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Abstract

Background. Current form of genome-wide association studies (GWAS) is inadequate
to accurately explain the genetics of complex traits due to the lack of sufficient statistical
power. It explores each variant individually, but current studies show that multiple
variants with varying effect sizes actually act in a concerted way to develop a complex
disease. To address this issue, we have developed an algorithmic framework that can
effectively solve the multi-locus problem in GWAS with a very high level of confidence.
Our methodology consists of three novel algorithms based on graph theory and machine
learning. It identifies a set of highly discriminating variants that are stable and robust
with little (if any) spuriousness. Consequently, likely these variants should be able to
interpret missing heritability of a convoluted disease as an entity.
Results. To demonstrate the efficacy of our proposed algorithms, we have considered
astigmatism case-control GWAS dataset. Astigmatism is a common eye condition that
causes blurred vision because of an error in the shape of the cornea. The cause of astigma-
tism is not entirely known but a sizable inheritability is assumed. Clinical studies show
that developmental disorders (such as, autism) and astigmatism co-occur in a statistically
significant number of individuals. By performing classical GWAS analysis, we didn’t find
any genome-wide statistically significant variants. Conversely, we have identified a set
of stable, robust, and highly predictive variants that can together explain the genetics
of astigmatism. We have performed a set of biological enrichment analyses based on
gene ontology (GO) terms, disease ontology (DO) terms, biological pathways, network of
pathways, and so forth to manifest the accuracy and novelty of our findings.
Conclusions. Rigorous experimental evaluations show that our proposed methodology
can solve GWAS multi-locus problem effectively and efficiently. It can identify signals
from the GWAS dataset having small number of samples with a high level of accuracy.
We believe that the proposed methodology based on graph theory and machine learning
is the most comprehensive one compared to any other machine learning based tools in
this domain.
Keywords. Astigmatism, Biological Pathway, Genome-Wide Association Study (GWAS),
Machine Learning (ML), Support Vector Machine (SVM)
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1 Introduction

A genome-wide association study (GWAS) is an observational study employed in genet-
ics research to associate a specific set of genetic variations with a particular trait. It
is also commonly known as whole genome association study (WGAS) as it considers a
genome-wide set of genetic variants. The method skims through the entire genomes from
a set of individuals and searches for any variants that can explain the presence of a dis-
ease. Genetic variants are of many types, e.g. single-nucleotide polymorphisms (SNPs),
insertions and deletions (indels), tandem repeats, copy number variations (CNVs), and
so forth. However, GWAS primarily focuses on finding associations between SNPs and
traits, such as major human diseases. Nevertheless, it can be applied uniformly to other
types of genetic variant as stated above along with other organisms. The variants iden-
tified by GWAS now can be used to elucidate how genes harbored by those variants
contribute to the disease and potentially develop better prevention and treatment strate-
gies. Please, note that we use the terms variant and SNP interchangeably throughout
this article.

One of the foremost weaknesses of GWAS is its inability to deal with the missing
heritability problem. It is because single genetic variations can explain only a portion of
heritability of traits (such as diseases, behaviors, and other phenotypes). Much of the
heritability of some complex diseases is missing because a person’s susceptibility to a
particular disease may well depend on the combined effect of a set of variants. Missing
heritability problem is presumed to be partly rooted in the inherent weakness of the
classical statistical methods followed by GWAS. Traditional statistical methods [1] are
designed to analyze susceptibility of variants in GWAS by considering only a single variant
at a time. On the contrary, it is proven that multiple variants act together to cause many
common diseases. These complex interactions among variants are known as multi-locus
interactions [2]. Contemporary case-control studies fail to identify multi-locus effects
by using the traditional p-value calculations and a large amount of potentially available
information is lost (24). There are numerous challenges in designing and analyzing the
joint effects of multiple genetic factors. For example, in a typical GWAS genotypes
of up to 100 million variants are sequenced from not more than several thousands of
individuals. Here we have many more variables p than samples n. Classical models
require p < n, whereas in GWAS we have p� n. We also need to account for correlations,
such as linkage disequilibrium (LD) between variants. Therefore, standard multi-variable
statistical approaches like multiple linear or logistic regression are not very promising
tools to detect complex multi-locus interactions from genome-wide data. Fortunately,
machine learning algorithms provide several intuitive alternatives to perform multi-locus
analyses within acceptable time, accuracy, memory, and money.

Two types of analytic methods have been developed to elucidate GWAS datasets.
Some methods infer phenotypic risk of an individual based on the given genetic informa-
tion while the rest focus on identifying statistically significant variants that can explain
the given trait. In this proposed research we intend to combine both objectives by devel-
oping a robust and stable multi-locus association methodology that can identify a subset
of discriminating variants that can together explain a complex disease as-well-as predict
a person’s susceptibility to that disease. In this context, we have designed and developed
three interconnected algorithms to decipher the biology of complex diseases by employing
GWAS case-control datasets. Some of the main objectives of this work include but not
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limited to: (1) not to use any type of raw p-value threshold; (2) reduce variants with
minimal information loss; (3) identify a subset of discriminating variants that are stable
and robust across multiple bootstrapped samples; and (4) instrument a theoretical frame-
work to assess the robustness and statistical significance of a machine learning model of
interest.

There exist several machine learning (ML) based methods to solve multi-locus problem
in GWAS [3, 4, 5, 6, 7, 8]. An excellent comparative study of several machine learning
methods with respect to GWAS can be found in [9]. All the methods cited above applied
ML tools directly on the reduced set of variants by imposing certain kinds of threshold,
such as p-value threshold. Like any other statistical methods, ML algorithms also suffer
from very underdetermined systems where we have many more variables compared to
the number of samples. Fortunately, ensemble techniques [10] can be employed in the
context of multi-locus problem in GWAS to elucidate hidden and complex biology of a
compound disease. To the best of our knowledge, there exists no comprehensive ML based
computational methodology in the current literature of GWAS for the identification of a
robust and stable set of discriminating variants that can potentially explain the biology
of an underlying disease. To demonstrate the relevance and effectiveness of our proposed
methodology, we have employed it on a case-control GWAS dataset where cases consist
of individuals having astigmatism (an imperfection in the curvature of eye’s cornea or
lens). Controls do not have any type of astigmatisms. Individually, each SNP in this
dataset has very limited predictive power. For example, after performing proper quality
control procedures, the smallest raw p-value as shown in Figure 1 is not genome-wide
significant (Benjamini-Hochberg adjusted p-value is 0.97). Therefore, classical GWAS
analysis fails to identify any discriminating variants from this particular dataset. On the
contrary, our methodology identifies 350 robust and stable variants collectively having a
high discriminating power (diagnostic odds ratio is 3.25 in validation samples). Please,
note that some of these variants have very large p-values (for instance 0.3, 0.4, etc.). It
indicates that applying a p-value threshold can have an undesired effect on any type of
multi-locus genetic analysis.

2 Methods

Our computational methodology consists of three interconnected algorithms to accom-
plish three fundamental objectives. At the beginning, we retain unique variants and
discard duplicate ones in terms of their values across the samples. We then select a set of
representative variants using linkage disequilibrium measures. Finally, a subset of highly
discriminating variants is identified using a robust and stable machine learning algorithm.
Next, we illustrate each step in detail.

2.1 Selecting unique SNPs

In a typical GWAS, we have roughly 10-100 million variants. Consequently, there is a high
chance that multiple variants may have identical values across the samples. There will be
no information loss if we discard the duplicates. However, we have an enormous number
of variants as stated above. In this context, we have developed a randomized algorithm
that can exactly identify the duplicates using random sampling and bitwise operations.
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It works as follows. Traditionally, biallelic variants are encoded with 0, 1 or 2 numerals
based on the number of copies of non-reference alleles, e.g. 0 refers to the homozygous
with the reference allele, 1 means heterozygous with the reference allele, and 2 indicates
homozygous with the alternate or mutant allele. Typically, a character is represented by
8 bits in ASCII (American Standard Code for Information Interchange) format. We can
encode each biallelic variant using 2 bits (i.e. 0, 1, and 2 can be represented by 00, 01, and
10, respectively). As a result, the dataset will be reduced by 4-fold using 2-bit encoding.
It will also provide us the opportunity to compute Hamming distance between any pair
of variants using bitwise operations that is tremendously faster than the string-matching
operation.

After encoding each variant across all the subjects, we randomly sample a subset of
the coordinates in the encoded binary space and hash the variants based on this subset.
Two variants will be hashed into the same hash bucket if they have identical values for
the randomly chosen coordinates (i.e., subjects). If two variants fall into the same bucket
in the hash table, this is a candidate pair. For each bucket, we compute the Hamming
distance between each pair of variants by considering all the coordinates using bitwise
operations (i.e. XORing and then counting the number of 1s in the binary space; if the
number of 1s is zero, Hamming distance will be zero). We keep a graph where each variant
acts as a node. Two nodes will be connected by an edge if the Hamming distance between
them is zero. At the end, the graph contains a set of connected components (strictly
speaking, each connected component will be a clique). We then randomly select a variant
from each of the connected components. These selected variants will be unique across
the entire space of variants. The details of the algorithm can be found in Algorithm 1.

2.2 Selecting representative variants

In population genetics, linkage disequilibrium (LD, in short) is the non-random asso-
ciation of alleles at different loci in a given population. Loci are said to be in linkage
disequilibrium when the frequency of association of their different alleles is higher or lower
than what would be expected if the loci were independent and associated randomly [11].
Consider two biallelic loci, locus 1 with alleles a and A and locus 2 with alleles b and
B. Suppose the frequencies for alleles a and A are pa and 1 − pa, respectively and the
frequencies for alleles b and B are pb and 1− pb, respectively. The r2 measure of linkage
disequilibrium is defined as:

r2(pa, pb, pab) =
(pab − papb)2

pa(1− pa)pb(1− pb)
(1)

where pab is the frequency of haplotypes having allele a at locus 1 and allele b at locus
2 [12]. As the square of a correlation coefficient, r2(pa, pb, pab) can range from 0 to 1 as
pa, pb and pab vary. If r2 ≈ 0 at two different loci x and y, they are said to be in linkage
equilibrium, i.e., those two loci x and y are uncorrelated. Conversely if r2 ≈ 1, they are
in linkage disequilibrium. In such a scenario we can conclude that x and y are highly
correlated and so, removing one would cost minimal loss of information.

To effectively prune the set of correlated variants based on LD measures, we have
designed and developed a novel graph theoretic algorithm. It works as follows. Given
that we have a set of variants S and pair-wise LDs among the variants (please, note that
400kb window size was used while computing pair-wise LDs across the chromosomes),
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we create a graph G(V,E) where each variant s ∈ S is treated as a node n. Two nodes
n1 and n2 in graph G are connected by an edge e if LD(n1, n2) ≥ λ, a user defined
threshold (λ = 0.9 in our experiment). After constructing such a graph G, we compute
the centrality score of each node n ∈ G using PageRank algorithm. It gives each node in
the graph a rating of its importance recursively so that an important node will get more
score if it is connected to other important nodes [13].

Let n′ be a node with the highest centrality score across the network. We delete each
neighboring node n′′ of n′ including n′ from G. We record n′ as a representative of its
neighbors n′′. Since, all the nodes n′′ are in high LD with n′, they are highly correlated
with n′. So, deleting neighboring nodes n′′ will reduce the dimension of the variant space
without any serious loss of information. The same procedure is repeated until all the
nodes n ∈ G are isolated, i.e., there is no edge e in G. We record all such nodes n as
representatives. The details of the algorithm can be found in Algorithm 2.

2.3 Selecting a subset of high discriminating variants

To effectively identify a subset of discriminating variants that can elucidate a phenotype
(such as a disease), we have developed a robust and stable feature selection algorithm by
cleverly assembling a set of linear SVMs (LSVMs) [14, 15, 16]. It works as follows. Assume
that we have a set of LSVMs C and a GWAS dataset D. D is essentially a matrix M×N
where M and N refer to the number of samples and variants, respectively. Each variant is
encoded by 3 numerical values (e.g. 0, 1, and 2) as stated earlier. At the very beginning,
we bootstrapped dataset D by randomly choosing samples with replacement to form a
marginally distinct dataset D′. Each LSVM is trained with a slightly different dataset D′′

by randomly choosing p% (= 90% in our experiment) of samples with replacement from
dataset D′. Consequently, we will have slightly different weights for each of the variants
for different LSVMs. Please, note that the weight produced by LSVM for a particular
variant is directly proportional to its importance, i.e., the more the weight of a variant,
the more will it be significant. We sort the normalized weights of each variant and take the
average across the middle 50% weights. I.e. we consider the interquartile range (IQR)
of weights while averaging them. It is useful in discarding the outliers. The variants
are then sorted in decreasing order based on their average weights. To find a subset of
discriminating variants, we linearly search the sorted variants by considering top 10, top
20, top 30, . . ., top N variants. For each of the top set of variants, we compute Matthews
correlation coefficient (MCC) using 10-fold cross-validation (https://en.wikipedia.
org/wiki/Matthews_correlation_coefficient). MCC is mathematically formulated
as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
(2)

In this above equation, TP, FN, FP and TN are the number of true positives, false
negatives, false positives, and true negatives, respectively. It is a measure of the quality
of a binary classifier. Now, from all the set of top variants, we retain the top set having
the highest MCC.

The above procedure is iterated multiple times and in each iteration, we get a set of
top variants Si. The variants are then sorted based on the number of times it is found
in those sets Si. The ordered variants are then searched by taking top 1, top 2, top
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3, . . . variants and for each top set we compute MCC using 10-fold cross validation as
stated earlier. Finally, we return the top variants having highest MCC. The details of
the algorithm can be found in Algorithm 3.

Algorithm 1: Algorithm for selecting unique SNPs

Input: A GWAS dataset D, number of random columns r
Output: A set of unique SNPs

1 Dataset D is represented by a M ×N matrix where M and N refers to the
number of individuals and SNPs, respectively;

2 Transpose D, e.g. D′ ← DT ;

3 Let assume the set of SNPs be S;

4 Encode numerical value of each SNP s ∈ S with binary bits, e.g. 0← 00,
1← 01, and 2← 10

5 for each SNP s ∈ S do
6 Pick r coordinates randomly from transformed binary space of s;
7 Hash the SNP s based on these r coordinates in the hash table H;

8 end

9 Create a graph G(V,E) where each SNP s ∈ S acts as a node;

10 for each pair p = (s′, s′′) of SNPs in each bucket h ∈ H do
11 Compute Hamming distance d (across all the coordinates) between (s′, s′′)

SNPs using bit-wise operations;
12 if d == 0 then
13 Add an edge e between the pair p of SNPs in G;
14 end

15 end

16 Extract all the connected components C;

17 Create an empty list L;

18 for each connected component c ∈ C do
19 Randomly select a SNP s;
20 Insert s into list L;

21 end

22 Return list L;

2.4 Analyses of our methods

Let the subjects be labelled 1, 2, . . . ,M and let the SNPs be labelled 1, 2, . . . , N . Also,
let ski denote the value of SNP k for subject i, 1 ≤ i ≤M ; 1 ≤ k ≤ N .

Since any SNP value is in the set {0, 1, 2}, it follows that the probability that SNPs
i and j (for any two i and j) have identical values for all the subjects is 1

3M
under the
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Algorithm 2: Algorithm for selecting representative SNPs

Input: A set of SNPs with pair-wise LDs
Parameters: A threshold λ
Output: A set of representative SNPs

1 Create a graph G where each SNP acts as a node and two nodes is connected by
an edge if-and-only-if LD between the two SNPs ≥ λ;

2 while G has one or more edges do
3 Compute importance score of each node n ∈ G using PageRank algorithm;
4 if multiple nodes have identical highest score then
5 Chose a random node n′ with highest score;
6 else
7 Chose the node n′ having highest score;
8 end
9 Record n′ as a representative;

10 Delete each incident node n′′ of n′ from G;
11 Delete n′ from G;

12 end

13 Record all the isolated nodes n ∈ G as representatives;

uniform distribution model. This also means that the expected number of pairs of SNPs

that are identical is
(N
2 )

3M
.

Algorithm 1: In Algorithm 1, we perform hashing based on randomly picked q subjects
(for some suitable value of q). This hashing takes O(Nq) time. If two SNPs are iden-
tical across all the subjects, then, clearly these two SNPs will be hashed into the same
bucket. Under the assumption that each SNP for each subject has been picked uniformly
randomly, we would expect the size of each bucket to be N

3q
.

Within each bucket we compute the Hamming distance between each pair. This will

take an expected O
(

N2

32q
M
)

time per bucket. After this step, constructing a graph and

identifying the connected components will take an expected O
(

N2

32q

)
time for each bucket.

Thus the total expected run time is Nq+O
(

N2

3q
M
)

. If q is chosen to be log3N , then

this expected run time becomes O(MN) (assuming that M ≥ log3N). In this case, note
that, this algorithm is asymptotically optimal in expectation.

An alternative to constructing a graph is to employ integer sorting. After hashing the
SNPs, we can sort the SNPs within each bucket using integer sorting (with O(1) bits at
a time). The expected sorting time per bucket will be O

(
N
3q
M
)
. Summed over all the

(3q) buckets, the total run time will be O(MN).

Algorithm 2: In Algorithm 2, the time needed to compute the r2 linkage disequilibrium
(LD) value between any two SNPs is O(M). Thus the time needed to compute the LD
values for every pair of SNPs is O(N2M). Followed by this, the graph G(V,E) can be
constructed in O(N2) time. Subsequently, we have a while loop in lines 2 to 12. In each
iteration of this loop, we compute the importance scores of the nodes. This will take
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Algorithm 3: Algorithm for selecting subset of discriminating SNPs

Input: A GWAS dataset D, iterations i, svms j, sampling proportions p
Output: A sub-set of discriminating SNPs

1 Dataset D is represented by a M ×N matrix where M and N refers to the
number of individuals and SNPs, respectively;

2 Initialize a 2-dimensional array W [r][c] where 1 ≤ r ≤ j and 1 ≤ c ≤ N ;
3 Initialize a list of sets L;

4 for iteration ← 1 to i do
5 Create a slightly different dataset D′ by bootstrapping samples of D with

replacement
6 for svms ← 1 to j do
7 Create a dataset D′′ by randomly sampling p% individuals from D′ with

replacement;
8 Train T with samples from D′′;
9 Compute and normalize the weight vector −→w from T ;

10 W [svms]← −→w
11 end

12 Compute average weight of each SNP based on interquartile range (IQR);

13 Sort the SNPs based on their average weights;

14 Compute Matthews correlation coefficients (MCCs) by taking top 10, top 20,
top 30, . . . top N SNPs;

15 Extract the set of the top number of SNPs Siteration having highest MCC;

16 Insert Siteration into the list of sets L;

17 end

18 Sort the SNPs in L based on their number of occurrences in the sets Siteration;

19 Compute MCCs by taking top 1, top 2, top 3, . . . top |
i⋃

iteration=1

Siteration| SNPs;

20 Return the set of SNPs having highest MCC;
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O(|E|) time. If there are k iterations of this while loop, then the run time of this loop
will be O(|E|k). In the worst case, k could be N − 1. Thus the worst case run time of
the while loop is O(|V | |E|) = O(N3).

Put together, the overall run time of Algorithm 2 is O(N3+N2M) = O(N3). However,
in practice, the value of k is small and hence the algorithm runs really fast. For instance,
if k = O(1), then the run time of Algorithm 2 will be O(N2M).

Algorithm 3: One of the algorithms repeatedly used in Algorithm 3 is that of training
a linear SVM. The size of the training data is pM where p is the sampling rate (input
as a fraction by the user). There are N features. A generic algorithm will have a run
time of O((pM)3N). However, there are faster algorithms. For example, the algorithm of
Joachim [17] takes O(pMN) time for classification problems and O(NpM log(pM)) time
for ordinal regression problems.

To keep our analysis generic, let L(m,n) stand for the time needed to train a linear
SVM when there are m samples and the number of features is n.

The for loop of line 4 takes time O(j T (pM,N)). Lines 12 to 16 take a total of
O(N logN) time (for one execution). As a result, the run time of the for loop of line 4
is O(i(j T (pM,N) +N logN)).

Lines 18 to 20 take a total of O(N logN) time.
In summary, the total run time of Algorithm 3 is O(i j T (pM,N) + i N logN).

2.5 Tools used for biological analyses

Pathogenicity of each of the disseminating variants was predicted using Ensemble [18],
which employed various algorithms, namely SIFT [19], PolyPhen [20], CADD [21], REVEL [22],
MetaLR [23], Mutation Assessor [24], among others. We subsequently checked whether
these associations were related to Astigmatism or related diseases using PheGenI Phenotype-
Genotype Integrator (September 2021) [23]. The conserved regulatory regions (cCREs:
candidate cis-Regulatory Elements) were extracted from the UCSC genome browser for
GRCh38 assembly which was further converted to GRCh37 assembly using LiftOver
(Version 377) [25]. Distance between the variants and cCREs were obtained using the
BEDTools (version 2.30) [26]. RegulomeDB was used to find the regulatory potential of
the discriminating variants [27].

3 Results

To demonstrate the reliability of our algorithm, we have performed rigorous experimental
evaluations on a GWAS dataset consisting of 2 contrasting sets of individuals, i.e. cases
and controls. Cases constitute individuals with known astigmatism where controls refer
to the healthy individuals with no traces of astigmatism. Note that astigmatism is a
common vision problem. It is caused by an error in the shape of the cornea or lens.
It can make our vision blurry, fuzzy, or distorted. The causes of astigmatism are not
conclusive, but according to various findings it is believed that the genetics is a big
factor.
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3.1 Dataset

The cohort for our study has been constructed by taking variants from OpenSNP [28]
using an R package known as rsnps (version 0.4.0) [29]. Through this software tool,
we have downloaded the genetic variation data by carefully choosing each individual’s
reported phenotypes to build our case-control study dataset. In this scenario, we were
only interested in participants with reported astigmatism phenotype. If the reported
astigmatism phenotype of an individual is any one of the following terms, e.g. “True”,
“Mild”, “Right eye only”, “Left eye only”, “Extreme, bilaterally”, “Yes - very minor”,
and “Severe”, we include the subject in the case group. On the other hand, if the reported
astigmatism phenotype of a person is any one of these terms, e.g. “No astigmatism” and
“False”, we include him/her in the control group. Please note that some of the individuals
were discarded from our study because of data format errors, availability of acceptable
genetic data, and unzipping failures. In summary, we enlist 388 and 127 individuals with
astigmatism and no-known-astigmatism, respectively.

After selecting the individuals for our study, we extract their genotype data and form
ped and map files suitable for plink software tool [30, 31]. We followed proper quality
control (QC) measures as described in [32]. Note that we retained only those variants
having MAF ≥ 5% as well as genotype missingness < 1%. After performing proper QC
along with MAF and missingness cutoffs, the final dataset to be fed into our algorithms
consists of 218,328 bi-allelic variants, 311 cases, and 103 controls with a genotyping rate
of 0.997848.

3.2 Evaluation metrics

3.2.1 Classification accuracy

To assess the performance of our proposed methodology, we have divided our study
dataset into two disjoint and unequal parts (i.e. training and validation) by randomly
choosing individuals from our study dataset without replacement. Training cohort con-
sists of 60% samples and validation cohort contains the rest 40% samples. The proposed
framework was executed only on training dataset. The set of discriminating variants
identified by our algorithms is then employed to build a classification model by using the
training samples. The model is then employed to predict the class label of each individual
in validation cohort. Since, we know the actual class labels of individuals in validation
cohort a priori, we can now build a confusion matrix as well as can compute various
types of performance scores to evaluate our training model, such as diagnostic odds ratio
(DOR) (https://en.wikipedia.org/wiki/Diagnostic_odds_ratio). It is defined as
the ratio of the odds that the patient tests positive with respect to the odds of testing
positive being healthy. DOR is mathematically formulated using the confusion matrix as
follows:

DOR =
TP/FN

FP/TN
=
TP/FP

FN/TN
=
TP · TN
FP · FN

(3)

It is extensively used in the domain of medical testing in binary classification that does
not depend on the prevalence of the disease. The added advantage is the possibility of
constructing its confidence interval. However, we will get only one such data point from
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a specific scoring criterion and so, we wouldn’t be able to measure the robustness along
with statistical significance of our classifier.

To mitigate the issues stated above, we develop an innovative idea as discussed below.
Assume that the training cohort is T and the set of discriminating variants identified by
our framework is S. We filter out all the variants from T except S and form a tailored
dataset T ′ for model construction. Now, we subsample T ′ (e.g. retaining 90% of total
samples in T ′ without replacement) to construct a predictive model M . Subsequently,
we compute the DOR of M by predicting the class label of each sample from the val-
idation cohort. We repeatedly perform the above procedure multiple times and record
the corresponding DOR. These DORs are then transformed to log of DORs (LDOR). As
LDOR is normally distributed, we are now able to compute the statistical significance of
our training model along with a confidence interval.

3.2.2 Biological significance

The biological significance analysis is based on various biological models, e.g. variant ef-
fect prediction, variant-disease association, disease-gene association, gene ontology (GO)
terms, disease ontology (DO) terms, and biological pathway enrichment and network
analyses. Please note that GO and DO terms analyses were performed using cluster-
Profiler [33]. Biological pathways are extracted from ConsensusPathDB-human (CPDB)
database [34]. The functional consequences as well as the effect of our identified variants
are analyses through Ensembl Variant Effect Predictor (VEP) [35].

3.3 Outcome

The cause of astigmatism is inconclusive. It is widely accepted that genetic factors might
have some influences on it [36, 37]. According to American Academy of Ophthalmology
(AAO), astigmatism is caused by an irregular curvature of the eye’s cornea or lens and the
likelihood of developing astigmatism is inherited (https://www.aao.org/eye-health/
diseases/what-is-astigmatism). It can be developed after an individual suffered from
an eye disease, eye injury, or surgery. In Europe and Asia, astigmatism affects 30% to
60% of adults [38]. People of all ages and ethnicity can be affected by astigmatism. In this
experimental evaluation, we wanted to validate as well as extend some of the observations
and hypotheses established in this domain.

Variant Gene symbol Gene ID Gene name
rs13212023 ADGRF2 222611 adhesion G protein-coupled receptor F2
rs2769058 C9orf40 55071 chromosome 9 open reading frame 40
rs2747701 FAM135A 57579 family with sequence similarity 135 member A
rs3732410 GOLGB1 2804 golgin B1
rs31517 LECT2 3950 leukocyte cell derived chemotaxin 2
rs242944 SPPL2C 162540 signal peptide peptidase like 2C
rs9873604 ZKSCAN7 55888 zinc finger with KRAB and SCAN domains 7

Table 1: Genes harbored by deleterious variants identified by our method.
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3.3.1 Variant analysis

After executing our algorithmic framework on around 218k SNPs, we obtained a set of 350
highly discriminating variants, say S. We build a learning model based on S using only the
training examples. The model is then assessed using the validation examples and the DOR
produced by our model is equal to 3.25 and the 95% confidence interval is (1.12, 9.44).
To assess the robustness as well as statistical significance of our proposed algorithms,
we employ our theoretical framework as described in Evaluation metrics subsection. As
evident from Figure 2, it is nicely fitted with various theoretical distributions. The
average LDOR is 0.96 and the corresponding 95% confidence interval lies in (0.96, 1.02)
based on t-distribution. We state the null hypothesis as the learning model doesn’t have
any predictive power (i.e., the mean of LDOR is zero). The t score is 64.89 and the
corresponding 2-tailed p value is 0 and so, we reject our null hypothesis. Accordingly, the
learning model delivered by our algorithms is highly predictive and the variants identified
should together elucidate the underlying complex biological system of astigmatism.

A set of variants S ′ (detected by our Algorithms 1 and 2) that were identical and/or
in high linkage disequilibrium with some of the variants in S, we add them with S to get
S ′′(= S ∪ S ′) where |S ′′| = 379. We employed ensemble variant effect predictor (VEP)
to determine the effect of our variants S ′′. Figure 3 shows the relative abundances of the
functional consequence of S ′′. 7 SNPs (around 2%) are annotated as deleterious (SIFT
score ≤ 0.05), i.e. these variants are known to affect their proteins’ function and possibly
contribute to genetic diseases. The genes harbored by those variants can be found in
Table 1.

Gene symbol Gene name Type
CASC15 cancer susceptibility 15 lincRNA

EBf3 EBF transcription factor 3 protein coding
FBN1 fibrillin 1 protein coding

GRIN2B glutamate ionotropic receptor NMDA type subunit 2B protein coding
NFIX nuclear factor I X protein coding

Table 2: Astigmatism-related 5 genes harbored by the variants identified by our method-
ology.

Table 3: Variant-gene association based on DisNET.

Variant Gene Gene name Disease
rs12509636 NA NA Alopecia
rs6494223 CHRNA7 cholinergic receptor nicotinic

alpha 7 subunit
Alzheimer’s Disease, Bipolar
Disorder, Delusions

rs755251 FBN1 fibrillin 1 Aortic Aneurysm, Dissection
of aorta

rs2303500 FBN1 fibrillin 1 Aortic Aneurysm, Thoracic
rs9806163 FBN1 fibrillin 1 Aortic Aneurysm, Thoracic
rs4472800 NA NA Body mass index

Continued on next page
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Table 3 – continued from previous page
Variant Gene Gene name Disease
rs2504065 ESR1 estrogen receptor 1 Bone Density
rs3732410 GOLGB1 golgin B1 Cerebrovascular accident
rs10064177 NA NA Ferritin measurement,

Serum ferritin measurement
rs668842 FBN1 fibrillin 1 Hypertensive disease

rs11635140 FBN1 fibrillin 1 Hypertensive disease, Aortic
Aneurysm, Thoracic

rs10039512 NA NA Leukemia, Myelocytic,
Acute

rs1523947 ADGRB3 adhesion G protein-coupled
receptor B3

Leukemia, Myelocytic,
Acute

rs913930 TLR4 toll like receptor 4 Major Depressive Disorder
rs622082 IGHMBP2 immunoglobulin mu DNA

binding protein 2
Malignant neoplasm of
breast, High density lipopro-
tein measurement, Breast
Carcinoma

rs6772849 NA NA Monocyte count procedure,
Monocyte count result

rs12116744 NOS1AP nitric oxide synthase 1 adap-
tor protein

QT interval feature (observ-
able entity)

rs31517 LECT2 leukocyte cell derived chemo-
taxin 2

Rheumatoid Arthritis

rs9268831 NA NA Rheumatoid Arthritis,
Diabetes Mellitus, Insulin-
Dependent, Multiple Sclero-
sis, Narcolepsy

rs806366 NA NA Schizophrenia
rs10185855 TBC1D8 TBC1 domain family mem-

ber 8
Triglycerides measurement,
High density lipoprotein
measurement, etc.

rs10114470 TNFSF15 TNF superfamily member 15 Ulcerative Colitis, Crohn
Disease, Inflammatory
Bowel Diseases, Leprosy
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Table 4: Benjamini-Hochberg corrected (FDR < 0.05)
enriched biological pathways from different sources.

Pathway Source FDR Genes
Vitamin D-sensitive cal-
cium signaling in de-
pression

Wikipathways 0.015796979 ITPR1, BCL2,
GRIN2B, SLC8A1

Rap1 signaling pathway KEGG 0.015796979 EFNA3, CNR1,
ITGB3, MAGI2,
RAPGEF5, GRIN2B,
EFNA4, IGF1R]

Protein-protein interac-
tions at synapses

Reactome 0.02052683 PTPRS, NRXN1,
NRXN3, SHANK3,
GRIN2B

SLC-mediated trans-
membrane transport

Reactome 0.02052683 SLC7A5, SLC25A26,
SLC38A1, SLC14A2,
SLCO3A1, SLC1A7,
SLC8A1, SLC28A3

Neurexins and neuroli-
gins

Reactome 0.021135656 NRXN1, NRXN3,
SHANK3, GRIN2B

Transport of inor-
ganic cations/anions
and amino
acids/oligopeptides

Reactome 0.022244722 SLC7A5, SLC25A26,
SLC38A1, SLC1A7,
SLC8A1

Disruption of post-
synaptic signaling by
CNV

Wikipathways 0.027148897 NRXN1, NRXN3,
GRIN2B

Glutamatergic synapse KEGG 0.027148897 SLC38A1, ITPR1,
SLC1A7, GRIN2B,
SHANK3

Fragile X Syndrome Wikipathways 0.029042295 CPT1A, CNR1,
MAP1B, ITPR1,
GRIN2B

Axon guidance KEGG 0.031736498 SEMA5A, EFNA3,
DCC, SEMA3A,
EPHB1, EFNA4

G alpha (12/13) sig-
nalling events

Reactome 0.031736498 TIAM2, ARHGEF3,
ADRA1A, KALRN

Ebola Virus Pathway on
Host

Wikipathways 0.031736498 NPC1, ITGB3, HLA-F,
TLR4, IGF1R

Ion homeostasis Reactome 0.036534827 ITPR1, SLC8A1,
TRDN

Rett syndrome causing
genes

Wikipathways 0.043243418 CECR2, SHANK3,
GRIN2B
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PheGenI results filtered 15/379 SNPs with significantly (p < 10−5) associated phe-
notypes, such as glaucoma, Behcet syndrome, autism spectrum disorder, stroke, among
others, that may have a potential association with astigmatism. The sequence variant,
rs3809863 located on chr17:4737646, was found to be significantly associated with the
brain tissues, including the frontal cortex, hypothalamus, caudate basal ganglia in the
appropriate effect size studies (p < 10−8). rs3809863 was found 379 bps apart from the
cCRE, located within the genic region of ITGB3 and THCAT158. The RegulomeDB
results also showed the intense transcription activity of this variant in the brain tissues,
hippocampus, and substantia nigra. Similarly, other sequence variants were also found
to be associated with brain disease-related phenotypes.

We also performed a variant-disease association study based on DisGeNET discov-
ery platform [39]. We found 22 variants shown in Table 3 known to be annotated to
various genetic disorders, such as depressive disorder, aortic aneurysm, bipolar disorder,
hypertensive disease, alopecia, and so forth. Most of the diseases are either related to the
astigmatism or co-exist with astigmatism. More details on these interlinks are illustrated
in the subsequent sections.
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Figure 1: p-values from logistic regression based on entire astigmatism GWAS dataset.

3.3.2 Astigmatism-related gene enrichment analysis

266 genes (say G1) of different types including but not limited to protein coding, pseudo
gene, snRNA, or lincRNA - are harbored by our list of 379 variants S ′′. We have also
compiled 181 genes (say G2) from DisGeNET database annotated with astigmatism with
varied types (e.g. astigmatism, regular astigmatism - corneal, hyperopic astigmatism,
etc). 5 genes (please, see Table 2) are common between G1 and G2 sets of genes. Overlap
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Figure 2: Assessment of validation examples using the model built from training exam-
ples.

Figure 3: Functional consequences of our variants.

between these two groups of genes is statistically significant (p < 0.003). The statistical
significance is measured using Fisher’s exact test by setting 49,000 genes as background.
Here, background genes consist of protein coding genes, pseudo genes, genes expressing
regulatory RNAs that do not encode proteins, and micro-RNA genes.

To perform the following studies, we consider only protein coding genes (say G3)
contained by G1. The total number of such genes is 175 (i.e. |G3| = 175).
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Figure 4: Benjamini-Hochberg corrected (FDR < 0.05) Disease Ontology (DO) terms.
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Figure 5: Top 20 enriched (FDR < 0.05) Gene Ontology-Biological Process (GO-BP)
terms.

3.3.3 Disease ontology (DO) term enrichment analysis

As stated above we performed DO (https://disease-ontology.org) term analysis by
considering protein coding genes in G3. We found 8 Benjamini-Hochberg corrected (FDR
< 0.05) DO terms as shown in Figure 4. Remarkably, most of the enriched terms are
associated with mental health and autism spectrum disorder. According to Centers for
Disease Control and Prevention (CDC), autism spectrum disorder (ASD) is a devel-
opmental disability that can cause serious social, communication, and behavioral chal-
lenges (https://www.cdc.gov/ncbddd/autism/facts.html). Various clinical studies
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Figure 6: Top 20 enriched (FDR < 0.05) Gene Ontology-Cellular Component (GO-CC)
terms.
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Figure 7: Enriched (FDR < 0.05) Gene Ontology-Molecular Function (GO-MF) terms.

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.22.21265388doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.22.21265388
http://creativecommons.org/licenses/by-nc-nd/4.0/


C2

Figure 8: Network of enriched (FDR < 0.05) biological pathways.

Figure 9: Gene clusters found in the pathway network.

suggest that there exists a strong correlation between ASD and astigmatism [40, 41].
Children with ASD have motor, sensory, language, and social-emotional delays that af-
fect visual processing. Correspondingly, visual problems affect cognitive, speech-language,
social-emotional, and perceptual development. Corneal astigmatism is significantly more
frequent among children with ASD with respect to the typically developed population
group (46.2% and 25.6%, respectively) [40]. Persons having mental disorder are often
diagnosed with a diverse set of ocular problems, such as uncorrected refractive error,
strabismus, blepharitis, pigmentary retinopathy, and cataracts [42]. Compound astig-
matism was identified in a statistically significant number of individuals with mental
illness [43].

We didn’t find any direct link between arteriosclerosis and astigmatism. But retinal
disease is caused by arteriosclerosis. In this case, the arterioles (small arteries) in the
retina are partly blocked due to the thickening of their walls. It is also responsible
for cardiovascular disease. Individuals having cardiovascular disease may be at a greater
possibility of developing certain types of eye related problems. According to the American
Academy of Ophthalmology (AAO), research indicates that people suffering from heart
disease have a higher chance of developing ophthalmic diseases (https://www.aao.org/
eyenet/article/heart-eye-seeing-links). More can be found in [44].
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3.3.4 Pathway enrichment analysis

We found 14 Benjamini-Hochberg corrected (FDR < 0.05) enriched biological path-
ways from CPDB shown in Table 4. Please, note that while performing Hyperge-
ometric over-representation test (https://en.wikipedia.org/wiki/Hypergeometric_
distribution), we consider 21,500 as the number of background protein-coding genes.
Several pathways are linked to ASD and ASD like diseases. For example, glutamater-
gic synapses consisting of glutamate localized inside presynaptic vesicles are the ma-
jor excitatory synapses in our brain. Moreover, they have glutamate receptors on the
postsynaptic membrane. Several clinical research suggest glutamate abnormalities in
autism [45, 46, 47]. Moreover, Neurexins and neuroligins are synaptic cell-adhesion
molecules.They connect pre- and postsynaptic neurons at synapses and define synap-
tic functions by mediating trans-synaptic signaling. In humans, alterations in neurexin
or neuroligin genes are implicated in autism and other cognitive disorders [48, 49, 50].
NRXN1 (Neurexin 1) is one of the genes contained in Neurexins and neuroligins pathway.
In a recent GWA study, 9 near genome-wide significant SNPs in NRXN1 gene were iden-
tified for refractive astigmatism [51]. In our study, our methodology identified rs3861561
SNP mutated in NRXN1 gene (i.e. this variant is one of the 350 discriminating variants
identified by our algorithms). Moreover, we have found 4 genes enriched in Neurexins
and neuroligins pathway as shown in Table 4.

Fragile X syndrome is another interesting pathway. Reportedly, it is the most fre-
quently diagnosed inherited cause of intellectual disability. Fragile X syndrome co-occurs
with autism in many cases and is a suspected genetic cause of autism in these cases. The
prevalence of co-occurrence has been estimated to be 15% to 60% [52]. Moreover, a sta-
tistically significant number of individuals with Fragile X syndrome are associated with
astigmatism [53, 54]. On the other hand, Rett syndrome is a rare genetic neurological
and developmental disorder [55]. It affects the way the brain develops and eventually
leads to loss of motor skills and speech progressively. Fragile X syndrome mainly affects
boys where Rett disorder primarily affects girls [56].

One of the intriguing pathways found in our study is Ebola virus pathway. Ebola
virus disease (EVD) is significantly associated with mental health consequences (such as,
depression, anxiety, or PTSD) [57]. On the other hand, uveitis (a form of eye inflamma-
tion) is the most prevalent finding during the recovery from EVD [58]. Some of the ocular
complications arising from uveitis consist of cataract, retinal scarring, optic neuropathy,
hypotony, and phthisis bulbi. Consequently, they can lead to severe vision impairment
or even complete bilateral blindness of the affected individuals.

3.3.5 Pathway network analysis

We performed pathway network analysis to find functional modules, pathway significance,
and gene clusters based on graph theory as discussed in [59]. The method works as follows:
It builds a weighted network based on the enriched pathways. Each pathway represents a
node in the graph and each pair of nodes is connected via an edge if-and-only-if they have
some common genes. The weight of the edge between any pairs of nodes is the similarity
between that particular pair. Weight of an edge is calculated based on the common GO-
BP terms possessed by the genes in the pathways (i.e. nodes) incident on that edge. After
building the weighted network, we can compute the importance score of each pathway
using the graph centrality measure (such as, closeness centrality, betweenness centrality,
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etc.). Moreover, we can disassemble the network into a set of functional modules based on
any suitable graph clustering algorithms (such as spectral clustering, Louvain clustering,
etc.). It is evident from the article [59] that the method accurately identifies functional
modules mimicking real biological events.

Based on the set of protein coding genes G3, we found 14 enriched pathways as de-
scribed above. We build a weighted network based on those 14 pathways using the
method described above. The corresponding weighted network is shown in Figure 8. The
diameter of a node is proportional to its importance. Similarly, the width of an edge is
proportional to its weight (i.e. similarity between two incident nodes of this edge). It
is noticeable from the figure that Neurexins and neuroligins and Ebola Virus Pathway
on Host is the most and the least important pathway in this network, respectively. We
find two distinct functional modules in this network, e.g. (1) developmental disorder and
synaptic activity related module (C1) consisting of 10 pathways and (2) transport re-
lated module (C2) comprising of 4 pathways. Correspondingly, we found 2 gene clusters;
each gene cluster contained by each of the functional modules. Gene cluster for C1 and
C2 contains 29 genes and 12 genes (out of 175 protein coding genes G3), respectively as
shown in Figure 9. 4 genes are common in those 2 gene clusters, namely GRIN2B (Gluta-
mate Ionotropic Receptor NMDA Type Subunit 2B), ITPR1 (Inositol 1,4,5-trisphosphate
receptor type 1), SLC1A7 (Solute Carrier Family 1 Member 7), and SLC38A1 (Solute
Carrier Family 38 Member 1).

3.3.6 Gene ontology (GO) term enrichment analysis

We performed GO-BP, GO-MF, and GO-CC (http://geneontology.org) term enrich-
ment analyses based on the protein coding genes G3 found by our methodology. We
retained only enriched terms having FDR < 0.05. We found 58 enriched GO-BP terms
and top 20 such terms are displayed in Figure 5. Likewise, we obtained 26 enriched
GO-CC terms and displayed the top 20 in Figure 6. In addition, Figure 7 shows all
the enriched 11 GO-MF terms. As we can see, most of the terms are associated with
various aspects of synapses, synaptic activity, and functions. According to this excel-
lent review [50], pathogenesis of ASD may, at least in part, be attributed to synaptic
dysfunction.

4 Discussions

In this section we discuss two topics categorically. These are as follows:

4.1 Our proposed methodology

There is a lack of reliable machine learning methodology for solving complex multi-locus
problems in GWAS. The problem is inherently very hard to solve as the subset selection is
known to be NP-hard and thus, it is not solvable in polynomial time in current technology
(https://en.wikipedia.org/wiki/NP-hardness). Consequently, we don’t have any
choices but to accept approximate solutions. The approximate solution should be context
specific and near optimal. I.e., in the medical domain the solution should elucidate the
underlying convoluted biology. In a typical GWAS, we have several hundreds of thousands
to millions of variants. On the contrary, the number of samples is not more than a few
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hundreds to a handful of thousands. As the system is very underdetermined, no unique
solution exists. Consequently, we will have several solutions with similar significance and
even worse, some solution may be spurious. In addition to this, with a slight change in
the dataset, we will likely get a very different solution.

To address the issues stated above, we propose a reliable learning algorithm that
can identify a stable and robust subset of discriminating variants. Stability is ensured
by slightly decreasing the number of samples multiple times. Robustness is ensured by
bootstrapping the samples multiple times. The observation is that the variants that are
genuinely discriminating should prevail under slight changes in the dataset. The spurious
ones will be ousted eventually. In the domain of machine learning, ensemble learning
refers to multiple machine learning algorithms being used to search multiple hypothesis
spaces and produce good approximations to the true ones. But the way we formulate
it is novel. At first, we find a set of lists containing discriminating variants having the
highest classification accuracy from bootstrapped samples. Then we return the final set
of discriminating variants based on their stability, robustness, and classification accuracy
across the lists.

The curse of dimensionality is another problem of solving multi-locus problems in
GWAS. We should avoid p-value thresholding as much as possible. We have addressed
this issue by discarding a set of variants with a little loss of information content in the
GWAS dataset. The framework discards all the duplicates at the beginning based on
randomization and graph theory. An intuitive LD pruning algorithm based on graph
theory is devised to select each tagged variant based on its PageRank centrality score in
the entire network within a window of size 400kb.

4.2 Biology of astigmatism

The cause of astigmatism is complicated and not fully explained. Environmental effects,
such as the number of hours engaging in video games was found to be correlated with more
severe astigmatism. This study was conducted on school going 7-9 years old children.
However, other studies found a significant genetic contribution to astigmatism, such as
the risk of developing astigmatism is 2-fold in first degree relatives of persons having
astigmatism. Moreover, family and twin studies indicate a roughly 60% heritability of
astigmatism [60, 61, 62].

We have identified a set of discriminating variants as discussed in the result section.
Next, we discuss one of them in detail. The sequence variant, rs3809863, is associated
with astigmatism and open-angle glaucoma [63]. Additionally, the variant, located within
the genic region of the ITGB3 and THCAT158 (also known as EFCAB13-DT: EFCAB13
divergent transcript), was found to be near to the cCREs showing a high association
with the transcription. ITGB3 was found to be deregulated and may be involved in
intraocular pressure elevation. Elevation of intraocular pressure may further lead to the
destruction of the retinal structure during the glaucoma progression [64]. In addition
to this, myopia was also observed to be associated with glaucoma [65]. Moreover, my-
opia was also reported to be related to astigmatism. However, a direct relation is still
needed to be established [66]. The variant was also located into the genic region of the
THCAT158 which is a non-coding RNA (ncRNA). Although the role of the gene is not
known but ncRNAs were found to be associated with myopia as well as irregular astig-
matisms [67]. Therefore, we believe that the THCAT158 may be associated with the
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astigmatism which needs to be investigated further. Moreover, glaucoma caused by pro-
gressive optic nerve degeneration is considered a neurodegenerative disorder of both the
eye and the brain neurodegeneration [68]. Although there is no good consensus regard-
ing the exact association of astigmatism with the above clinical manifestations, variants
identified in astigmatism and their association with glaucoma, brain tissue enrichment,
and other neurodegenerative phenotypes suggest a link with astigmatism.

Current studies (as discussed in Results section) suggest that autism, mental illness,
or mental retardation are directly connected with astigmatism. In this investigation, we
have also established similar facts and observations. There is no known causal effect of
autism or any mental disorders to astigmatism and vice-versa. Consequently, a significant
number of dual diagnoses of astigmatism and autism/autism like diseases suggest that
both likely share some common molecular pathways. It also suggests that there should be
a significant amount of genetics involved in astigmatism. More research should be done
to elucidate this disorder. If we can fully understand the common genetics behind the
co-occurrence of astigmatism and various developmental genetic disorders, astigmatism
can be used as a pre-screening tool for early detection and intervention of such illnesses.

5 Conclusions

In this article we have proposed a thorough methodology to solve multi-locus problems in
GWAS based on graph theory and machine learning. At first, we efficiently identify all the
duplicate variants and retain only unique ones based on randomization and graph theory.
Next, we select representative variants and eliminate the rest having high LDs with those
representatives based on an intuitive graph theoretic algorithm. Finally, we offer a robust
and stable machine learning algorithm for identifying a subset of discriminating variants
that can effectively explain the genetics behind a complex disease. We have performed
rigorous experiments by taking a GWAS case-control dataset where cases are persons
having astigmatism and controls do not have any astigmatisms. The results indicate that
our proposed framework is indeed able to decipher the genetics of astigmatism from such
a small set of samples where classical GWAS fails to identify any genome-wide significant
variants.

References

[1] Balding, D.: A tutorial on statistical methods for population association studies.
Nature Reviews Genetics 7, 781–791 (2006)

[2] Cordell, H.: Epistasis: what it means, what it doesn’t mean, and statistical methods
to detect it in humans. Human molecular genetics 11 20, 2463–8 (2002)

[3] Gaudillo, J., Rodriguez, J.J.R., Nazareno, A., Baltazar, L.R.P., Vilela, J., Bulala-
cao, R., Domingo, M., Albia, J.: Machine learning approach to single nucleotide
polymorphism-based asthma prediction. PLoS ONE 14 (2019)

[4] Mieth, B., Rozier, A., Rodriguez, J.A., Höhne, M.M., Görnitz, N., Müller, K.-
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