constructs -  and in Germany (NCT03664635), with MB-CART20.1 CARs (39,40). Targeting CD20 was shown to be exceptionally more efficacious 

in follicular lymphoma, as demonstrated with the success of rituximab, an anti-CD20 monoclonal antibody, which led to the current rituximab-

based first-line combination treatment for most NHL types (41). The fact that 30–40% of LBCL patients relapse after rituximab suggests that 

targeting CD20 alone is not enough (41). This has set the basis for comparative insights between CD20 and CD19-targeted CAR T-cells, thereby 

shedding light on the development of the dual targeting approaches mentioned above. 

 

Even though such key pre-clinical and clinical data became available regarding the innovative approaches aiming to extending the 

durability of response beyond the achievements of the currently approved CAR T-cells, there is no comparative efficacy and safety data exist to 

shed a light on the relative advantages of the experimental CAR T-cell products versus the currently approved CAR T-cell therapies. Hence, we 

aimed to compare the efficacy and safety of the currently available experimental CAR T-cell products to Yescarta, the first FDA-approved CAR T-

cell therepay, thereby harboring the longest follow-up data available to date. Also, to overcome limitations of all currently available CAR T-cell 

trials being single-arm trials, and individual patient-level data only available for experimental CAR T-cell products and not for ZUMA-1 trial, the 

comparator (42), we used unanchored matching-adjusted indirect comparison (MAIC) as a primary method. The MAIC techniques attenuate bias 

in comparing multiple treatments assessed in different studies by matching patient-level data from the clinical trials of one treatment to aggregate 

data by comparator trials. Aditionally, MAIC provides a more robust adjustment for cross-trial differences in patient characteristics than traditional 

meta-regressions due to its higher accuracy obtained from individual patient data than from aggregate data (43). We believe this systematic 

review-based quantitative comparison may provide guiding insights into the ongoing efforts to advance CAR T-cell therapy for the treatment of R/R 

LBCL. 
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METHODS 

Data sources  

For Yescarta, published aggregate data was used from the ZUMA-1 trial (disease- and baseline characteristics data) evaluating the efficacy 

of Yescarta for treatment of LBCL patients (7). For experimental CAR T-cell products for comparator arms, individual patient data (IPD) was available 

from the corresponding peer-reviewed publications that we identified through a Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guideline-based systematic review. This study included the clinical trials for the patients who received CAR T-cell therapies for 

the treatment of RR- LBCL after two or more systemic therapies regardless of the type of CAR T-cells, geography, health care settings (inpatient 

and outpatient), and demographic characteristics (age, gender, race, or ethnicity). Clinical trials that provided concomitant therapies together with 

CAR T-cell products (except for bridging or lymphodepleting chemotherapy) were excluded. We searched the extensive scope of electronic 

databases including PubMed, Cochrane Central, Medline via Ovid, Embase via Ovid, Scopus Elsevier, Web of Science, and Education Resources 

Center (ERIC). Conference proceedings were identified from the websites of the American Society of Hematology, American Society of Clinical 

Oncology, and European Hematology Association. North American and international trials were ascertained through a search in ClinicalTrials.gov, 

International Standard Randomized Controlled Trial Number (ISRCTN registry), World Health Organization International Clinical Trials Registry 

Platform (ICTRP), Deutsches Register Klinischer Studien (DRKS), Chinese Clinical Trial Registry (ChiCTR), European Clinical Trials Register 

(www.clinicaltrialsregister.eu), Latin American and Caribbean Health Science Information Database (LILACS), and Australian and New Zealand 

Clinical Trials Registry. To identify potential publication bias, we searched for unpublished trials and grey literature using Google, Grey Literature 

Report (greylit.org), and OpenGrey (opengrey.eu).  

 

To reduce a potential confounding to the study results due difference in the study designs that MAIC method is not designed to address, 

we conducted a feasibility assessment and Risk of Bias Assessment, NIH Quality Assessment Tool for Case Series Studies (44) by comparing the 

eligible studies in terms of their PICOS (population, intervention, comparator, outcomes, and study design) and the NIH recommended criteria. 

Consequently, we excluded four studies with significantly different PICOS from the rest of the studies (Figures S1). Details regarding the literature 

search terms and queries, study selection, data extraction, and the risk of bias assessment can be found in the published protocol for the present 

study (45).  
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Table 1. Summary of Clinical Trials, Pooled Populations by CAR T-cell structure, and Study Endpoints. 

 

Intervention  
strategies 

Pooled 
populations  

Target 
Antigens 

Signaling 
domains 

Clinical Trial 
Registry 
Numbers 

Disease Histology 
N 

received 
infusion 

Study Endpoints  

 
Trial Centers References 

Dual targeting 

Tandem CD19. 

CD20 with 4-1BB 

Tandem      

CD19.CD20 
4-1BB 

NCT03019055 
 

DLBCL, trDLBCL,RS 14 ORR, PFS, OS, CRS, NT Medical College of 
Wisconsin, WI, USA 

Shah2020 [32] 

 
NCT03097770 DLBCL, trDLBCL 19 ORR, PFS, OS, CRS, NT PLA General Hospital, 

Beijing, China 
Tong2020 [31] 

Co-infusion CD19 

& CD20 with 4-1BB 

Co-infusion of 

CD19 & CD20 
4-1BB NCT03207178 DLBCL, trDLBCL 21 ORR, PFS,OS,CRS, NT 

 
Xuzhou Medical 
University, China 

Sang2020 [33] 

Third 

generation 

CD19 with  

CD28 & 4-1BB 
CD19 CD28-41BB 

NCT01853631 DLBCL, trDLBCL 

 

13 

 

ORR, PFS, CRS, NT Baylor College of 
Medicine, TX, USA 

Ramos2018 [15] 

NCT02132624 DLBCL, trDLBCL 

 

4 ORR, OS, PFS, CRS, NT Uppsala University 
Hospital, Sweden 

Enblad2018 [13] 

NCT03121625 DLBCL 9 ORR, OS, PFS, CRS, NT Hebei Medical  
University, China 

Huang2020 [14] 

Modified 

constructs for 

reduced toxicity 

Hu19.CD8.28Z CD19 Human-CD28 NCT02659943 DLBCL, trDLBCL 19 ORR, EFS, CRS, NT  NCI, MD, USA Brudno2020 [16] 

CD19. BBz.86 CD19 4-1BBz.86 NCT02842138 DLBCL, trDLBCL 21 ORR, DOR, CRS, NT 
Peking University, 

Cancer Institute, China 
 

Ying2019 [17] 

ASCT+ 

CAR T-cell 

Sequential ASCT 

and CD19. CD28 
CD19 CD28 

NCT01497184 DLBCL, trDLBCL 7 ORR, PFS, CRS, NT 
MD Anderson Cancer 

Center, TX, USA 
 

Kebriaei2016 [19] 

NCT01840566 DLBCL, trDLBCL,RS 13 ORR, PFS, CRS, NT Memorial Sloan Kettering 
Cancer Center, NY, USA 

Sauter2019 [20] 

NCT01318317 DLBCL 4 ORR, PFS, OS, CRS, NT NCI, City of Hope Cancer 
Center, CA, USA 

WangX2016 [21] 

Alternative 

target antigen 
CD20. 4-1BB CD20 4-1BB 

NCT01735604  DLBCL 6 ORR, PFS, CRS, NT PLA General Hospital, 
Beijing, China 

WangY2014 [38] 

NCT01735604 DLBCL 8 ORR, PFS, CRS, NT PLA General Hospital, 
Beijing, China 

Zhang2016 [40] 

Alternative 

co-stimulatory 

domain 

 

CD19. 4-1BB CD19 

 

4-1BB 

 

NCT03156101 DLBCL, HGBCL 10 

 

ORR, PFS, CRS, NT 
Zhengzhou University, 

Zhengzhou, China 
 

Chen2020 [59] 

 
ChiCTR15007668 DLBCL 14 ORR, PFS, OS, CRS, NT 

Second Military Medical 
University, Shanghai, 

China 

WangT2016 [60] 

 
ASCT - autologous stem cell transplantation; CAR - chimeric antigen receptor; CD - cluster of differentiation; ChiCTR - Chinese clinical trial registry; CRR - complete response rate; CRS - cytokine 
release syndrome; DLBCL - diffuse large B-cell lymphoma; DOR – duration of response; HGBCL – high-grade B-cell lymphoma; Hu - human; NCT - national clinical trial; NT - neurotoxicity; ORR 
- objective response rate; OS – Overall survival; PFS - progression-free survival; EFS – event-free survival, NCI – National Cancer Instiute; RS - Richter's transformation to DLBCL; trDLBCL – 
transformed DLBCL.  
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We created eight independent interventions of distinct types of CAR T-cell products where five of them were pooled population from multiple trials 

evaluating the similar CAR T-cell constructs as shown in Table 1 and listed as follows:  

 

(1) Dual targeting using tandem CD19. CD20 with 4-1BBζ, a pool of two trials   

(2) Dual targeting by co-infusion of CD19 & CD20 with 4-1BBζ  

(3) Third-generation CARs: CD19 with CD28ζ & 4-1BBζ, a pool of three trials   

(4) Modified co-stimulatory domain for reduced toxicity: Hu19.CD8.28Z 

(5) Modified co-stimulatory domain for reduced toxicity: CD19.BBz.86  

(6) Sequential administration of ASCT and CD19.CD28ζ, a pool of three trials  

(7) Alternative target-antigen: CD20. 4-1BBζ CARs, a pool of two trials  

(8) Alternative co-stimulatory domain: CD19. 4-1BBζ CARs in Chinese patients, a pool of two trials   

 

Pooling patients when possible have augmented statistical power and also enabled us to test the hypothesis by CAR T-cell types. We excluded 

the trials with less than 10 patients (Figure S1). The trials for CAR T-cells that eventually evolved into Yescarta, and any early phase trials of the 

CAR T-cells developed into Kymriah and Breyanzi, currently approved products, were also excluded from this study.  

 

Reconstructed patient-level progression-free survival (PFS) data for ZUMA-1 trial: for the calculation of the hazard ratio (HR) and its 95% 

confidence interval (CI) associated with the PFS of each pooled CAR T-cell population versus Yescarta, we reconstructed individual patient PFS 

data from the ZUMA-1 trial through a validated algorithm developed by Guyot and colleagues (2012) (46).  This was achieved by obtaining the 

number of patients at risk and the total number of events along with the geometric coordinates of the published PFS Kaplan-Meier (KM) curve 

associated with Yescarta over a 24-month follow-up time using Origin digitizing software.  

 

Outcomes assessed 

 

We selected PFS for efficacy and grade ≥ 3 cytokine release syndrome (CRS) and neurotoxicity (NT) for safety outcomes, given that the 

purpose of the study was to determine the relative benefit of experimental CAR T-cell products compared to Yescarta in terms of response 
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durability and severe toxicity. Table 1 presents the study endpoints reported by the eligible studies. Overall survival (OS) was not used since 

multiple studies had not reached the median follow-up time at the time of this analysis. Likewise, we did not focus on the objective response rate 

or the initial response types, as these measures do not directly reflect the durability of response over time, and there is notable cross-trial variation 

in the timing for the objective response measurements.  

 

Statistical methods 

 

Given the existing evidence limited to single-arm trials, we conducted unanchored MAICs to adjust for cross-trial heterogeneity in baseline 

characteristics. Matching covariates were selected following the NICE Guidelines given a) mutually reported disease- and patient baseline 

characteristics, where the feasibility assessment revealed cross-trial heterogeneity, b) whose clinical meaningfulness was confirmed by 

clinicians/experts (Table 2).   

 

In MAIC, patients in experimental CAR T-cell trials with IPD were re-weighted to match the mean baseline characteristics in ZUMA-1 with 

only aggregate data. The weights were estimated by the method of moments, applied to the IPD, so the summary statistics of the baseline 

characteristics of the IPD becomes similar to those of the aggregate data (43). Based on the calculated weights, individual patient-level PFS and 

percentage of grade ≥3 CRS and NT were re-weighted for further survival and logistic regression analyses. For the comparator arm, reconstructed 

individual patient level PFS for Yescarta (see Materials section) was used. Given these data, Cox proportional hazards (PH) model estimated the 

HR and its 95% CI for PFS associated with each pair of eight pooled CAR T-cell populations versus Yescarta. Corresponding weighted KM curves 

were created assuming exact ties according to the Kalbfleisch-Prentice method. Finally, logistic regression models were used to compute the odds 

ratio (OR) and its 95% CI based on the re-weighted data for both safety outcomes: grade ≥ 3 CRS and NT.  

 

A recent MAIC study of Yescarta vs. Kymriah identified the LBCL-specific key prognostic covariates and demonstrated refractory status 

and number of prior therapies as the most influential variables on the CAR T-cell treatment outcomes (47). We identified the mutually reported key 

baseline covariates and used categorizations as follows: age (<58 years), disease stage (<3), histology (diffuse LBCL/other types), refractory 

status, number of prior lines of therapy (>4), and extranodal disease status. The pack of mutually reported covariates varied for each pair of 

distinct pool CAR T-cell population and Yescarta, as this was dictated by the size of the IPD pooled population and the mutual availability of the 

data in both the IPD and ZUMA-1 trials, as shown in Table 2. The degree of overlap between pairwise comparisons reflects in ESS (Table 2). All 
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analyses were performed using R version 4.1.0 (2021). The survival package, along with the necessary supporting functions, was used to 

estimate alternative survival functions by trial.  

 

RESULTS  

 

Individual Patient Data (IPD): Through systematic review, we identified 15 clinical trials for experimental CAR T-cell products  (Table 1) 

with individual patient data (IPD), as presented in the PRISMA flow diagram in Figure S1, Supplementary Materials. Table 2 presents the effective 

sample size (ESS) and the weighted versus unweighted values of matching baseline covariates across each pooled CAR T-cell population versus 

ZUMA-1.  
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Table 2. Key Baseline Characteristics and MAICs of Experimental CAR T-cells versus Yescarta regarding Progression-Free Survival ⱡ 

 

Intervention 
strategies 

Pooled populations 
Mutually reported 

variables 
ZUMA-1 

(%,median age) 

Post - / Pre -
weighting 

(%,median age) 

N patients, 
pooled 

population 
ESS 

PFS,  
HR (95CI%) 

References 

Dual targeting 

1). Tandem CD19. 
CD20 with 4-1BB 

DLBCL 
Prior chemo ≥3 

CD19 status 
CD4 & CD8 ratio 

Relapse after ASCT 

0.76 
0.70 
0.90 
0.48 
0.21 

0.76 / 0.86 
0.70 / 0.82 
0.90 / 0.86 
0.48 / 0.46 
0.21 / 0.16 

33 25 0.58 (0.33-1.01) 
Shah2020 [32] 
Tong2020 [31] 

2). Co-infusion CD19 & 
CD20 with 4-1BB 

Age, median 
Prior chemo ≥3 

Disease Stage I or II 

58 
0.70 
0.15 

58 / 55 
0.70 / 0.57 
0.15 / 0.14 

21 15 1.33 (0.70-2.54) Sang2020 [33] 

Third generation 
3). CD19 with  
     CD28 & 4-1BB 

Age, median 
DLBCL 

Refractory 
Prior chemo ≥3 

58 
0.76 
0.78 
0.70 

58 / 62 
0.76 / 0.69  
0.78 / 0.77  
0.70 / 0.69 

26 23 0.85 (0.43-1.66) 
Ramos2018 [15] 
Enblad2018 [13] 
Huang2020 [14] 

Modified 
constructs for 

reduced toxicity 

4). Hu19.CD8.28Z 

DLBCL 
Refractory 

Prior chemo ≥3 
Relapse after ASCT 

0.76 
0.78 
0.70 
0.21 

0.76 / 0.74 
0.78 / 0.63 
0.70 / 0.63 
0.21 / 0.26 

19 17 *2.00 (1.01-3.96) Brudno2020 [16] 

5). CD19. BBz.86 

Age, median 
Refractory 

Prior chemo ≥3 
DLBCL 

58 
0.78 
0.70 
0.76 

58 / 48 
0.78 / 0.71 
0.70 / 0.71 
0.76 / 0.76 

21 20 1.67 (0.90-3.09) Ying2019 [17] 

ASCT+ 
CAR T-cell 

6). Sequential ASCT 
and CD19. CD28 

Age, median 
DLBCL 

Refractory 
Relapse after ASCT 

58 
0.76 
0.78 
0.21 

58 / 58 
0.76 / 0.77 
0.78 / 0.38 
0.21 / 0.42 

24 13 0.73 (0.30-1.74) 
Kebriaei2016 [19] 
Sauter2019 [20] 
WangX2016 [21] 

Alternative target 
antigen 

7). CD20. 4-1BB 
Age, median 

Prior chemo ≥3 
Disease Stage I or II 

           58 
0.70 
0.15 

58 / 61 
0.643 
0.286 

14 13 1.04 (0.52-2.06) 
WangY2014 [38] 
Zhang2016 [40] 

Alternative  
co-stimulatory 

domain 

8). CD19. 4-1BB 
 

Age, median 
Male 

Extranodal disease 

58 
0.68 
0.70 

58 / 43 
0.68 / 0.63 
0.70 / 0.50 

24 11 0.47(0.18-1.28) 
Chen2020 [59] 

WangT2016 [60] 

 

ⱡ Hazard ratio (HR) and 95% CI (confidence interval) based on Cox proportional hazards models. 
 
ASCT - autologous stem cell transplantation; CAR - chimeric antigen receptor; CI - confidence interval; CD - cluster of differentiation; ESS - effective sample size; 
HR - hazard ratio; Hu - human; MAIC - matching adjusted indirect comparison; PFS - progression-free survival; *statistical significance at α=0.05; ZUMA-1 – name 
of Yescarta clinical trial.  

 

Dual targeting CARs versus Yescarta 
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Tandem CD19. CD20 with 4-1BB: Our MAIC weighted analysis showed that the tandem CD19.CD20.4-1BBζ CAR T-cells presented 

suggestive evidence of increased PFS (HR = 0.58; 95% CI, 0.33-1.01), reduced grade ≥ 3 CRS (OR=0.70; 95% CI, 0.18-2.76) and statistically 

significantly lower odds of grade ≥ 3 NT (OR=0.14; 95% CI, 0.02-0.78) compared to Yescarta (Table 2 & 3).  

Co-infusion CD19 & CD20 with 4-1BB: In contrast, co-infusion of CD19 and CD20 CAR-T cells had statistically insignificant but worse PFS 

(HR=1.33, 95% CI: 0.70-2.54) than Yescarta. IPD for safety outcomes was not available from this study. However, naïve direct comparison shows 

this co-infusion approach presented higher grade ≥ 3 CRS (28.5% vs. 13% in ZUMA-1) and lower neurotoxicity (9.5% vs. 28% in ZUMA-1) than 

Yescarta.  

 

Table 3. MAICs of Experimental CAR T-cells versus Yescarta Regarding Grade ≥3 CRS and NT  

 

Intervention 
strategy 

Pooled populations  
N received 

infusion 
Sum of 
weights 

Number of 
CRS, grade ≥ 3 

OR (95%CI) 
CRS, grade ≥ 3  

Number of 
NT, grade ≥ 3 

OR (95%CI) 
NT, grade ≥ 3  

References 

Dual targeting 

1). Tandem CD19. 
CD20. 4-1BB 

33 28 3 0.70 (0.18-2.76) 2 *0.14 (0.02-0.78) 
Shah2020 [32] 
Tong2020 [31] 

2). Co-infusion CD19 & 
CD20 with 4-1BB 

21 NA NA NA NA NA Sang2020 [33] 

Third generation 
3). CD19 with  
     CD28 & 4-1BB 

26 26 1 0.20 (0.02-2.12) 1 *0.20 (0.04-0.94) 
Ramos2018 [15] 
Enblad2018 [13] 
Huang2020 [14] 

Modified 
constructs for 

reduced toxicity 

4). Hu19. CD8.28Z 14 20 0 0 0 0 Brudno2020 [16] 

5). CD19. BBz.86 21 20 0 0 0 0 Ying2019 [17] 

ASCT+ 
CAR T-cell 

6). Sequential ASCT      
and CD19. CD28 

24 16 3 0.25 (0.02-3.68) 7 1.78 (0.60-5.28) 
Kebriaei2016 [19] 
Sauter2019 [20] 
WangX2016 [21] 

Alternative target 
antigen 

7). CD20. 4-1BB 14 13 2 1.04 (0.20-5.38) NA NA 
WangY2014 [38] 
Zhang2016 [40] 

Alternative  
co-stimulatory 

domain 
8). CD19. 4-1BB 24 12 4 0.95 (0.15-5.94) NA NA 

Chen2020 [59] 
WangT2016 [60] 

 
ASCT - autologous stem cell transplantation; CAR - chimeric antigen receptor; CI - confidence interval; CD - cluster of differentiation; CRS - cytokine release 
syndrome; OR - odds ratio; Hu - human; MAIC - matching adjusted indirect comparison; *statistical significance at α=0.05; NT - neurotoxicity; ZUMA-1 – name of 
Yescarta clinical trial.  
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Third-generation CARs versus Yescarta: We found suggestive evidence of improved PFS with HR=0.85 (95% CI: 0.43-1.66) and safety in 

terms of grade ≥3 CRS with OR=0.20 (95% CI: 0.02-2.12) and NT with OR=0.20 (95% CI: 0.04-0.94) associated with third-generation CAR T-cells 

versus Yescarta.  

 

Modified co-stimulatory domains for reduced toxicityversus Yecarta: Both Hu19.CD8.28Z and CD19. BBz.86 CAR T-cells presented 

excellent safety profiles with the absence of grade ≥3 CRS and NT. However, yet both of these CAR T-cells presented reduced benefit in PFS: 

Hu19.CD8.28Z with HR=2.00; 95% CI, 1.01-3.96 and CD19. BBz.86 with HR=1.67; 95% CI, 0.90-3.09 compared to Yescarta, though without 

statistical significance in CD19. BBz.86.   

 

Sequential administration of ASCT and CD19. CD28ζ versus Yescarta: Our findings demonstrated suggestive favorable PFS (HR=0.73; 

95% CI, 0.30-1.74) and reduced grade ≥ 3 CRS (OR=0.25; 95% CI, 0.02-3.68) but increased NT (OR=1.78; 95% CI, 0.60-5.28) for the sequential 

administration of CD19. CD28ζ CAR T-cells within 2 to 6 days after ASCT compared to Yescarta. None of these findings reached statistical 

significance.  

 

Alternative target antigen: CD20. 4-1BBζ versus Yescarta: We did not find any notable clinical benefit or harm in this pooled population 

treated with CD20. 4-1BBζ versus Yescarta in terms of PFS (HR= 1.04; 95% CI, 0.52-2.06) and CRS (OR=1.04; 0.20-5.38). We didn’t examine the 

neurotoxicity as IPD was not available from this trial.  

 

Alternative co-stimulary domain: CD19. 4-1BBζ in Chinese patients versus Yescarta: The MAIC of CD19. 4-1BBζ CARs based on the 

pooled population of two small trials conducted in China, Shanghai (48,49) versus Yescarta showed no significant difference but suggestively 

better PFS than that of Yescarta, with HR=0.47 (95% CI, 0.18-1.28) and slightly reduced grade ≥ 3 CRS (OR=0.95; 95% CI, 0.15-5.94) than 

Yescarta. These two trials did not provide neurotoxicity data.  

 

DISCUSSION  

 

Dual targeting strategies versus Yescarta: The improved PFS associated with tandem CAR T-cells whereas reduced PFS associated with 

co-infusion of CD19 and CD20 CAR T-cells versus Yescarta corroborates pre-clinical studies that demonstrated the higher efficacy and safety of 
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tandem CAR T-cells than that of co-infusions (10). The reduced survival benefit and increased CRS associated with the co-infusion of different 

CAR T-cell targets may be associated with (1) additive toxicity from stronger cytokine storm through the amplified number of targetable antigens; 

(2) competitive targeting limit the expansion of other CAR T-cells; (3) compromised engraftment due to the interference of multiple antigens 

(12,50,51). Literature review on the multi-antigen targeting strategies show that there is more data for CD19 and CD22 covering various 

administration approaches (sequential and co-infusion) and different constructs (tandem and bicistronic). A study showed that sequential 

administration of CD19 and CD22 CAR T-cells in 12 DLBCL patients (32) and co-infusion in 36 NHL patients (33) resulted in objective response 

rates of 77% and 83% and grade ≥3 CRS rates of 14% and 21%, respectively. Tandem CD19 and CD22 CAR T-cells appeared to be feasible and 

potentially efficacious in R/R B-cell acute lymphoblastic leukemia (B-ALL) (52). Although these preliminary results are somewhat comparable to 

the 82% ORR and 13% grade ≥3 CRS observed in ZUMA-1, longer follow-up data are required to assess whether sequential and mixed infusion 

approaches reduce post-CAR T-cell therapy relapse. Bicistronic CD19. CD22 trials in pediatric and adult R/R B-ALL (53,54) demonstrated 

unprecedently high CR rates (100%) and a notable safety profile with a single occurrence of grade ≥3 CAR T-cell related encephalopathy 

syndrome (CRES) in the pediatric trial. As for B-cell lymphoma, bicistronic CD19.CD22 trials led by Shah and colleagues (NCT03448393), Miklos 

and colleagues (NCT03233854), and Pulsipher and colleagues (NCT03330691) are currently in progress. 

 

Third-generation CARs versus Yescarta: Although the result associated with the third-generation CAR T-cells versus 15escarta was not 

statistically significant, the slight protective effects observed may be due to the multifunctional cytokine secretion and improved persistence of T-

cells from the concurrent expression of CD28ζ and 4-1BBζ co-stimulatory domains versus that of the CD28ζ co-domain alone (55). In addition, in-

vivo studies demonstrated that adding 4-1BBζ to the second-generation construct protects CD28ζ tumor-specific cells from activation-induced cell 

death while supporting central memory cells and mitochondrial functions (56). In alignment with this existing evidence, three contributing IPD trials 

of the pooled population in our study reported high expansion and improved persistence of T-cells in common. Moreover, all three trials of third-

generation CAR T-cells analyzed in this study have highlighted that the patients with less tumor burden and who were prior responders to 

chemotherapy had higher tumor clearance benefits than patients with more tumor burden and non-responders to chemotherapy (13–15).  

 

Modified co-stimulatory domains for reduced toxicity: Hu19.CD8.28Z and CD19. BBz.86 CAR T-cells were designed to exert minimal 

toxicity while preserving antitumor potency to Yescarta. Reduced cytokine-mediated toxicity is often accomplished by attenuating CAR signal 

strength and enhancing T-cell persistence (16,17,57). Consequently, this enables tumor immune escape and hampers the antitumor potency of 

CAR T-cells, particularly for low antigen density tumors (58). This may explain our findings of lower toxicity and reduced PFS benefit of two anti-
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CD19 CAR T-cells (Hu19.CD8.28Z and CD19. BBz.86).  Multiple pre-clinical studies are underway toward determining the CAR structure that 

might achieve minimum toxicity and maximum efficacy for low antigen density tumors. A recent in-vivo leukemia model demonstrated the high 

potency of a new CD19. CD28ΖH/T-4-1BBζ construct, despite the low antigen density of the leukemic cells, while accomplishing a similar efficacy 

to Yescarta (58). Further studies are required to assess how these pre-clinical findings translate into clinical benefits for lymphoma patients.  

 

Sequential administration of ASCT + CD19. CD28ζ versus Yescarta: The authors of the clinical trials that evaluated the safety and efficacy 

of the sequential administration of ASCT and CD19. CD28ζ CAR T-cell therapy in LBCL patients (19–21) hypothesized that this combination will 

reduce cytokine production while exerting a high antitumor potency by increasing the expansion and persistence of CAR T-cells. Providing ASCT 

prior to CAR T-cell administration is believed to reduce tumor burden, diminish immuno-suppressive microenvironment, and boost 

lymphodepletion, thereby reducing the number of regulatory T-cells and myeloid cells. Nevertheless, our findings on ASCT + CD19. CD28ζ versus 

Yescarta were inconclusive as none of the findings reached statistical significance. The direction of the results remained unchanged in separate 

analyses for the U.S. and Chinese trials. Nevertheless, the feasibility and clinical benefit of the concurrent administration of ASCT with CAR T-cell 

therapy may not be justifiable since this combined regimen would not be available for about half of the patients who are transplant-ineligible due to 

chemo-refractory disease and half of those who received ASCT yet still at risk for disease relapse post-autografting (59). Of note, combining 

ASCT with CAR T-cell therapy may not be necessary if CAR T-cell therapy alone is superior to ASCT, as previously shown (35). Intensive efforts 

are underway to understand whether CAR T-cell therapy is efficacious and safe to replace ASCT in earlier lines of treatment of LBCL. A few 

randomized multi-center clinical trials are underway comparing the FDA-approved CAR T-cells - Yescarta in the ZUMA-7 (NCT03391466), 

Kymriah in the BELINDA (NCT03570892), and Breyanzi in the TRANSFORM (NCT03575351) trials versus the standard of care comprised of 

systemic therapies followed by ASCT. 

 

Alternative target-antigen: CD20. 4-1BBζ versus Yescarta: CD19 has been a primary target in CAR T-cell therapy for LBCL due to its pan 

B-cell expression and increased expression in B-cell leukemias and lymphomas (60). In contrast, CD20 and CD22 have limited expression in 

mature B cells. Nevertheless, targeting both CD19 and CD20 has an additive effect,  given CD20 antigen’s higher average density of surface 

molecules per tumor cell, combined with CD19’s pan B-cell lineage cell expression, with extended-expression in certain CD20-negative tumor 

subsets (61). Since all patients in this trial were treated with rituximab before CD20.4-1BBζ CAR T-cell administration, the question of whether 

CD20. CAR T-cells would be more efficacious among rituximab-näive patients remain to be clarified.  
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Alternative co-stimulatory domain: CD19. 4-1BBζ in Chinese patients versus Yescarta: This CAR T-cell product has identical construct 

with Tisagenlecleucel (Kymriah) except the trial was conducted in different study population in China. Despite the statistical non-significance of the 

findings for the CD19. 4-1BBζ in Chinese patients versus Yescarta comparison in this study, the slight improvement in safety was associated with 

the CD19. 4-1BBζ CAR T-cells versus Yescarta in these studies is consistent with the recent MAIC of Kymriah and Breyanzi to Yescarta (47). 4-

1BBζ is one of the well-established co-stimulatory domains incorporated into the CD19 CARs in Kymriah and Breyanzi, while Yescarta contains a 

CD28ζ co-domain. The impact of the CD28ζ versus 4-1BBζ co-stimulatory domains on CAR T-cell behavior has been studied in in-vivo studies 

and multiple clinical studies in B-ALL. CD19. CD28ζ CAR T-cells show a faster and higher peak expansion, yet reduced T-cell persistence 

compared to 4-1BBζ-containing CARs (62). Nonetheless, it is not fully clear whether CAR T-cell persistence is a strong determinant of response 

durability in LBCL as it is for B-ALL.  

 

Comparative effectiveness studies on currently approved CAR T-cell therapies: A recently published MAIC of Yescarta versus Kymriah 

demonstrated superior efficacy of Yescarta, with higher CR rates (RR=1.62, 95% CI: 1.16-2.27) and improved OS (HR=0.51, 95% CI: 0.31-0.83), 

yet increased toxicity, with grade 1-2 CRS with OR = 6.20 (95% CI: 2.76-13.93) and grade ≥ 3 NT with OR=2.20 (95% CI: 0.98-3.60) in R/R LBCL 

(47). Another recently published MAIC of Yescarta versus Breyanzi demonstrated similar efficacy, slightly favoring Yescarta (PFS with HR=1.30; 

95%, 0.96-1.77). However, Breyanzi presented a significantly safer profile than Yescarta (grade ≥3 CRS and NT with OR= 0.16; 95% CI, 0.06-

0.47, and OR=0.31, 95% CI, 0.18-0.54, respectively (63). Among the currently approved CAR T-cells, based on the existing MAICs, Yescarta 

appears to present higher efficacy than Kymriah and comparable efficacy to Breyanzi. In contrast, the latter two incorporating 4-1BBζ co-domains 

demonstrate a safer profile regarding CRS and NT than Yescarta. The lower toxicity and similar efficacy observed with Breyanzi versus Yescarta 

relates to its ability to induce a low variability in cytokine production (IL-2, IFN-γ, TNF-α, etc.). This was accomplished through controlled 

manufacturing to maintain the ratio of CD4+ and CD8+  to 1:1 under optimized culture conditions. In-vivo studies are underway to clarify the exact 

underlying mechanisms in this regard (64).  

 

Strengths, Limitations, and Future Study 

 

To our knowledge, this study is the first to report the indirect comparison of experimental CAR T-cells to Yescarta, an FDA-approved CAR 

T-cell product. This study incorporated a systematic literature review with MAICs, the only statistical tool to address studies in the absence of 
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direct head-to-head comparisons and the presence of single-arm trials only. Consequently, we were able to systematically retrieve comprehensive 

data from an IPD bank of experimental CAR T-cells.  

 

The results of this study need to be evaluated in light of a number of important limitations. Even though we attempted to account for cross-

trial heterogeneity using MAICs, it is important to acknowledge the residual case-mix and beyond case-mix heterogeneity (65). This means that 

the study results are subject to residual confounding since MAICs can only correct for heterogeneity in mutualy reported disease- and patient 

baseline characetistics. Inevitable differences between the eligible clinical trials in terms of trial management strategies, study designs, protocols, 

presence or absence of conditioning regimes and/or bridging therapies, CAR T-cell engineering techniques, and manufacturing processes 

potentially introduces the bias in indirect comparison studies. For example, ZUMA-1 did not use bridging therapy, as opposed to some of the 

eligible IPD trials in this study used bridging therapy. It is unclear as to how this may have affected our results since the role of bridging 

chemotherapy in the CAR T-cell setting is not fully understood and subject to multiple confounding factors. To reduce the potential confounding 

due the differences in PICOS (population, intervention, comparator, outcomes, and study design) among the studies identified through our 

systematic review, we conducted a feasibility assessment prior to running the analyses and excluded four studies with substantially different 

PICOS.  

 

Furthermore, methodological limitation stems from the fact that the MAIC method assumes all key prognostic factors differentially 

distributed across studies are taken into account (42,65). However, we could not adjust for all important prognostic factors since eligible studies 

reported different patient characteristics to describe their study samples, which limited the number of common key baseline covariates reported by 

experimental CAR T-cell common with ZUMA-1. For example, two important key baseline covariates for R-R DLBCL that lacked in experimental 

CAR T-cell trials were International Prognostic Index (IPI) and Eastern Cooperative Oncology Group (ECOG) Performance Status. Even when a 

similar patient characteristic was reported across studies, it was often measured by different scales in different papers, which makes the 

adjustment by MAIC impossible, such as International Prognostic Indexes (IPI), age-adjusted IPI and Revised-IPI. More serious inconsistency was 

found across the trials were the differential definition of relapsed disease as a baseline characteristic between ZUMA-1 and eligible IPD trials in 

this study. ZUMA-1 defined refractoriness as patients who had stable disease (SD) as their best response to the last line of therapy or those who 

had relapsed within 12 months of a consolidative ASCT. In IPD trials, besides using the same definition as that of the ZUMA-1 trial, progression at 

any time after the last line of therapy is also included as a criterion for relapsed disease. Therefore, we categorized patients as either refractory or 
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relapsed in the MAICs irrespective of the type of relapse. Regarding the MAIC of safety outcomes, IPD trials used different grading systems for 

CRS and NT from ZUMA-1, which used the Lee criteria (66).  

 

Hence, only a few important and mutually reported variables were adjusted for in the analysis. Consequently, any hidden difference in 

other unmeasured patient characteristics across studies could invalidate the findings. For example, pooled populations for the dual targeting and 

third generation CAR T-cells comprised of ethnically diverse patients within each pool consisting of the clinical trials conducted in China and USA 

(Table 1). To the best of our knowledge, there is no data available yet whether ethnicity has an impact on the CAR T-cell treatment outcomes. 

Apart from simple inverse weighting, advanced statistical methods based on doubly robust estimation have been developed to adjust for between-

trial heterogeneity in patient characteristics (65). These approaches require specifying one model for the weight and another model for the 

outcome of interest. The advantage is that only one of these two models needs to be correctly specified to obtain valid and less biased results. 

Despite being more robust statistical solutions beyond the simple inverse weighting approach (used in MAIC), these methods were not used in the 

current study because theywere not feasible in our study due to the limited sample size. This study aims to build a basis for further exploration but 

not to draw definitive conclusions due to the small sample sizes of the contributing trials. Although a larger case series are needed to confirm 

these results, our findings are biologically plausible and clinically meaningful while corroborating with existing pre-clinical and clinical literature.  

 

CONCLUSION 

 

In conclusion, the MAIC suggests a dual targeting approach using tandem CD19.CD20.4-1BB may have enhanced efficacy and safety 

compared to Yescarta. The hazard ratios of PFS were quantitatively in favor of the third generation, the sequential administration of ASCT and 

CD19.CD28 CAR T-cells and of the CD19. 4-1BBζ manufactured and evaluated among Chinese patients, although none of them reached 

statistical significance. The safety-enhanced CAR T-cell constructs included in our analysis, such as Hu19. CD8.28Z  and CD19. BBz.86 

demonstrated a remarkable safety profile with no occurrence of severe adverse events, yet without improvement in PFS compared to that of 

Yescarta.  

While our results have shown the potential efficacy and safety advantages of tandem dual targeting approaches over the Yescarta, multi-

targeted CAR T-cells, in general, are not likely to overcome the other resistance mechanisms beyond target antigen loss, such as the resistance 

involved with IL-6/STAT3 pathways, disruption of gene regulations for T-cell differentiation and exhaustion (67), and PD-L1 induced inhibition of 

CAR-T cells (68). Currently, a feasibility of multi-target CAR T-cells to mature into a routine clinical practice appear to be low given its higher 
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production cost than single antigen targeting CARs owing to its multiple viral transductions and more complex manufacturing procedures. This 

study serves as a basis for further exploration and future studies shall aim to update the current study for longer follow-up data to identify the 

comparative efficacy, safety and feasibility of novel CAR T-cell products and the currently approved CAR T-cell therapies including Yescarta, 

Kymriah and most recently approved Lisocabtagene maraleucel (Breyanzi).  
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