1	SARS-CoV-2 Receptor Binding Domain IgG Response to AstraZeneca (AZD1222) COVID-19
2	Vaccination, Jamaica
3	
4	Ynolde E. Leys ¹ , Magdalene Nwokocha ² , Jerome P. Walker ¹ , Tiffany R. Butterfield ¹ , Velesha
5	Frater ¹ , Tamara K. Thompson ³ , Mark Anderson ⁴ , Gavin A. Cloherty ⁴ , Joshua J. Anzinger ^{1,5 *}
6	
7	¹ The University of the West Indies, Department of Microbiology, Kingston, Jamaica, West
8	Indies
9	² The University of the West Indies, Department of Pathology, Kingston, Jamaica, West Indies
10	³ The University of the West Indies, Department of Medicine, Kingston, Jamaica, West Indies
11	⁴ Abbott Diagnostics, Infectious Diseases Research, Abbott Park, Illinois, USA
12	⁵ Global Virus Network, Baltimore, MD, United States of America
13	
14	
15	[*] Address correspondence to Joshua Anzinger, Department of Microbiology, The University of
16	the West Indies, Mona, Kingston 7, Jamaica. E-mail: joshua.anzinger@uwimona.edu.jm Phone:
17	+1 876-977-2206
18	
19	Running Head: SARS-CoV-2 RBD IgG Response to AZD1222, Jamaica (60 characters with
20	spaces)
21	Keywords: COVID-19; SARS-CoV-2; Antibody; RBD; Vaccine; AstraZeneca; AZD1222;
22	Caribbean; Jamaica
23	Number of Figures: 1
24	Number of Tables: 2

- 25 Number of Supplementary Files: 4
- 26
- 27 Abstract Word Count: 148
- 28 Text Word Count: 1459

29 Abstract (150 words)

- 30 The Caribbean region is lacking an assessment of the antibody response and side effects
- 31 experienced after AstraZeneca COVID-19 vaccination (AZD1222). We examined SARS-CoV-2
- 32 spike receptor binding domain (RBD) IgG levels and reported side effects in a Jamaican
- 33 population after AZD1222 vaccination. Median RBD IgG levels for persons without evidence of
- 34 previous SARS-CoV-2 infection were 43.1 bIU/mL after 3-7 weeks post first dose, rising to
- 35 100.1 bIU/mL 3-7 weeks post second dose, and falling 46.9 bIU/mL 16-22 weeks post second
- 36 dose. The median RBD IgG level 2-8 weeks after symptom onset for unvaccinated SARS-CoV-2
- 37 infected persons of all disease severities was 411.6 bIU/mL. Common AZD1222 side effects
- 38 after first dose were injection site pain, headache and chills. Most persons reported no side
- 39 effects after second dose. AZD1222 is widely used across the English-speaking Caribbean and
- 40 the study provides evidence for its continued safe and effective use in vaccination programs.

42	The antibody response to COVID-19 vaccination is considered to be of critical importance for
43	protection from COVID-19, especially severe manifestations. ¹ Generally, antibody responses to
44	vaccination can differ depending on the population examined, ² and ideally should be assessed for
45	each population. All Caribbean Community (CARICOM) member states have received
46	AstraZeneca vaccines (AZD1222) through COVAX and/or donations, representing the majority
47	of all vaccine types. ³ Thus far, there have been no studies examining the antibody response to
48	AZD1222 in the Caribbean, necessitating public health decisions based on data from different
49	populations that may use different intervals between vaccine doses.
50	
51	Jamaica was the first Caribbean country to receive AstraZeneca COVID-19 vaccines via
52	COVAX, with the first administered on March 10, 2021, exactly one year after the first
53	confirmed case in the country. ⁴ In this study we examined the antibody response and side effects
54	experienced after AZD1222 for a group of initial vaccinees at the University of the West Indies
55	and University Hospital of the West Indies, Jamaica, and compared responses to unvaccinated
56	SARS-CoV-2 infected persons. Participants were primarily healthcare workers and faculty but
57	also included other persons associated with both institutions. Antibody responses were assessed
58	for persons receiving AZD1222 first doses from March 10-April 27, 2021. Second dose
59	appointments in Jamaica were made available two calendar months after first vaccination, with
60	full dose AZD1222 (5 x 10^{10} viral particles) offered exclusively for these months. This study was
61	approved by the University of the West Indies Mona Campus Research Ethics Committee
62	(CREC-MN.150 20/21).
63	

63

64	Antibody responses to vaccination were determined using an Abbott ARCHITECT i2000sr
65	instrument (Abbott Laboratories, Abbott Park, Illinois) for the SARS-CoV-2 IgG II Quant and
66	Abbott ARCHITECT SARS-CoV-2 IgM assays: both identified antibodies specific for the spike
67	protein. The SARS-CoV-2 IgG II Quant assay measured antibodies against the spike receptor
68	binding domain (RBD), the domain responsible for binding to ACE2 receptors and a major target
69	of neutralizing antibodies. ⁵ SARS-CoV-2 IgG II Quant assay results were reported in WHO
70	binding international units per milliliter (bIU/mL) by multiplying the arbitrary units per milliliter
71	(AU/mL) value by 0.142. ⁶ Past infection with SARS-CoV-2 was determined using the Abbott
72	ARCHITECT SARS-CoV-2 IgG assay that identified nucleocapsid-specific IgG. A lower cutoff
73	(≥0.4 S/CO) than the manufacturer's instructions was used for the SARS-CoV-2 nucleocapsid-
74	specific IgG assay to increase sensitivity as described previously. ⁷ All samples in this study were
75	tested with all three assays. SARS-CoV-2 IgG II Quant and IgM assays were considered positive
76	according to the manufacturer's instructions (\geq 50 AU/mL and \geq 1.0 S/CO, respectively).
77	
78	A total of 71 AZD1222 vaccinated persons were assessed, 52.1% being males, with an average
79	age of 49.9 years (Table 1). The average time between doses was 9.0 ± 0.8 weeks. Three weeks
80	after first dose all but one person was positive for SARS-CoV-2 RBD IgG and most persons with
81	longitudinal samples showed increased RBD IgG after the second AZD1222 dose that decreased
82	over time (Figure 1A). In participants without serological evidence of previous SARS-CoV-2
83	infection, median RBD IgG responses were 43.1 bIU/mL (303.5 AU/mL) after 3-7 weeks post
84	first dose, rising to 100.1 bIU/mL (704.6 AU/mL) 3-7 weeks post second dose, and falling to
85	46.9 bIU/mL (330.3 AU/mL) 16-22 weeks post second dose (Figure 1B and Table 1). The only

86	person not showing evidence of RBD IgG antibodies (<50 AU/mL) after the second AZD1222
87	dose was notable for an age >80 years (the only participant age >80 years).
88	
89	Similar to previous studies with AZD1222 and Pfizer-BioNTech COVID-19 (BNT162b2)
90	vaccines, ^{8,9} most vaccinated persons with evidence of previous SARS-CoV-2 infection showed
91	greater RBD IgG levels after first dose than persons vaccinated without evidence of previous
92	SARS-CoV-2 infection (Supplemental Figure 1). The three greatest RBD IgG responses after
93	AZD1222 vaccination were from persons with SARS-CoV-2 PCR-confirmed infection within 2
94	months prior to receiving the first dose (Supplemental Table 1). In total, twelve persons showed
95	serological evidence of SARS-CoV-2 infection, with four persons experiencing COVID-19
96	(three SARS-CoV-2 PCR-confirmed and one previously antibody positive) and eight not
97	reporting COVID-19. One person showed serological evidence of SARS-CoV-2 infection after
98	first but before second AZD1222 dose and three persons showed evidence of SARS-CoV-2
99	breakthrough infection between 3 and 18 weeks after the second dose of AZD1222
100	(Supplemental Figure 2). None of the persons reported COVID-19 symptoms. Positive SARS-
101	CoV-2 IgM results were generally not observed after AZD1222 vaccination (Supplemental
102	Figure 3) and index values were much lower than we previously reported for SARS-CoV-2
103	natural infection. ¹⁰
104	
105	For comparison to AZD1222 vaccination, the RBD IgG response was assessed with convalescent

106 sera from 21 unvaccinated SARS-CoV-2 PCR-confirmed persons, with 52.4% male, and an

107 average age of 54.1 years (Table 1). RBD IgG responses were assessed 2-8 weeks after

108 symptoms onset (or positive PCR test for asymptomatic infections) for unvaccinated persons

109	infected during the initial (April 2020-January 2021) and third waves (July 2021-September
110	2021) (Table 1 and Figure 1B). Both waves were grouped together, as median RBD IgG
111	responses were not statistically different (Mann-Whitney test, $p > 0.999$) when comparing
112	severe-critical infections for the two waves (only severe-critical infection data was available for
113	the third wave). The median RBD IgG antibody response for unvaccinated PCR-confirmed
114	SARS-CoV-2 infected persons was 411.6 bIU/mL (2,898.9 AU/mL) when including all WHO
115	disease severities. Higher RBD IgG antibody levels were correlated with disease severity as
116	assessed by Spearman's correlation ($\rho = 0.44$, $p = 0.04$), in agreement with previous
117	observations. ¹¹ No correlation was identified for RBD IgG levels and age or sex for unvaccinated
118	SARS-CoV-2 infected persons as assessed by Spearman's correlation.
119	
120	Most persons reported side effects and treatment after first AZD1222 dose, whereas after second
121	dose fewer persons reported side effects and they were of shorter duration (Table 2). Spearman's
122	correlation indicated that myalgia, arthralgia and eye pain were each individually correlated with
123	RBD IgG levels ($\rho = 0.385$, $p = 0.02$; $\rho = 0.374$, $p = 0.03$, $\rho = 0.368$, $p = 0.03$, respectively) after
124	
125	first dose but no correlation between any side effect and RBD IgG levels was identified after
	second dose. Side effects after first dose were mostly similar to those reported for a phase 1/2
126	·
	second dose. Side effects after first dose were mostly similar to those reported for a phase $1/2$
126	second dose. Side effects after first dose were mostly similar to those reported for a phase 1/2 safety and immunogenicity study in a UK population, with the exception of lower percentages
126 127	second dose. Side effects after first dose were mostly similar to those reported for a phase 1/2 safety and immunogenicity study in a UK population, with the exception of lower percentages reporting fatigue (18% vs 70-71%) and myalgia (16% vs 48-60%) in this study compared to the

130 This study provides the first assessment of the antibody response to AZD1222 vaccination in the

131 Caribbean region, and provides important information related to common side effects

132	experienced. Most importantly, we show that almost all (70/71) AZD1222 vaccine recipients in
133	this study developed SARS-CoV-2 RBD IgG that remained positive up to 16-22 weeks after
134	second AZD1222 dose.
135	
136	We observed a lower RBD IgG response to AZD1222 than a previous study in the UK that
137	showed a median SARS-CoV-2 RBD IgG of 435 AU/mL for samples collected >21 days after
138	the first AZD1222 dose using the same Abbott SARS-CoV-2 IgG II Quant assay. ⁸ In our study
139	we showed a more modest median response of 303.5 AU/mL 3-7 weeks after the first AZD1222
140	dose that could possibly be explained by a younger age of the UK population examined and/or
141	genetic or other differences between populations.
142	
143	The average time to second AZD1222 dose in this study was 9 weeks. The duration between
144	doses can affect the antibody response, with previous studies showing that receipt of the second
145	AZD1222 dose at 12 weeks resulted in greater antibody levels compared to boosting at 8
146	weeks. ¹³ More recent data showed that extended periods between first dose and second dose
147	greater >12 weeks is associated with higher antibody titers. ¹⁴ Although extended times from
148	initial dosing to second dose may be beneficial, consideration must be given for the extent of
149	SARS-CoV-2 circulation within populations that may favor shorter intervals between doses.
150	
151	This study was limited by the modest sample size and neutralizing antibody testing that was not
152	done. While the SARS-CoV-2 IgG II Quant assay measures IgG antibodies against the spike
153	RBD, a key domain associated with neutralization, the assay does not directly measure
154	neutralizing antibodies. However, RBD IgG levels as measured with the Abbott SARS-CoV-2
154	neutralizing antibodies. However, RBD IgG levels as measured with the Abbott SARS-CoV-2

155	IgG II Quant have previously been shown to be correlated with neutralizing antibodies, ¹⁵ and
156	recent studies show that RBD IgG antibody levels are associated with vaccine efficacy. ^{16,17}
157	These studies examining correlates of protection indicate the potential utility of measuring RBD
158	IgG antibody levels in the broader population. Future assessment of a larger, nationally
159	representative Jamaican population with assessment of neutralizing antibodies would provide
160	more generalizable information and should be considered by public health officials.
161	
162	In conclusion, our study shows that AZD1222 vaccination is associated with mild side effects in
163	the Jamaican population and almost always results in RBD IgG that is sustained for at least 22

164 weeks after vaccination, providing evidence-based support for the continued usage of AZD1222

165 in the English-speaking Caribbean.

166	Acknowledgements: As Global Infectious Diseases Scholars, Ynolde Leys and Tiffany
167	Butterfield received mentored research training in the development of this manuscript. This
168	training was supported in part by the University at Buffalo Clinical and Translational Science
169	Institute award UL1TR001412 and the Global Infectious Diseases Research Training Program
170	award D43TW010919. The content is solely the responsibility of the authors and does not
171	necessarily represent the official views of the Clinical and Translational Science Institute or the
172	National Institutes of Health.
173	
174	Financial Support: This research was funded by the University Hospital of the West Indies and
175	Abbott Laboratories.
176	
177	Disclosure: Gavin Cloherty and Mark Anderson are employees and shareholders of Abbott
178	Laboratories.
179	
180	Authors' addresses: Ynolde E. Leys, Velesha Frater, Joshua J. Anzinger, Department of
181	Microbiology, The University of the West Indies, Mona, Kingston, Jamaica, E-mails:
182	ynolde.leys@gmail.com, velesha_92frater@hotmail.com, joshua.anzinger@uwimona.edu.jm.
183	Magdalene Nwokocha, Department of Microbiology, The University of the West Indies, Mona,
184	Kingston, Jamaica, E-mail: magdanwokocha@yahoo.com. Mark Anderson, Gavin Cloherty,
185	Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, USA, E-mails:
186	mark.anderson6@abbott.com, gavin.cloherty@abbott.com

188 **References**

- 189 1. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Subbarao K,
- 190 Kent SJ, Triccas JA, Davenport MP. Neutralizing antibody levels are highly predictive of
- 191 immune protection from symptomatic SARS-CoV-2 infection. *Nat Med.* Published online
- 192 2021:1-7.
- 193 2. Kimman TG, Vandebriel RJ, Hoebee B. Genetic variation in the response to vaccination.
- 194 *Community Genet.* 2007;10(4):201-217. doi:10.1159/000106559
- 195 3. COVID-19 Vaccine Update Supplement.; 2021.
- 196 https://www.carpha.org/Portals/0/Documents/COVID-19 Vaccine Updates/CARPHA
- 197 COVID-19 Vaccine Update 035 September 6, 2021.pdf
- Christie CDC, Thompson T, Webster-Kerr K. COVID-19 War Games in the Caribbean–
 Round One. *Pandemic Case Stud Opin*. 2020;1(4):68-76.
- Du L, Yang Y, Zhang X. Neutralizing antibodies for the prevention and treatment of
 COVID-19. *Cell Mol Immunol*. Published online 2021:1-14.
- 202 6. Lukaszuk K, Kiewisz J, Rozanska K, Dabrowska M, Podolak A, Jakiel G, Woclawek-
- 203 Potocka I, Lukaszuk A, Rabalski L. Usefulness of IVD Kits for the Assessment of SARS-
- 204 CoV-2 Antibodies to Evaluate the Humoral Response to Vaccination. *Vaccines*.
- 205 2021;9(8):840.
- 206 7. Buss LF, Prete CAJ, Abrahim CMM, Mendrone AJ, Salomon T, de Almeida-Neto C,
- 207 França RFO, Belotti MC, Carvalho MPSS, Costa AG, Crispim MAE, Ferreira SC, Fraiji
- 208 NA, Gurzenda S, Whittaker C, Kamaura LT, Takecian PL, da Silva Peixoto P, Oikawa
- 209 MK, Nishiya AS, Rocha V, Salles NA, de Souza Santos AA, da Silva MA, Custer B,
- 210 Parag K V, Barral-Netto M, Kraemer MUG, Pereira RHM, Pybus OG, Busch MP, Castro

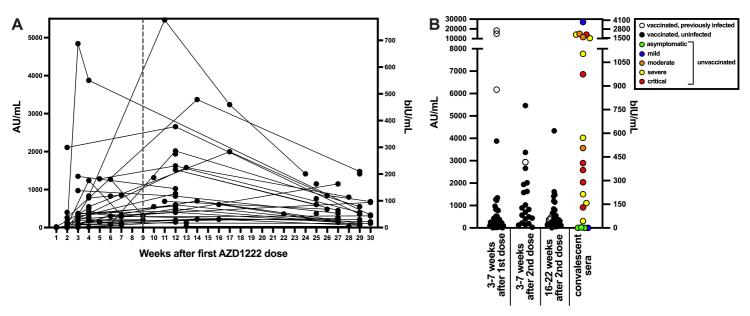
- 211 MC, Dye C, Nascimento VH, Faria NR, Sabino EC. Three-quarters attack rate of SARS-
- 212 CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. *Science*.
- 213 2021;371(6526):288-292. doi:10.1126/science.abe9728
- 8. Eyre DW, Lumley SF, Wei J, Cox S, James T, Justice A, Jesuthasan G, O'Donnell D,
- 215 Howarth A, Hatch SB, Marsden BD, Jones EY, Stuart DI, Ebner D, Hoosdally S, Crook
- 216 DW, Peto TEA, Walker TM, Stoesser NE, Matthews PC, Pouwels KB, Walker AS,
- 217 Jeffery K. Quantitative SARS-CoV-2 anti-spike responses to Pfizer-BioNTech and
- 218 Oxford-AstraZeneca vaccines by previous infection status. *Clin Microbiol Infect Off Publ*
- *Eur Soc Clin Microbiol Infect Dis*. Published online June 2021.
- doi:10.1016/j.cmi.2021.05.041
- 221 9. Anderson M, Stec M, Rewane A, Landay A, Cloherty G, Moy J. SARS-CoV-2 Antibody
- 222 Responses in Infection-Naive or Previously Infected Individuals After 1 and 2 Doses of
- 223 the BNT162b2 Vaccine. JAMA Netw Open. 2021;4(8):e2119741-e2119741.
- doi:10.1001/jamanetworkopen.2021.19741
- 225 10. Butterfield TR, Bruce-Mowatt A, Phillips YZR, Brown N, Francis K, Brown J, Walker JP,
- 226 McKnight NAL, Ehikhametalor K, Taylor DK, Bruce CA, McGrowder D, Wharfe G,
- 227 Sandiford SL, Thompson TK, Anzinger JJ. Assessment of commercial SARS-CoV-2
- 228 antibody assays, Jamaica. Int J Infect Dis IJID Off Publ Int Soc Infect Dis.
- 229 2021;105:333-336. doi:10.1016/j.ijid.2021.02.059
- 230 11. Röltgen K, Powell AE, Wirz OF, Stevens BA, Hogan CA, Najeeb J, Hunter M, Wang H,
- 231 Sahoo MK, Huang C, Yamamoto F, Manohar M, Manalac J, Otrelo-Cardoso AR, Pham
- 232 TD, Rustagi A, Rogers AJ, Shah NH, Blish CA, Cochran JR, Jardetzky TS, Zehnder JL,
- 233 Wang TT, Narasimhan B, Gombar S, Tibshirani R, Nadeau KC, Kim PS, Pinsky BA,

234	Boyd SD. Defining	the features and	duration of antibody	responses to SARS-CoV-2

- infection associated with disease severity and outcome. *Sci Immunol.* 2020;5(54).
- 236 doi:10.1126/sciimmunol.abe0240
- 237 12. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D,
- Bibi S, Bittaye M, Clutterbuck EA, Dold C, Faust SN, Finn A, Flaxman AL, Hallis B,
- Heath P, Jenkin D, Lazarus R, Makinson R, Minassian AM, Pollock KM, Ramasamy M,
- 240 Robinson H, Snape M, Tarrant R, Voysey M, Green C, Douglas AD, Hill AVS, Lambe T,
- 241 Gilbert SC, Pollard AJ. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine
- 242 against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised
- 243 controlled trial. *Lancet* (*London*, *England*). 2020;396(10249):467-478.
- 244 doi:10.1016/S0140-6736(20)31604-4
- 245 13. Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B,
- 246 Baillie VL, Barnabas SL, Bhorat QE, Bibi S, Briner C, Cicconi P, Clutterbuck EA, Collins
- AM, Cutland CL, Darton TC, Dheda K, Dold C, Duncan CJA, Emary KRW, Ewer KJ,
- 248 Flaxman A, Fairlie L, Faust SN, Feng S, Ferreira DM, Finn A, Galiza E, Goodman AL,
- 249 Green CM, Green CA, Greenland M, Hill C, Hill HC, Hirsch I, Izu A, Jenkin D, Joe CCD,
- 250 Kerridge S, Koen A, Kwatra G, Lazarus R, Libri V, Lillie PJ, Marchevsky NG, Marshall
- 251 RP, Mendes AVA, Milan EP, Minassian AM, McGregor A, Mujadidi YF, Nana A,
- 252 Padayachee SD, Phillips DJ, Pittella A, Plested E, Pollock KM, Ramasamy MN, Ritchie
- 253 AJ, Robinson H, Schwarzbold A V, Smith A, Song R, Snape MD, Sprinz E, Sutherland
- 254 RK, Thomson EC, Török ME, Toshner M, Turner DPJ, Vekemans J, Villafana TL, White
- 255 T, Williams CJ, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Pollard AJ. Single-dose
- administration and the influence of the timing of the booster dose on immunogenicity and

257		efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised
258		trials. Lancet (London, England). 2021;397(10277):881-891. doi:10.1016/S0140-
259		6736(21)00432-3
260	14.	Flaxman A, Marchevsky NG, Jenkin D, Aboagye J, Aley PK, Angus B, Belij-
261		Rammerstorfer S, Bibi S, Bittaye M, Cappuccini F, Cicconi P, Clutterbuck EA, Davies S,
262		Dejnirattisai W, Dold C, Ewer KJ, Folegatti PM, Fowler J, Hill AVS, Kerridge S,
263		Minassian AM, Mongkolsapaya J, Mujadidi YF, Plested E, Ramasamy MN, Robinson H,
264		Sanders H, Sheehan E, Smith H, Snape MD, Song R, Woods D, Screaton G, Gilbert SC,
265		Voysey M, Pollard AJ, Lambe T. Reactogenicity and immunogenicity after a late second
266		dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised
267		controlled trials (COV001 and COV002). Lancet (London, England).
268		2021;398(10304):981-990. doi:10.1016/S0140-6736(21)01699-8
269	15.	Perkmann T, Perkmann-Nagele N, Koller T, Mucher P, Radakovics A, Marculescu R,
270		Wolzt M, Wagner OF, Binder CJ, Haslacher H. Anti-spike protein assays to determine
271		SARS-CoV-2 antibody levels: a head-to-head comparison of five quantitative assays.
272		Microbiol Spectr. 2021;9(1):e00247-21.
273	16.	Feng S, Phillips DJ, White T, Sayal H, Aley PK, Bibi S, Dold C, Fuskova M, Gilbert SC,
274		Hirsch I. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2
275		infection. Nat Med. Published online 2021. doi:https://doi.org/10.1038/s41591-021-
276		01540-1
277	17.	Gilbert PB, Montefiori DC, McDermott A, Fong Y, Benkeser DC, Deng W, Zhou H,
278		Houchens CR, Martins K, Jayashankar L. Immune correlates analysis of the mRNA-1273
279		COVID-19 vaccine efficacy trial. medRxiv. Published online 2021.

	Vaccinated				Infected, Unvaccinated
	3-7 Weeks After First AZD1222 Dose	3-7 Weeks After Second AZD1222 Dose	16-22 Weeks After Second AZD1222 Dose	All Time Points After AZD1222	2-8 Weeks After Symptom Onset [*]
n	39	21	36	71	21
Male	66.7%	76.2%	66.7%	52.1%	52.4%
Mean age \pm st. dev	50.4 ± 16.1	54.8 ± 14.5	51.4 ± 16.6	49.1 ± 15.5	54.1 ± 17.4
SARS-CoV-2 RBD IgG AU/mL (IQR), All Samples	305.8 (91.8-792.9)	827.0 (310.5-1,978.9)	342.0 (168.2-681.0)	N/A	2,898.9 (611.1-11,141.1)
SARS-CoV-2 RBD IgG AU/mL (IQR), Excluding Previous Infection	303.5 (91.8-606.2)	704.6 (310.5-1,978.9)	330.3 (146.2-607.1)	N/A	N/A


Table 1	
Participant demographic information and SARS-CoV-2 RBD IgG levels	3

281 *2-8 week after positive SARS-CoV-2 PCR test for asymptomatic infections.

	1 st Dose	2 nd Dose
Side Effects		
None	19.6% (11/56)	55.8% (24/43)
Injection site pain	46.4% (26/56)	20.9% (9/43)
Headache	30.3% (17/56)	2.3% (1/43)
Chills	25.0% (14/56)	7.0% (3/43)
Fever	23.2% (13/56)	2.3% (1/43)
Arthralgia	21.4% (12/56)	4.7% (2/43)
Fatigue	17.9% (10/56)	20.9% (9/43)
Myalgia	16.1% (9/56)	-
Eye pain	10.7% (6/56)	-
Weakness	8.9% (5/56)	-
Paresthesia	1.8% (1/56)	2.3% (1/43)
mptom Duration		
12-24 hr	46.1% (18/39)	68.7% (11/16)
36-48 hr	35.9% (14/39)	18.7% (3/16)
>48 hr	12.8% (5/39)	12.5% (2/16)
Iedication		
None	48.2% (27/56)	60.0% (24/40)
Acetaminophen	50.0% (28/56)	37.5% (15/40)
Aspirin	-	2.5% (1/40)
Panadeine F	1.8% (1/56)	_

Table 2	
Side effects and treatments after AZD1222 vaccination	

- 283 Figure 1. SARS-CoV-2 RBD IgG antibody levels after AZD1222 vaccination and/or SARS-
- 284 CoV-2 infection. SARS-CoV-2 RBD IgG was measured with the Abbott ARCHITECT SARS-
- 285 CoV-2 IgG II Quant assay with results reported as arbitrary units per milliliter (AU/mL) on the
- left y-axis and WHO binding international units per milliliter (bIU/mL) on the right y-axis. A)
- 287 Sera from all time points collected after AZD1222 vaccination was assessed for SARS-CoV-2
- 288 RBD IgG levels. The vertical dotted line indicates the average time of second AZD1222 dose.
- All data points to the right of the vertical dotted were after second AZD1222 dose B) Sera was
- collected from AZD1222 vaccinated persons 3-7 weeks after first and second dose, 16-22 weeks
- after second dose, and for unvaccinated SARS-CoV-2 PCR-confirmed persons 2-8 weeks after
- symptom onset (or PCR confirmation for asymptomatic persons).

