1 2	Sex Modifies the Effect of Genetic Risk Scores for Polycystic Ovary Syndrome on Metabolic Phenotypes	
3 4 5	Ky'Era V. Actkins^{1,2} , Genevieve Jean-Pierre ^{2,3} , Melinda C. Aldrich ^{3,4,5} , Digna R. Velez Edwards ^{5,6,7} , and Lea K. Davis ^{2,3}	
6 7	1. Department of Microbiology, Immunology, and Physiology, Meharry Medical College,	
8	Nashville, TN	
9	2. Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN	
10 11	 Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 	
12	4. Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN	
13 14	 Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN 	Э,
15 16	6. Vanderbilt Epidemiology Center, Institute of Medicine and Public Health, Vanderbilt	
17 18	 Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vandert University Medical Center, Nashville, TN 	oilt
19 20 21	Short title: Genetic sex effects of polycystic ovary syndrome	
21	Co-Corresponding authors	
23	Lea Davis	
24	Associate Professor of Medicine	
25	Vanderbilt Genetics Institute	
26	Division of Genetic Medicine	
27	Department of Medicine	
28	511-A Light Hall	
29	Vanderbilt University	
30	2215 Garland Ave	
31	Nashville, TN 37232	
32	Office Tel: 615-875-9478	
33		
34	Ky'Era Actkins	
35	PhD Candidate	
36	Meharry Medical College	
37	1005 Dr. DB Todd Blvd	
38 39	Nashville, TN 37208	
40	Keywords: polycystic ovary syndrome, sex differences, polygenic risk scores, phenome-wide	•
41 42	association study, electronic health records, mediation analysis	
43 44	Funding/Support : KVA is funded by F31HD103397. LKD is funded by U54MD010722. MCA funded by a grant from NIH/NCI (U01CA253560). Datasets were obtained using the Vanderb	is ilt

University Advanced Computing Center for Research and Education. This resource is funded by
institutional, private, and federal grants, which include NIH funded Shared Instrumentation Grant
S10OD017985 and S10RR025141 and CTSA grants UL1TR002243, UL1TR000445, and
UL1RR024975.

49

50 Author contributions: LKD and KVA designed the study. KVA performed the statistical

- analyses. All authors contributed to the interpretation of the results, the revision of the
- 52 manuscript, and approved the final manuscript.
- 53 54
- **Competing interests**: The authors declare they have no competing interests.
- 55

56 **Data availability statement:** All GWAS summary statistics used in this study are publicly

57 available and can be obtained from the following consortium groups and websites: International

58 PCOS Consortium (<u>https://doi.org/10.17863/CAM.27720</u>), UK Biobank

59 (http://www.nealelab.is/uk-biobank), HERMES (http://www.broadcvdi.org/), and

- 60 CARDIoGRAMplusC4D (<u>http://www.cardiogramplusc4d.org/</u>). The summary statistics used from
- 61 the Million Veteran Project can be accessed through dbGaP under accession number
- 62 phs001672.v6.p1. The electronic health record data that support the findings of this study are
- 63 available from Vanderbilt University Medical Center, but restrictions apply to the availability of

64 these data, which were used under license for the current study, and so are not publicly

- 65 available. Data are, however, available from the authors upon reasonable request and with
- 66 permission of Vanderbilt University Medical Center.

67 Abstract

Females with polycystic ovary syndrome (PCOS), the most common endocrine disorder in 68 69 women, have an increased risk of developing metabolic disorders such as insulin resistance, 70 obesity, and type 2 diabetes (T2D). Furthermore, while only diagnosable in females, males with 71 a family history of PCOS can also exhibit a poor cardiometabolic profile. Therefore, we aimed to 72 elucidate the role of sex in the relationship between PCOS and its comorbidities by conducting 73 bidirectional genetic risk score analyses in both sexes. We conducted a phenome-wide 74 association study (PheWAS) using PCOS polygenic risk scores (PCOS_{PRS}) to understand the 75 pleiotropic effects of PCOS genetic liability across 1.380 medical conditions in females and 76 males recorded in the Vanderbilt University Medical Center electronic health record (EHR) 77 database. After adjusting for age and genetic ancestry, we found that European descent males 78 with higher PCOS_{PRS} were significantly more likely to develop cardiovascular diseases than 79 females at the same level of genetic risk, while females had a higher odds of developing T2D. 80 Based on observed significant associations, we tested the relationship between PRS for 81 comorbid conditions (e.g., T2D, body mass index, hypertension, etc.) and found that only PRS 82 generated for BMI and T2D were associated with a PCOS diagnosis. We then further 83 decomposed the T2D_{PRS} association with PCOS by adjusting the model for measured BMI and 84 BMI_{residual} (enriched for the environmental contribution to BMI). Results demonstrated that 85 genetically regulated BMI primarily accounted for the relationship between T2D_{PRS} and PCOS. 86 This was further supported in a mediation analysis, which only revealed clinical BMI 87 measurements, but not BMI_{residual}, as a strong mediator for both sexes. Overall, our findings 88 show that the genetic architecture of PCOS has distinct metabolic sex differences, but these 89 associations are only apparent when PCOS_{PRS} is explicitly modeled. It is possible that these 90 pathways are less explained by the direct genetic risk of metabolic traits than they are by the 91 risk factors shared between them, which can be influenced by biological variables such as sex.

92

93 Introduction

94 Polycystic ovary syndrome (PCOS) is a highly heritable endocrine disorder that affects 95 5%-21% of females of reproductive age who are typically diagnosed by having two or more of 96 the following features under the Rotterdam criteria: polycystic ovaries, oligo- and anovulation, or 97 hyperandrogenism [1–3]. Although Rotterdam is the most common PCOS criteria, other criteria 98 can be used for diagnosis, including the National Institutes of Health criteria, the Androgen 99 Excess and PCOS Criteria, or the 2018 International Evidence Based PCOS guidelines [2]. 100 Each criterion slightly differs in requirements in an effort to cover the range of PCOS symptoms 101 that are exhibited in patients. However, as a result of the differing diagnostic criteria, the 102 heterogenous presentation of symptoms, and the prevalent comorbidities that reside outside of 103 diagnostic requirements patients often spend years seeking a diagnosis or worse, may be one 104 of the 75% of females estimated to be undiagnosed [4,5]. 105 Many clinicians select criteria based on their perception of the most defining PCOS 106 feature [6]. In some cases, as with the Androgen Excess and PCOS Society criteria [7], this will 107 mean hyperandrogenism, a symptom that typically manifests as acne, hirsutism, or alopecia [8]. 108 Androgen excess is also hypothesized to underlie many of the comorbid metabolic dysfunctions 109 experienced by patients such as insulin resistance, obesity, metabolic syndrome, type 2 110 diabetes, and cardiovascular diseases (CVD). However, as previous studies have shown, the 111 genetic risk factors present in patients with metabolic manifestations of PCOS could differ from 112 others who have primary presentations of reproductive dysfunction [9,10].

PCOS is multifactorial and twin studies estimate heritability at 70% [11–14]. With an underlying polygenic architecture, multiple variants are hypothesized to be involved in the development of PCOS [15,16]. Furthermore, the variation of clinical features can be partially explained by ancestry informative markers, indicating potential population specific effects [17,18]. Rare variants in genes, such as *DENND1A*, have also been identified in family studies for PCOS alongside many other genetic variants identified from GWAS [19]. Despite the small

119	effect size of individual common variants, aggregation of common risk variants together as a
120	polygenic (or genetic) risk score (PRS) reflects the overall additive genetic liability to PCOS in
121	individuals. This marker of disease risk is associated with PCOS diagnosis in multiple ancestries
122	and offers many advantages to parsing out the genetic etiology of PCOS that is entangled with
123	its comorbid presentations [11–13]. Furthermore, there is increasing evidence that a spectrum
124	of clinical PCOS manifestations for PCOS is also correlated with the PRS for PCOS [11].
125	Therefore, in this study, we aimed to determine if the PRS for PCOS demonstrated
126	pleiotropic associations with other health conditions in a hospital biobank population through a
127	phenome-wide association study (PheWAS). By using a genetic model, we were able to
128	determine sex-differentiated effects associated with PCOS genetic risk, revealing the impact of
129	PCOS-associated inherited genetic variation in males, despite the fact that PCOS is only
130	diagnosed in females. We further implemented several analyses to determine the mediating role
131	of body mass index (BMI) on cardiometabolic comorbidities, and further identified the
132	directionality of their effects through causal mediation analyses.
133 134 135	Methods
136	VUMC EHR-linked Biorepository
137	Vanderbilt University Medical Center (VUMC) is a tertiary care hospital in Nashville,
139	Tennessee, with several outpatient clinics throughout Tennessee and the surrounding states
140	offering primary and secondary care. Medical records have been electronically documented at
141	VUMC since the early 1990s, resulting in a clinical research database of over 3 million EHRs
142	referred to as the Synthetic Derivative [20]. EHRs include demographic information, health
143	information documented through International Classification of Disease, Ninth Revision (ICD9)
144	and Tenth Revision (ICD10) codes, procedural codes (CPT), clinical notes, medications, and
145	laboratory values. This information is linked with a DNA biorepository known as BioVU. Use of

EHRs and genetic data for this study was approved by the Vanderbilt University InstitutionalReview Board (IRB #160279).

148

149 Genetic data

150

BioVU contains 94,474 individuals genotyped on the MEGA^{EX} platform [21]. The QC 151 152 pipeline removed SNPs with low genotyping call rate (< 0.98) and individual subjects who were 153 related (pi-hat > 0.2), had low call rates (< 0.98), sex discrepancies, and excessive 154 heterozygosity (Fhet > 0.2). A principal component (PC) analysis (PCA) was performed on 155 remaining individuals to determine genetic ancestry using FlashPCA2 [22]. BioVU genotyped 156 samples were stratified by ancestral origin based on PCs herein referred to as the European 157 (EUR) descent or African (AFR) descent dataset. Extended details for the quality control of 158 these datasets have been described previously [23].

- 159
- 160 Publicly available summary statistics

Genome-wide association study (GWAS) summary statistics were acquired for PCOS, BMI, diastolic blood pressure, systolic blood pressure, pulse, type 2 diabetes, heart failure, and coronary artery disease (i.e., all of the significant phenotypic associations observed in the PheWAS models) to further establish the strength of associations between PCOS and its comorbidities through subsequent analyses. Each GWAS was selected based on public availability, sample size, and sample diversity.

167 The Genetic Investigation of ANthropometric Traits (GIANT) consortium body mass 168 index (BMI) summary statistics included 339,224 individuals of European and non-European 169 descent from over 125 studies. These BMI summary statistics were used as a proxy for obesity 170 summary statistics [24]. Blood pressure traits (diastolic, systolic, and pulse) and type 2 diabetes 171 (T2D) summary statistics were obtained from the Million Veterans Program (MVP), a large 172 biobank consortium effort that houses biobank data from various sites in the Department of

173	Veterans Affairs health system [25]. Blood pressure traits were generated from a trans-ethnic
174	sample of over 750,000 individuals from MVP [26]. T2D summary statistics were generated from
175	a meta-analysis using data from 1.4 million participants in various biobanks and consortia
176	groups [27]. Heart failure summary statistics were collected from 47,309 cases and 930,014
177	controls of European ancestry across nine studies in the Heart Failure Molecular Epidemiology
178	for Therapeutic Targets (HERMES) consortium as a proxy for heart disease [28]. Finally,
179	coronary artery disease (CAD) datasets generated from the Coronary Artery Disease Genome-
180	wide Replication and Meta-analysis plus The Coronary Artery Disease (CARDIoGRAMplusC4D)
181	consortium were used as the genetic measurement for the coronary atherosclerosis phenotype
182	[29]. This meta-analysis assembled 60,801 cases and 123,504 controls of multiple ancestries
183	across forty-eight study sites.
184 185 186	Statistical analysis
187	Generation of polygenic risk scores (PRS)
189	$PCOS_{PRS}$ were calculated with PRS-CS software using the weighted sums of the risk
190	allele effects as reported in the summary statistics from the Day et al. GWAS of PCOS and
191	applying a Bayesian continuous shrinkage parameter select SNP features and to model linkage
192	disequilibrium [16,30]. The details of these methods have been previously described elsewhere
193	[11]. We calculated $PCOS_{PRS}$ for both EUR and AFR BioVU genotyped ancestry samples which
194	were previously shown to be associated with a PCOS diagnosis defined by a coded strict PCOS
195	definition in our previously published EHR-based algorithm [11].
196	
197	Phenome-wide association study (PheWAS)
198	Next, we were interested in identifying the pleiotropic effects of the genetic susceptibility
199	to PCOS on the medical phenome. Therefore, in a PheWAS framework we analyzed the effects
200	of PCOS _{PRS} across 1,380 medical conditions. This analysis was first performed in a female

201	sample for our EUR and AFR ancestry datasets to validate the PRS and identify potential
202	pleiotropic relationships (Supplementary Figures 1-5). Although males cannot be diagnosed
203	with PCOS, they still harbor genetic risk for PCOS. Thus, we extended the analysis to males to
204	examine sex differences. Finally, we performed a sex-combined PheWAS to increase statistical
205	power. In the sex-combined logistic regression model, covariates included median age of
206	individuals medical record, sex, and the first ten principal components. In the sex-stratified
207	models, covariates included median age and the first ten PCs.

208

209 Interaction analysis

For each phenotype with evidence of a significant main effect of $PCOS_{PRS}$ in either sex, we tested for two-way interactions (sex * $PCOS_{PRS}$) to determine which of the significant sex stratified PheWAS associations were influenced by biological effects of sex. Selected phenotypes of interest that met the phenome-wide false discovery rate (q < 0.05) were tested for interactions (N = 10). For these interaction analyses, sex-combined models included the main effects of PCOS_{PRS}, median age of individuals medical record, sex, and the top ten PCs.

216

217 Sensitivity analyses

Several sensitivity analyses were performed to assess the robustness of the significant phenome-wide findings. First, BMI is strongly correlated with both PCOS and its comorbidities, and thus, can influence the strength of the results [31]. Therefore, we adjusted each model for BMI (median measurement across an individual's EHR) to observe whether the significant phenotypes associated with PCOS_{PRS} were independent of obesity-related effects. In addition to adjusting for BMI, the model was adjusted for median age, sex (only in the sex-combined sample), and the top ten PCs.

Next, we evaluated which phenotypes were dependent on a PCOS diagnosis in females
by accounting for PCOS diagnosis [11]. This analysis allowed us to identify true pleiotropic

associations and provided insight into which phenotypes were exclusively correlated withgenetic risk, even in the absence of PCOS.

229	Finally, given that BMI has strong contributions from both genetic and environmental
230	sources of variance, we revisited the previous PheWAS analyses to specifically account for the
231	environmental contribution of BMI. To do this, we calculated the residuals of median BMI
232	adjusted for BMI _{PRS} (residuals(medianBMI ~ BMI _{PRS})), herein referred to as BMI _{residual} . BMI _{residual}
233	were then used in a subsequent sensitivity analysis of the previously described PheWAS.

234

235 Genetic correlation

Linkage Disequilibrium Score Regression (LDSC) was used to calculate genetic correlation, an estimate of genetic similarity, between traits [32]. LDSC only utilizes GWAS summary statistics and is not sensitive to sample overlap, which may be present across the publicly available GWAS datasets used in this study. This method utilizes the effect estimate of each SNP and accounts for the effects of SNPs in linkage disequilibrium based on the GWAS reference population. The European reference panel was used for all analyses based on the demographic majority of each of the GWAS samples.

243

244 Logistic regression models

245 Public GWAS datasets were used to generate PRS for phenome-wide significant 246 phenotypes identified in the PheWAS. PRS were then used as the independent variable in a 247 logistic regression model against PCOS diagnosis as the dependent variable. BioVU genotyped 248 datasets were filtered to females and contained 361 PCOS cases and 29,035 controls in the 249 EUR dataset and 189 PCOS cases and 9,229 controls in the AFR dataset. Selection of PCOS 250 cases and controls have been described elsewhere [11]. In brief, cases required PCOS billing 251 codes and no exclusion codes. Controls excluded individuals who had any inclusion or 252 exclusion codes [11]. All models were adjusted for median age of the individuals medical record,

and the top ten PCs for each ancestry. Median BMI was included as a covariate in thesensitivity analysis.

Lastly, we adjusted for $BMI_{residual}$ in the logistic regression models in place of BMI. Next, we performed a sensitivity analysis to test the effect of $BMI_{residual}$ and BMI_{PRS} separately on PCOS diagnosis. A multiple testing correction of p < 7.35e-04 (0.05/68) was implemented to account for all statistical tests. All statistical analyses were done using R 3.6.0.

259

260 *Mediation analysis*

261 To test whether BMI or BMI residual mediates the pleiotropic relationships between PCOS 262 and associated cardiometabolic conditions, a mediation analysis was employed using the 263 mediation R package for both AFR and EUR genotyped samples [33]. For the first set of 264 mediation analyses, we modeled BMI_{PRS} and BMI_{residual} as exposures, T2D diagnosis as the 265 mediator, and PCOS case status as the outcome. Another reciprocal model was tested with the 266 same exposures, but with PCOS diagnosis as the mediator and T2D as the outcome. This 267 analysis tested the hypothesis that the risk conferred by BMI on one phenotype (e.g., PCOS) in 268 turn increases risk for another other phenotype (e.g., T2D). We restricted this analysis to the 269 female population. All models were further adjusted for median age and the top ten PCs. 270 In our second set of mediation analyses, we tested whether genetic risk for PCOS or 271 T2D also influenced BMI_{residual} through the manifestation of either clinical condition. For example, 272 we modeled PCOSPRS as the exposure variable, T2D diagnosis as the mediator and BMI_{residual} 273 as the outcome. Finally, in a female only analysis, T2DPRS was modeled the exposure variable, 274 PCOS diagnosis was included as the mediator, and BMI_{residual} again was modeled as the 275 outcome.

Finally, for our last set of mediation analyses, we examined the mediating effect of both measured BMI and BMI_{residual} on the relationship between PCOS_{PRS} (exposure) and the diagnosis of hypertension and hypertensive heart disease (i.e., outcomes that demonstrated

279	evidence of significant interactions with sex). T2D was also tested because it was significantly
280	associated with $PCOS_{PRS}$ in both sexes. $PCOS_{PRS}$ was modeled as the exposure variable and
281	T2D (phecode = 270.2) hypertension (phecode = 411), and hypertensive heart disease
282	(phecode = 401.21) were modeled as the outcome variables. Models were considered
283	significant when the average direct effect (ADE) and average causal mediation effect (ACME)
284	both passed p < 7.35e-04. All mediation analyses were performed with 1,000 bootstrap
285	simulations to estimate the confidence intervals and determine an empirical p-value.
286	
287	Results
289 289	PCOS _{PRS} PheWAS results
290	The PCOS _{PRS} PheWAS was applied to 66,903 EUR individuals from BioVU. When
291	restricted to females (N = 37,240), two phenotypes were significantly associated with $PCOS_{PRS}$
292	(Bonferroni corrected p-value = 4.56e-05) (Figure 1a): T2D (odds ratio [OR] = 1.10, 95%
293	confidence interval [CI] = 1.06-1.14, $p = 5.54e-07$) and diabetes mellitus (OR = 1.09, 95% CI =
294	1.05-1.13, p = 2.20e-06). When the analysis was restricted to males (N = 29,663; Figure 1b),
295	hypertensive heart disease was significant (OR = 1.15, 95% CI = 1.08-1.23, p = 2.07e-05)
296	alongside a cluster of nominally ($p < 0.05$) associated cardiovascular phenotypes with similar
297	effect sizes (OR = 1.06 to 1.08). This included hypertension (OR =1.06, 95% CI = 1.03-1.10,
298	p=1.30e-04), essential hypertension (OR = 1.06, 95% CI = 1.03-1.10, p = 2.49e-04), and
299	coronary atherosclerosis (OR = 1.06, 95% CI =1.02-1.10, p=1.40e-03). T2D (OR=1.07, 95% CI
300	= 1.03-1.11, p=7.04e-04) and several other endocrine phenotypes were also modestly
301	associated with PCOS _{PRS} in males.
302	In the EUR sex-combined model, four phenotypes were significantly associated with
303	$PCOS_{PRS}$ (Figure 2). This included T2D and diabetes mellitus as the top associations with the
304	same OR of 1.08 (T2D 95% CI = 1.06-1.11, p = 3.15e-09; diabetes mellitus 95% CI = 1.05-1.11,

305 p = 1.03e-08). Following was obesity (OR = 1.07, 95% CI = 1.04-1.11, p = 9.68e-06) and 306 hypertensive heart disease (OR = 1.11, 95% CI = 1.06-1.16, p = 3.57e-05). Three cardiovascular diseases were also nominally associated with PCOS_{PRS}, presumably due to the 307 308 addition of males. PCOS_{PRS} yielded an OR of 1.21 (95% Cl = 1.08-1.36, p = 7.82e-04) for an 309 association with polycystic ovaries, falling just short of phenome-wide significance. 310 No associations passed Bonferroni correction in the AFR ancestry analysis, which 311 included a total of 12,383 individuals (Supplementary Figure 1). 312 313 Interaction analysis 314 The sex interaction analysis demonstrated that males with a high PCOS_{PRS} were 315 (interaction p = 7.24e-03) more likely to be diagnosed with hypertension (OR_{Males} = 1.06, 95% CI 316 = 1.03-1.10, p =1.30e-04; OR_{Females} = 1.03, 95% CI = 1.00-1.06, p = 0.07), essential 317 hypertension (interaction p=7.71e-03, $OR_{Males} = 1.06$, 95% CI = 1.03-1.10, p = 2.49e-04; 318 $OR_{Females} = 1.03, 95\%$ CI = 1.00-1.06, p = 0.08), and hypertensive heart disease (interaction 319 p=0.01, OR_{Males} = 1.15, 95% CI = 1.08-1.23, p = 2.07e-05; OR_{Females} = 1.05, 95% CI = 0.98-1.13, 320 p = 0.16) than females with the same PCOS_{PRS} (**Table 1**). These sex differences were also 321 observed when calculating the prevalence for each trait by decile of PCOS_{PRS}, which only 322 showed an upwards trend across deciles for traits with a significant sex effect (Figure 3). 323 Together, these results showed that sex is an important modifier of PCOS genetic risk. 324 325 Sensitivity analyses adjusting for BMI and PCOS case status 326 In our first set of PheWAS sensitivity analyses for the EUR population, we adjusted for 327 median BMI in all of the PRS-PheWAS models. There were no surviving associations in the 328 sex-combined model or stratified analyses, suggesting BMI may mediate the pleiotropic effects 329 of PCOS_{PRS} (Supplementary Figures 2a and 3). In a separate sensitivity analysis (female only) 330 we found that after adjusting for PCOS diagnosis, females with a high PCOS_{PRS} still

demonstrated a significant positive phenome-wide association with T2D and diabetes mellitus

- 332 (Supplementary Figure 2b).
- 333
- 334 Genetic correlation results

335 We found that BMI (r_q = 43.32%, p = 8.77e-19) and T2D (r_q = 29.26%, p = 3.25e-09) had 336 the strongest genetic correlation with PCOS (**Table 2**). Heart failure ($r_g = 26.51\%$, p = 0.0025) 337 and pulse pressure ($r_q = 13.46\%$, p = 0.011) were also modestly significantly with PCOS. CAD 338 bordered the significance threshold, but systolic and diastolic blood pressure were not 339 significantly genetically correlated with PCOS. 340 341 Cardiometabolic PRS Analysis of PCOS diagnosis 342 Outside of T2D and BMI, none of the PRS built for CAD, heart failure, or blood pressure 343 were significantly associated with a PCOS diagnosis in females of either EUR or AFR descent 344 (Figure 4). 345 BMI_{PRS} was positively associated with PCOS diagnosis for both EUR and AFR ancestry 346 populations ($p_{EUR} = 3.71e-08$, $p_{AFR} = 0.02$), but not independently of clinically measured BMI 347 values. T2D_{PRS} in the EUR dataset yielded similar results with PCOS diagnosis, again losing 348 significance upon addition of a BMI covariate in the model (OR_{unadiusted} = 1.16, 95% CI = 1.04-349 1.30, p = 0.007; OR_{adiusted} = 1.09, 95% CI = 0.97-1.22, p = 0.16). To determine whether this 350 reduction in effect size was due to the genetic correlation between T2D and BMI, we also tested 351 a model in which T2D_{PRS} was adjusted for BMI_{residual} (i.e., variance remaining in BMI after 352 removing variance due to BMIPRS) instead of BMI. This model indeed recovered the original 353 association between T2D_{PRS} (OR_{EUR} = 1.18, 95% CI = 1.05-1.32, $p_{EUR} = 0.005$) and PCOS 354 diagnosis for the EUR population, suggesting that genetically predicted BMI mediates the 355 association between T2D_{PRS} and PCOS diagnosis (Figure 5). 356

357 Mediation analysis in females with BMI as an exposure variable

358 To further quantify the degree to which BMI influenced the shared genetic pathways between PCOS and T2D, a mediation analysis was performed with BMI_{PRS} and BMI_{residual} as the 359 360 exposure variables. PCOS diagnosis as the outcome variable, and T2D as the mediator. The 361 reciprocal model was then tested with T2D diagnosis as the outcome and PCOS as the 362 mediator (**Table 3**). We found that both phenotypes acted as significant mediators when BMI_{PRS} 363 and BMI_{residual} were exposure variables. PCOS diagnosis had a stronger mediating effect on T2D 364 when BMI_{residual} was the exposure variable compared to BMI_{PRS} (13.6% vs 7.1%). However, the 365 opposite was true for T2D, which mediated more of risk conferred by BMIPRS than BMIresidual on 366 the PCOS outcome (9% vs 2.1%).

367

368 PheWAS sensitivity analysis with BMI_{residual}

369 We revisited the PheWAS analysis in light of the findings for BMI_{residual}. By covarying for 370 BMI_{residual}, (e.g., environmental estimate of BMI), we observed almost no difference from the 371 original results in our female sample (Supplementary Figure 4a). T2D remained significant in 372 females (OR =1.10, 95% CI = 1.06-1.15, p = 1.69e-06), as did diabetes mellitus (OR =1.09, 373 95% CI = 1.05-1.13, p = 9.91e-06). These associations also appeared in the combined dataset 374 alongside obesity (**Supplementary Figure 5**). Although none of the phenotypes passed 375 Bonferroni correction for males, many of the associations improved in estimate effects 376 (Supplementary Figure 4b). 377 378 Mediation analysis in the sex-combined and sex-stratified samples

Upon finding BMI_{residual} as a significant risk exposure for T2D and PCOS in the first mediation analysis, but not a strong confounder in the PCOS_{PRS} PheWAS analysis, we tested whether the genetic risk conferred by one condition (e.g., T2D_{PRS}) was mediated by the clinical manifestation of the other (e.g., PCOS diagnosis) when examining BMI_{residual} as the outcome.

Here we observed a modest association that showed PCOS diagnosis mediated 33% of the risk
 conferred by T2D_{PRS} on BMI_{residual} whereas T2D diagnosis did not explain any of the variance in
 BMI_{residual} due to PCOS_{PRS} (**Table 4**).

386 Lastly, the effects of BMI on PCOS comorbidities T2D, hypertension, and hypertensive 387 heart disease were explored (Table 5). We found that BMI_{residual} was not a significant mediator 388 for any of the tested models, even though clinical BMI was a significant mediator for T2D in 389 females and a significant mediator for hypertensive heart disease in males. This again 390 implicated genetically regulated BMI as the main source of the mediating effect for males since 391 median BMI significantly mediated 14.8% of the variance in hypertensive heart disease (p =392 <2e-16) and mediated 23.7% of the variance in hypertension (p = 0.002) due to PCOS_{PRS}. The 393 lack of an association with BMI_{resiudal} in females also suggests genetically regulated BMI as the 394 primary mediator for T2D, where it mediated 31.5% of the variance explained by the PCOS_{PRS}.

395

397

396 Discussion

398 Through a comprehensive analysis of PCOS genetic risk across multiple phenotypes, 399 we identified sex differences in the cardiometabolic traits associated with PCOS genetic risk. 400 Among these, the most notable difference was that males with high PCOS_{PRS} were at greater 401 risk of cardiovascular conditions than females at the same level of genetic risk. Genetically 402 predicted BMI was revealed as a primary mediator of this risk in males, whereas both 403 environmental and genetic BMI variance components mediated risk of T2D conferred by 404 PCOS_{PRS} in females. Furthermore, only T2D_{PRS} and BMI_{PRS} were associated with PCOS 405 diagnosis, indicating that many of the associations observed in the PCOS_{PRS} PheWAS were 406 primarily driven by PCOS genetic risk and not the genetic effects of the identified comorbidities. 407 There is growing interest in studying PCOS related effects in males whether through 408 their relationship to first-degree family members with PCOS or by an equivalent phenotype [34-409 36]. Generally, males with mothers or sisters with PCOS tend to exhibit a poorer

410 cardiometabolic profile which can be observed as early as infancy [35]. A previous study 411 suggests that males who exhibit a high genetic risk for PCOS are more likely to present with 412 morbid obesity, T2D, and diabetes mellitus, two findings which were confirmed in this study [12]. 413 Although we also found associations with CVD phenotypes in males, these were largely 414 influenced by genetically predicted BMI which can significantly increase the lifetime risk for CVD 415 and mortality rates of high-risk individuals [37]. Genetic susceptibility for PCOS could be an 416 additional catalyst for these events in males, making individuals already predisposed to adverse 417 metabolic outcomes more vulnerable.

418 In an effort to determine whether genetic risk for phenotypes comorbid with PCOS could 419 also increase risk for PCOS, we conducted separate multivariable logistic regressions with PRS 420 for BMI, diastolic blood pressure, systolic blood pressure, pulse pressure, T2D, heart failure, 421 and CAD on the PCOS diagnosis outcome and found no significant associations outside of 422 T2D_{PRS} and BMI_{PRS}. This was unsurprising as the relationship between PCOS and CVD are still 423 poorly elucidated and often debated [38]. It is possible that CVD is more prevalent in genetically 424 high-risk males than females. The sex-difference in CVD prevalence may also be reflected in 425 the PRS which may fail to fully capture CVD genetic risk for PCOS when stratified by sex due to 426 fewer females in the discovery sample.

427 This study provides novel insight into PCOS genetic etiology and continues to 428 underscore the importance of BMI in PCOS risk. As with T2D, we found that genetically 429 predicted BMI is primarily responsible for the phenotypic association between T2D_{PRS} and 430 PCOS. However, PCOS_{PRS} genetic risk led to more comorbid traits in the PheWAS in which 431 both environmental and genetically predicted BMI influenced the metabolic associations. This 432 may mean that PCOS patients with a family history of T2D can have an increased risk for 433 morbid outcomes, as females with PCOS are already more likely to develop T2D at an earlier 434 age [39]. This genetic susceptibility could also explain the high prevalence of insulin resistance 435 in PCOS patients, which can be as high as 70% across all BMI strata [40]. These effects should

be investigated further, as the genetic and biological pathways could differ in lean PCOS
patients who also experience a high rate of insulin resistance [41].

438 This study offers many strengths. Firstly, we showed that cardiometabolic associations 439 vary with sex and that the metabolic outcomes related to PCOS genetic architecture can be 440 further understood by studying both males and females. Secondly, we decomposed BMI into 441 genetically predicted (i.e., BMI_{PRS}) and environmentally enriched (i.e., BMI_{residual}) and evaluated 442 their respective roles in mediating the cardiometabolic profiles associated with PCOS_{PRS}. 443 However, limitations include low power to detect any significant associations in our African 444 descent sample. To date, there is no PCOS GWAS of African descent individuals, limiting all 445 current similar studies to building PRS using European-based genetic variants, which do not 446 perform as well in non-European populations [11,12]. Second, we only examined one 447 environmental risk factor. Although many effects such as lifestyle and diet can be captured 448 through BMI, it is not an exhaustive measurement nor does it accurately account for the full 449 wellness of an individual [42,43]. Although other anthropometric features like hip-to-waist ratio 450 (WHR) may be better indicators of health for some phenotypes [44], this information is not 451 routinely collected in clinical settings or reported in EHRs. Furthermore, evidence does suggest 452 that clinically ascertained BMI may be more informative for PCOS than WHR [45]. Finally, 453 despite using the largest PCOS GWAS to date for this analysis, our PCOS_{PRS} still only explains 454 a small portion of PCOS genetic variance. As these analyses expand, so too will our ability to 455 detect the full genetic spectrum of PCOS and its subphenotypes.

PCOS is a multifaceted disorder with genetic architecture that is reflective of its
heterogeneous outcomes. This polygenic structure captures a spectrum of metabolic
comorbidities that is even more apparent when compared between sexes. Our findings show
that males with high PCOS liability are indeed a high-risk group and those with a family history
of PCOS should be closely monitored for hypertension and CVD. This is also true for females
with PCOS and a family history of T2D, whose genetic risk could induce more severe comorbid

- 462 outcomes. As such, management and screening strategies should be updated to reflect
- 463 advances in PCOS etiology. This call to action is paramount and requires both widespread
- 464 dissemination of risk factor information to relevant stakeholders and increases in PCOS
- 465 research priorities and funding. This becomes even more crucial as PCOS comorbidities are
- 466 often under-recognized in clinical settings and metabolic conditions are underutilized in PCOS
- 467 screening methods [46–49].

468	References
400	Nelelelices

- Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003
 consensus on diagnostic criteria and long-term health risks related to polycystic ovary
 syndrome (PCOS). Hum Reprod. 2004;19: 41–47. doi:10.1093/humrep/deh098
- Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations
 from the international evidence-based guideline for the assessment and management of
 polycystic ovary syndrome. Hum Reprod. 2018;33: 1602–1618.
 doi:10.1093/humrep/dey256
- Shorakae S, Boyle J, Teede H. Polycystic ovary syndrome: a common hormonal condition
 with major metabolic sequelae that physicians should know about. Intern Med J. 2014;44:
 720–726. doi:10.1111/imj.12495
- 480 4. Gibson-Helm M, Teede H, Dunaif A, Dokras A. Delayed Diagnosis and a Lack of
 481 Information Associated With Dissatisfaction in Women With Polycystic Ovary Syndrome. J
 482 Clin Endocrinol Metab. 2017;102: 604–612. doi:10.1210/jc.2016-2963
- 483 5. March WA, Moore VM, Willson KJ, Phillips DIW, Norman RJ, Davies MJ. The prevalence
 484 of polycystic ovary syndrome in a community sample assessed under contrasting
 485 diagnostic criteria. Human Reproduction. 2010;25: 544–551. doi:10.1093/humrep/dep399
- Cussons AJ, Stuckey BGA, Walsh JP, Burke V, Norman RJ. Polycystic ovarian syndrome: marked differences between endocrinologists and gynaecologists in diagnosis and management. Clin Endocrinol. 2005;62: 289–295. doi:10.1111/j.1365-2265.2004.02208.x
- Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit
 W, et al. Criteria for Defining Polycystic Ovary Syndrome as a Predominantly
 Hyperandrogenic Syndrome: An Androgen Excess Society Guideline. The Journal of
 Clinical Endocrinology & Metabolism. 2006;91: 4237–4245. doi:10.1210/jc.2006-0178
- Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary
 syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol
 Metab. 2020;35: 100937. doi:10.1016/j.molmet.2020.01.001
- 496 9. Dapas M, Lin FTJ, Nadkarni GN, Sisk R, Legro RS, Urbanek M, et al. Distinct subtypes of 497 polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic 498 clustering analysis. PLoS Med. 2020;17: e1003132. doi:10.1371/journal.pmed.1003132
- 499 10. Zhang Y, Movva VC, Williams MS, Lee MTM. Polycystic Ovary Syndrome Susceptibility
 500 Loci Inform Disease Etiological Heterogeneity. JCM. 2021;10: 2688.
 501 doi:10.3390/jcm10122688
- Actkins KV, Singh K, Hucks D, Velez Edwards DR, Aldrich M, Cha J, et al. Characterizing
 the clinical and genetic spectrum of polycystic ovary syndrome in electronic health records.
 J Clin Endocrinol Metab. 2020. doi:10.1210/clinem/dgaa675
- Joo YY, Actkins K, Pacheco JA, Basile AO, Carroll R, Crosslin DR, et al. A Polygenic and
 Phenotypic Risk Prediction for Polycystic Ovary Syndrome Evaluated by Phenome-Wide

- 507Association Studies. J Clin Endocrinol Metab. 2020;105: 1918–1936.508doi:10.1210/clinem/dgz326
- Lee H, Oh J-Y, Sung Y-A, Chung HW. A genetic risk score is associated with polycystic
 ovary syndrome-related traits. Hum Reprod. 2016;31: 209–215.
 doi:10.1093/humrep/dev282
- 512 14. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary
 513 syndrome in a Dutch twin-family study. J Clin Endocrinol Metab. 2006;91: 2100–2104.
 514 doi:10.1210/jc.2005-1494
- 515 15. Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, et al. Causal
 516 mechanisms and balancing selection inferred from genetic associations with polycystic
 517 ovary syndrome. Nat Commun. 2015;6: 8464. doi:10.1038/ncomms9464
- 518 16. Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, et al. Large-scale genome-wide
 519 meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for
 520 different diagnosis criteria. PLoS Genet. 2018;14: e1007813.
 521 doi:10.1371/journal.pgen.1007813
- Louwers YV, Lao O, Fauser BCJM, Kayser M, Laven JSE. The impact of self-reported
 ethnicity versus genetic ancestry on phenotypic characteristics of polycystic ovary
 syndrome (PCOS). J Clin Endocrinol Metab. 2014;99: E2107-16. doi:10.1210/jc.2014-1084
- Bjonnes AC, Saxena R, Welt CK. Relationship between polycystic ovary syndrome and ancestry in European Americans. Fertil Steril. 2016;106: 1772–1777.
 doi:10.1016/j.fertnstert.2016.08.033
- 528 19. Dapas M, Sisk R, Legro RS, Urbanek M, Dunaif A, Hayes MG. Family-based quantitative
 529 trait meta-analysis implicates rare noncoding variants in DENND1A in polycystic ovary
 530 syndrome. J Clin Endocrinol Metab. 2019. doi:10.1210/jc.2018-02496
- Solution 20. Robinson JR, Wei W-Q, Roden DM, Denny JC. Defining Phenotypes from Clinical Data to
 Drive Genomic Research. Annu Rev Biomed Data Sci. 2018;1: 69–92.
 doi:10.1146/annurev-biodatasci-080917-013335
- Bien SA, Wojcik GL, Zubair N, Gignoux CR, Martin AR, Kocarnik JM, et al. Strategies for
 Enriching Variant Coverage in Candidate Disease Loci on a Multiethnic Genotyping Array.
 PLoS One. 2016;11: e0167758. doi:10.1371/journal.pone.0167758
- 537 22. Abraham G, Qiu Y, Inouye M. FlashPCA2: principal component analysis of Biobank-scale
 538 genotype datasets. Bioinformatics. 2017;33: 2776–2778. doi:10.1093/bioinformatics/btx299
- 539 23. Dennis JK, Sealock JM, Straub P, Lee YH, Hucks D, Actkins K, et al. Clinical laboratory
 540 test-wide association scan of polygenic scores identifies biomarkers of complex disease.
 541 Genome Med. 2021;13: 6. doi:10.1186/s13073-020-00820-8
- 542 24. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body
 543 mass index yield new insights for obesity biology. Nature. 2015;518: 197–206.
 544 doi:10.1038/nature14177

- 545 25. Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, et al. Million Veteran
 546 Program: A mega-biobank to study genetic influences on health and disease. J Clin
 547 Epidemiol. 2016;70: 214–223. doi:10.1016/j.jclinepi.2015.09.016
- 548 26. Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, et al. Trans-ethnic association
 549 study of blood pressure determinants in over 750,000 individuals. Nat Genet. 2019;51: 51–
 550 62. doi:10.1038/s41588-018-0303-9
- Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. Discovery of
 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million
 participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52: 680–691.
 doi:10.1038/s41588-020-0637-y
- Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, et al. Genome-wide
 association and Mendelian randomisation analysis provide insights into the pathogenesis
 of heart failure. Nat Commun. 2020;11: 163. doi:10.1038/s41467-019-13690-5
- Munz M, Richter GM, Loos BG, Jepsen S, Divaris K, Offenbacher S, et al. Genome-wide
 association meta-analysis of coronary artery disease and periodontitis reveals a novel
 shared risk locus. Sci Rep. 2018;8: 13678. doi:10.1038/s41598-018-31980-8
- 30. Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian
 regression and continuous shrinkage priors. Nat Commun. 2019;10: 1776.
 doi:10.1038/s41467-019-09718-5
- 31. Barber TM, Hanson P, Weickert MO, Franks S. Obesity and Polycystic Ovary Syndrome:
 Implications for Pathogenesis and Novel Management Strategies. Clin Med Insights
 Reprod Health. 2019;13: 1179558119874042. doi:10.1177/1179558119874042
- 32. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. An atlas of
 genetic correlations across human diseases and traits. Nat Genet. 2015;47: 1236–1241.
 doi:10.1038/ng.3406
- 570 33. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal
 571 mediation analysis. J Stat Softw. 2014. Available:
 572 https://oar.princeton.edu/jspui/handle/88435/pr1gj2f
- 573 34. Di Guardo F, Ciotta L, Monteleone M, Palumbo M. Male Equivalent Polycystic Ovarian
 574 Syndrome: Hormonal, Metabolic, and Clinical Aspects. Int J Fertil Steril. 2020;14: 79–83.
 575 doi:10.22074/ijfs.2020.6092
- 35. Recabarren SE, Smith R, Rios R, Maliqueo M, Echiburú B, Codner E, et al. Metabolic
 profile in sons of women with polycystic ovary syndrome. J Clin Endocrinol Metab.
 2008;93: 1820–1826. doi:10.1210/jc.2007-2256
- Subramaniam K, Tripathi A, Dabadghao P. Familial clustering of metabolic phenotype in
 brothers of women with polycystic ovary syndrome. Gynecol Endocrinol. 2019;35: 601–
 603. doi:10.1080/09513590.2019.1566451

- 582 37. Khan SS, Ning H, Wilkins JT, Allen N, Carnethon M, Berry JD, et al. Association of Body
 583 Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity.
 584 JAMA Cardiol. 2018;3: 280–287. doi:10.1001/jamacardio.2018.0022
- 585 38. Papadakis G, Kandaraki E, Papalou O, Vryonidou A, Diamanti-Kandarakis E. Is
 586 cardiovascular risk in women with PCOS a real risk? Current insights. Minerva Endocrinol.
 587 2017;42: 340–355. doi:10.23736/S0391-1977.17.02609-8
- 39. Rubin KH, Glintborg D, Nybo M, Abrahamsen B, Andersen M. Development and Risk
 Factors of Type 2 Diabetes in a Nationwide Population of Women With Polycystic Ovary
 Syndrome. J Clin Endocrinol Metab. 2017;102: 3848–3857. doi:10.1210/jc.2017-01354
- 591 40. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome
 592 revisited: an update on mechanisms and implications. Endocr Rev. 2012;33: 981–1030.
 593 doi:10.1210/er.2011-1034
- 41. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14: 270–284. doi:10.1038/nrendo.2018.24
- 42. Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes (Lond). 2008;32
 Suppl 3: S56-59. doi:10.1038/ijo.2008.87
- 598 43. Chrysant SG, Chrysant GS. The single use of body mass index for the obesity paradox is
 599 misleading and should be used in conjunction with other obesity indices. Postgrad Med.
 600 2019;131: 96–102. doi:10.1080/00325481.2019.1568019
- 44. Li C, Engström G, Hedblad B, Calling S, Berglund G, Janzon L. Sex differences in the
 relationships between BMI, WHR and incidence of cardiovascular disease: a populationbased cohort study. Int J Obes (Lond). 2006;30: 1775–1781. doi:10.1038/sj.ijo.0803339
- 45. Venkatesh SS, Ferreira T, Benonisdottir S, Rahmioglu N, Becker CM, Granne I, et al. The
 role of obesity in female reproductive conditions: A Mendelian Randomisation study.
 Genetic and Genomic Medicine; 2021 Jun. doi:10.1101/2021.06.01.21257781
- 46. Rodgers RJ, Avery JC, Moore VM, Davies MJ, Azziz R, Stener-Victorin E, et al. Complex
 diseases and co-morbidities: polycystic ovary syndrome and type 2 diabetes mellitus.
 Endocr Connect. 2019;8: R71–R75. doi:10.1530/EC-18-0502
- 47. Piltonen TT, Ruokojärvi M, Karro H, Kujanpää L, Morin-Papunen L, Tapanainen JS, et al.
 Awareness of polycystic ovary syndrome among obstetrician-gynecologists and
 endocrinologists in Northern Europe. PLOS ONE. 2019;14: e0226074.
 doi:10.1371/journal.pone.0226074
- 48. Dokras A, Saini S, Gibson-Helm M, Schulkin J, Cooney L, Teede H. Gaps in knowledge
 among physicians regarding diagnostic criteria and management of polycystic ovary
 syndrome. Fertil Steril. 2017;107: 1380-1386.e1. doi:10.1016/j.fertnstert.2017.04.011
- 49. Mott MM, Kitos NR, Coviello AD. Practice Patterns in Screening for Metabolic Disease in
 Women with PCOS of Diverse Race-Ethnic Backgrounds. Endocr Pract. 2014;20: 855–
 863. doi:10.4158/EP13414.OR
- 620

Phenotype	Estimate	SE	Z-Value	Р	OR	LCI	UCI	Cases	Controls
Hypertension	-0.05	0.02	-2.69	7.24E-03	0.95	0.91	0.99	24,574	35,352
Essential hypertension	-0.05	0.02	-2.66	7.71E-03	0.95	0.91	0.99	24,159	35,352
Hypertensive heart disease	-0.11	0.04	-2.51	0.01	0.89	0.82	0.98	2,696	35,352
Coronary atherosclerosis	-0.04	0.03	-1.46	0.14	0.96	0.91	1.01	9,123	49,700
Ischemic Heart Disease	-0.03	0.03	-1.28	0.20	0.97	0.92	1.02	10,015	49,700
Loss of teeth or edentulism	-0.17	0.14	-1.21	0.23	0.84	0.64	1.11	184	61,061
Obesity	0.03	0.03	0.92	0.36	1.03	0.97	1.09	5,835	51,152
Type 2 diabetes	0.02	0.02	0.90	0.37	1.02	0.97	1.07	8,990	51,286
Diabetes mellitus	0.02	0.02	0.65	0.52	1.02	0.97	1.06	9,424	51,286
Overweight, obesity and other hyperalimentation	0.01	0.03	0.23	0.82	1.01	0.95	1.06	6,841	51,152

621 Table 1. Hypertension is Significantly Modified by Sex for PCOS_{PRS}.

622

623

624 We used a logistic regression model to test the interaction of effect between PCOS_{PRS} and sex.

625 Models were adjusted for age, sex, genetic ancestry, and the interaction term. Estimate effects 626 are in the direction of females.

Traits	Genetic Correlation	SE	Z	Р
Diastolic Blood Pressure	-3.60%	0.07	-0.54	0.59
Systolic Blood Pressure	9.33%	0.05	1.79	0.07
Pulse Pressure	13.46%	0.05	2.54	0.01
Type 2 Diabetes	29.26%	0.05	5.92	3.25e-09
Heart Failure	26.51%	0.09	3.02	0.003
Coronary Artery Diseases	17.35%	0.09	1.95	0.05
Body Mass Index	43.32%	0.05	8.85	8.77e-19

Table 2. PCOS Shares Genetic Architecture with Cardiometabolic Traits 629

632 Table 3. BMI Genetic Variance is a Causal Risk Factor for PCOS and T2D 633

Exposure	Mediator	Outcome	ADE β (95% CI)	ACME β (95% CI)	Proportion Mediated (95% CI)
DMI	PCOS	T2D	0.025 (0.014-0.037) <i>P</i> = <2e-16	0.002 (6.92E-04-0.004) <i>P</i> = <2 <i>e</i> -16	0.071 (0.025-0.144) <i>P</i> = <2e-16
BIVIIPRS	T2D	PCOS	0.025 (0.013-0.037) <i>P</i> = <2e-16	0.002 (0.001-0.004) <i>P</i> = <2e-16	0.090 (0.039-0.191) <i>P</i> = <2e-16
DMI	PCOS	T2D	0.037 (0.023-0.052) <i>P</i> = <2 <i>e</i> -16	0.006 (0.002-0.010) <i>P</i> = <2 <i>e</i> -16	0.136 (0.049-0.254) <i>P</i> = <2e-16
Unresidual	T2D	PCOS	0.127 (0.104-0.150) <i>P</i> = <2 <i>e</i> -16	0.003 (8.12-04- 0.005) <i>P</i> = 0.004	0.021 (0.006-0.042) <i>P</i> = 0.004

ADE = average direct effect, ACME = average causal mediation effect, CI = confidence interval

638 Table 4. Genetic effects of T2D Contributes to Environmental BMI.

639

Sex	Exposure	Mediator	Outcome	ADE β (95% CI)	ΑCME β (95% CI)	Proportion Mediated (95% CI)						
Sex- Combined				0.041 (-0.055-0.147) <i>P</i> = 0.44	0.059 (0,033-0.088) P = <2e-16	0.589 (-1.112-3.248) <i>P</i> = 0.06						
Females	PCOS _{PRS}	T2D	BMI residual	0.024 (-0.102-0.172) <i>P</i> = 0.78	0.059 (0.041-0.121) <i>P</i> = <2e-16	0.652 (-4.638-6.128) P = 0.18						
Males											0.040 (-0.101-0.176) <i>P</i> = 0.58	0.038 (0.004-0.074) <i>P</i> = 0.02
Females	T2D _{PRS}	PCOS	BMI residual	0.268 (0.018-0.519) <i>P</i> = 0.04	0.139 (0.046-0.242) <i>P</i> = 0.002	0.338 (0.122-0.863) <i>P</i> = 0.004						

Table 5. Genetically Regulated BMI is a Stronger Mediator in PCOS_{PRS} Shared Metabolic Pathways.

Sex	Mediator	Outcome	ADE β (95% Cl)	ΑCME β (95% CI)	Proportion Mediated (95% Cl)
Sex- Combined	BMI	T2D	0.009 (0.004-0.014) <i>P</i> = <2e-16	0.005 (0.004-0.007) P = <2e-16	0.367 (0.250 - 0.585) <i>P</i> = <2e-16
	BMI Residuals		0.0134 (0.008- 0.019) <i>P</i> = <2e-16	0.001 (-1.76E-04- 0.002) <i>P</i> = 0.09	0.072 (-0.011- 0.155) <i>P</i> = 0.09
	BMI	Hypertension	0.007 (-2.13e-04-0.013) <i>P</i> = 0.062	0.005 (0.004-0.006) <i>P</i> = <2e-16	0.435 (0.269-1.043) <i>P</i> = <2e-16
	BMI Residuals		0.012 (0.005-0.0178) <i>P</i> = 0.002	8.89e-04 (-3.13E-04-0.002) <i>P</i> = 0.13	0.072 (-0.036-0.207) <i>P</i> = 0.13
	BMI	Hypertensive Heart Disease	0.008 (0.003-0.013) <i>P</i> = 0.006	0.002 (0.001-0.003) P = <2e-16	0.237 (0.144-0.457) <i>P</i> = 0.002
	BMI Residuals		0.009 (0.004-0.014) <i>P</i> = 0.002	0.0006 (-0.0001-0.001) <i>P</i> = 0.09	0.062 (-0.011-0.152) <i>P</i> = 0.09
Females	BMI	T2D	0.012 (0.005-0.019) <i>P</i> = <2e-16	0.005 (0.004-0.007) P = <2e-16	0.315 (0.208-0.535) <i>P</i> = <2e-16
	BMI Residuals		0.016 (0.009-0.023) <i>P</i> = <2e-16	9.64e-04 (-6.00e-04-0.003) <i>P</i> = 0.22	0.058 (-0.037-0.154) <i>P</i> = 0.22
	BMI	Hypertension	0.002 (-0.007-0.010) <i>P</i> = 0.73	0.006 (0.004-0.007) <i>P</i> = <2e-16	0.742 (-2.165-5.363) <i>P</i> = 0.08

	BMI Residuals BMI		0.007	9.01e-04	0.112
			(-0.002-0.015)	(-7.86E-04-0.002)	(-0.426-0.806)
			P = 0.11	P = 0.26	P = 0.30
		Hypertensive Heart Disease	0.003	0.002	0.378
			(-0.002- 0.009)	(0.001- 0.003)	(-1.602-3.278)
			P = 0.31	P = <2e-16	P = 0.082
			0.005	5.50e-04	0.097
	Divii		(-9.79e-04-0.011)	(-0.0002-0.001)	(-0.367-0.781)
	Residuais		P = 0.11	P = 0.14	P = 0.20
	BMI		0.007	0.005	0.430
		- T2D	(-0.002-0.016)	(0.003-0.007)	(0.186-1.377)
			P = 0.13	P = <2e-16	P = 0.02
	BMI Residuals		0.011	0.001	0.086
			(0.001-0.020)	(-8.26e-04-0.003)	(-0.115-0.421)
			P = 0.03	P = 0.27	P = 0.28
	BMI	- Hypertension	0.014	0.004	0.237
			(0.004-0.024)	(0.003-0.006)	(0.127-0.530)
Maloc			P = 0.006	P = <2e-16	P = 0.002
iviales	BMI Residuals		0.018	8.65e-04	0.046
			(0.009-0.027)	(-8.84e-04-0.003)	(-0.049 -0.156)
			P = <2e-16	P = 0.30	P = 0.30
	BMI		0.015	0.003	0.148
			(0.006- 0.025)	(0.001- 0.004)	(0.059-0.349)
		Hypertensive	P = <2e-16	P = <2e-16	P = <2e-16
	BMI Residuals	Heart Disease	0.017	0.0006	0.034
			(0.008- 0.027)	(-8.82e-04- 0.002)	(-0.063-0.139)
			P = <2e-16	P = 0.43	P = 0.43

646

647 PCOS_{PRS} was analyzed as the exposure variable. P < 0.05 was considered statistically significant. ADE = average direct effect,

648 ACME = average causal mediation effect, CI = confidence interval

Figure 1. Metabolic Associations Vary by Sex for Genetically High-Risk Individuals. PCOS_{PRS} phenome-wide association study results are displayed in the Manhattan plots for (A) females and (B) males. The red line represents the Bonferroni correction of P =

4.56e-05 and P = 5.07e-05, respectively. Arrows in the upward direction represent increased risk.

- and males) to increase power. Significant results that passed Bonferroni correction (P = 3.73e-
- 658 05) are annotated in the Manhattan plot.

664 **Strata.** (A) Top Figure: Hypertension, (B) Bottom Figure: Hypertensive Heart Disease. The 665 prevalence of the significant phenotypes from the sex interaction analysis are shown. The 666 prevalence for hypertension in our dataset was 48% for males and 36% for females. The 667 prevalence for hypertensive heart disease was 10% for males and 5% for females.

668

Figure 4. T2D_{PRS} and BMI_{PRS} are Associated with PCOS Case Status. The results from the
logistic regression analysis between PCOS diagnosis and polygenic risk scores (PRS)
generated for significant metabolic traits from the PheWAS analysis are displayed in the forest
plot. One model was unadjusted for body mass index (unadjusted) and the other model was
adjusted for body mass index (adjusted). * indicates P < 0.05

682

681

Figure 5. T2D_{PRS} is Associated with PCOS After Accounting for BMI_{residual}. The logistic
 regression model between T2D_{PRS} and PCOS diagnosis was covaried for age, the top ten

685 principal components for ancestry, and BMI_{residual}. BMI_{residual} represents BMI after the removal of

686 BMI genetic variance from the variable. * indicates P < 0.05