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Abstract 
 
The incidence of diagnostic delays is unknown for many diseases and particular 
healthcare settings. Many existing methods to identify diagnostic delays are resource 
intensive or inapplicable to various diseases or settings. In this paper we propose a 
comprehensive framework to estimate the frequency of missed diagnostic opportunities 
for a given disease using real-world longitudinal data sources. We start by providing a 
conceptual model of the disease-diagnostic, data-generating process. We then propose 
a simulation-based method to estimate measures of the frequency of missed diagnostic 
opportunities and duration of delays. This approach is specifically designed to identify 
missed diagnostic opportunities based on signs and symptoms that occur prior to an 
initial diagnosis, while accounting for expected patterns of healthcare that may appear 
as coincidental symptoms. Three different simulation algorithms are described for 
implementing this approach. We summarize estimation procedures that may be used to 
parameterize the simulation. Finally, we apply our approach to the diseases of 
tuberculosis, acute myocardial infarction, and stroke and evaluate the estimated 
frequency and duration of diagnostic delays for these diseases. Our approach can be 
customized to fit a range of disease and we summarize how the choice of simulation 
algorithm may impact the resulting estimates. 
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Background 
 
Diagnostic errors are a major contributor to morbidity, mortality and excess healthcare 
costs.1,2 One of the most common types of diagnostic errors are diagnostic delays. For 
many diseases, timely diagnosis is essential for effective treatment, and for some 
diseases even minimal delays may significantly increase risk of patient harm.3,4  
Identifying cases where diagnostic delays have occurred is a critical first step in 
studying the causes and consequences of diagnostic delays and for developing 
interventions to prevent delays. However, for many diseases and settings, the incidence 
of diagnostic delays is unknown or challenging to estimate.5,6 
 
Historically, a number of approaches have been used to study diagnostic delays; these 
include retrospective reviews of medical records, autopsy studies, analysis of 
malpractice claims, and patient or clinician surveys. 5,7 These approaches are highly 
informative, but have a number of limitations. For example, chart reviews are labor 
intensive, and have been primarily focused on single hospitals or health systems, thus 
limiting their generalizability. Other approaches, such as studies of autopsy results or 
malpractice claims may only apply to the most serious cases or diseases. Moreover, 
many approaches to study diagnostic delays have exclusively focused on hospital 
records or emergency department settings.8-13 Yet, many opportunities to diagnose a 
disease occur in outpatient clinics,14,15 and patient care often occurs across a wide 
spectrum of disconnected facilities. Thus, longitudinal information spanning a wide 
variety of healthcare settings and covering a broad patient population is required to fully 
capture the diverse spectrum of diagnostic delays. 
 
Another limitation of most investigations of diagnostic delays, is that the criteria used to 
define a diagnostic delay must be specified a priori. Typically, expert evaluation must be 
used to determine the criteria to define a diagnostic delay based on what is known 
about the natural history of the disease prior to diagnosis. These criteria include 
validating the index diagnosis, describing the clinical signs and symptoms that indicate 
the disease was present prior to diagnosis, identifying the types of clinic records (e.g., 
notes, lab results, diagnostic codes, etc.) necessary to capture signs and symptoms of 
the disease, and selecting the biologically plausible period of time prior to the index 
diagnosis where an earlier diagnosis could have occurred. 8,9 However, if a significant 
number of diagnostic delays occur among patients with atypical presentation or outside 
the time period considered, such cases may continue to be missed. 
 
Another significant limitation with specifying criteria for a diagnostic delay in an a priori 
fashion is that some patients may meet criteria defining a delay simply by coincidence, 
especially if the criteria include common clinical signs or symptoms. For example, 
patients with tuberculosis may have a history of a cough prior to developing tuberculosis 
or patients may suffer from back pain prior to developing a spinal abscess. In such 
cases, symptoms may appear to be attributable to the disease, but are actually 
unrelated. Including such shared but unrelated common clinical signs and symptoms 
will lead to overestimation of diagnostic delays. Numerous investigations have relied on 
algorithms to identify diagnostic delays based on commonly occurring symptom criteria 
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such as cough, fever, pain, headaches, malaise and fatigue8,9,12,16, yet only a few have 
attempted to account for a coincidental or expected occurrence of such symptoms.17-19 
 
A growing number of investigators have begun to use longitudinal administrative and 
EMR-based data to identify diagnostic delays.11,20-22 These data allow both inpatient, 
outpatient or emergency department (ED) records to be used in a “look back” approach, 
where evidence of a disease (e.g., symptom codes) is identified in visits prior to the 
definitive diagnosis. For example, visits associated with dizziness may be identified prior 
to a stroke diagnosis,9,13 or cough and fever may be identified prior to a tuberculosis 
diagnosis.16,18 Such visits are then considered potential missed opportunities if they 
occur during a specified diagnostic opportunity window - the time before the initial 
diagnosis where clinical disease may be present and where a diagnostic delay may 
occur (e.g., 10-days prior to a stroke diagnosis or 90-days prior to a tuberculosis 
diagnosis). This “look back” approach has been used to study a variety of diseases, 
including acute myocardial infarctions, strokes, subarachnoid hemorrhages, abdominal 
aortic aneurysms and tuberculosis,8-13,16,17 and has recently been formalized more 
broadly as the SPADE (Symptom-Disease Pair Analysis of Diagnostic Error) 
framework.20  
 
However, three methodological limitations exist with many of the current approaches to 
study diagnostic delays using observational data. First, as noted above, some signs and 
symptoms of disease observed prior to diagnosis will not represent actual diagnostic 
delays, but rather coincidental events that occur prior to the index diagnosis. Second, 
applications typically require investigators to pre-specify the period of time (i.e., 
diagnostic opportunity window) prior to diagnosis when delays would be expected to 
occur. A window that is too long will tend to overestimate the number of diagnostic 
delays, while a window too short will lead to underestimates. Third, diagnostic codes for 
symptoms associated with a diagnosis may be underutilized.23 For example, patients 
with a cough may not receive a diagnostic code for cough and instead be assigned a 
code for pneumonia or respiratory infection. Relying solely on symptom-based codes 
would miss these visits, especially with conditions that may first be misdiagnosed as an 
alternative disease (e.g., pneumonia, asthma, COPD or lung cancer instead of 
tuberculosis). 
 
The purpose of this paper is to expand upon the existing literature using longitudinal 
observational data sources to study diagnostic delays, while providing a broad 
methodological framework to address the limitations highlighted above. Specifically, we 
describe an approach for estimating the frequency of diagnostic delays at a population-
level that starts by detecting the point in time where symptomatic visits, associated with 
the disease of interest, significantly increase prior to the eventual index diagnosis. We 
then implement a simulation-based approach to estimate the number of “likely” missed 
diagnostic opportunities that individual patients experience and the duration of 
diagnostic delays, which would typically require identification of individual patient 
delays. Finally, we provide a number of different simulation algorithms, considerations 
for estimation approaches, and a statistical software package, that allow these methods 
to be customized to a wide range of diseases. This work expands upon the basic 
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conceptual framework described as SPADE by Liberman et al.20 It also builds upon the 
methodological approach utilized by Waxman et al.17 to separate observed and 
expected trends in symptomatic visits prior to diagnosis. Moreover, this study 
generalizes the methods that the study authors have previously developed to 
investigate diagnostic delays associated with tuberculosis 18 and herpes simplex 
encephalitis.19 
 
The following sections summarize our approach along with three empirical applications 
and is organized as follows. We start by describing the conceptual framework behind 
our simulation approach. Next, we outline the basic simulation framework along with 
three algorithms that may be considered to implement this approach. We then describe 
some of the estimation procedures that may be used to obtain the parameters 
necessary to implement the simulation. We also describe sensitivity analyses that may 
be considered. We then apply our simulation approach to three diseases where 
diagnostic delays have been previously investigated using large administrative data 
sources – tuberculosis, acute myocardial infarction (AMI) and stroke. Finally, we 
describe how results for this disease may differ across the different simulation 
approaches and estimation procedures. We conclude by discussing considerations for 
future investigations. 
 
Theoretical and Conceptual Framework 
 
We define a missed diagnostic opportunity as a healthcare encounter where signs or 
symptoms of a disease are present, but where the diagnosis is not made or an incorrect 
diagnosis is applied. Our methodological framework is based on the following 
fundamental assumption: for a given disease, a portion of patients will experience 
missed diagnostic opportunities prior to the index diagnosis of the disease, and such 
missed opportunities will be reflected by a greater than expected number of healthcare 
visits where signs and symptoms of the disease are present.  
 
To identify potential missed opportunities, we start by computing the number of visits 
prior to the index diagnosis where signs and symptoms of the disease of interest are 
present. To do so, we expand upon the symptom-disease pair concept in the SPADE 
framework20 to include what we term as “symptomatically similar diagnosis-disease 
pairs” where a symptomatically similar diagnosis (SSD) encompasses not only signs 
and symptoms or related diagnoses, but also tests or procedures that may suggest the 
presence of the disease.20 SSD-related visits may be identified using diagnosis codes 
(e.g., ICD-9-CM/ICD-10-CM), procedure codes (CPT or ICD), medication claims or 
other structured data elements. We generally categorize SSDs into one of three types of 
events (and this list may be expanded upon based on expert-feedback or biological 
plausibility): 

1. General symptoms of the disease of interest. For example, for tuberculosis 
these may include symptoms such as cough, fever, weight loss, or hemoptysis. 

2. Symptomatically-similar diseases or syndromes that share similar symptoms 
to the disease of interest and subsequently may be confused for the disease of 
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interest. For example, with tuberculosis these may include pneumonia, influenza 
or bronchitis. 

3. Testing, imaging, physical-exam-based diagnoses, or treatments that are 
associated with symptoms of the disease of interest. For tuberculosis, these may 
include factors such as infection testing, chest x-rays, diagnoses of anemia or 
swollen lymph nodes. 

 
We analyze diagnostic opportunities by evaluating the trend in SSD-related visits prior 
to the index diagnosis. As an example, Figure 1 depicts SSD-related visits prior to the 
index tuberculosis diagnosis for 3,371 patients (additional details about this study 
population and SSD conditions are described below). The x-axis depicts the number of 
days prior to the index tuberculosis diagnosis, and the y-axis depicts the number of 
visits that occurred on a given day that had an SSD-related diagnosis. From Figure 1, 
we see that there is a large visible spike in the number of visits for SSD conditions that 
might be related to tuberculosis in the time just prior to the initial diagnosis. In this case, 
the dramatic increase appears to occur around 90-100 days prior to the index diagnosis, 
a time period consistent with prior investigations for when diagnostic delays for 
tuberculosis might occur.16,24 
 
The trends presented in Figure 1 have been broadly identified for a wide range of 
diseases and numerous studies have used this spike in healthcare utilization prior to 
diagnosis as a marker for diagnostic opportunities.8,9,17 This trend depicts two periods of 
activity: (1) a window just prior to diagnosis where SSD-related visits appear to 
dramatically increase, which we refer to as the diagnostic opportunity window and 
(2) a period further before diagnosis where SSD visits appear to exhibit either a stable 
or slightly increasing trend. These two periods are highlighted in Figure 2, separated by 
the dashed-grey line and represent points in time where diagnostic delays are likely to 
occur (to the right) or unlikely to occur (to the left). The period prior to the diagnostic 
opportunity window is depicted by a relatively gradual, and near linear, trend in SSD 
visits. This period may capture risk factors for this disease or the natural history of the 
disease, but generally does not reflect missed diagnostic opportunities. The increase in 
visits over time may reflect visits attributable to risk factors for the condition of interest, 
deteriorating health or surveillance/observation effects (e.g., patient care may cluster in 
time based on insurance enrollment, patient scheduling convenience or when 
subsequent visits are for follow-up care or in response to screening). 
 
We build upon the distinction between observed and expected trends outlined by 
Waxman et al. (2018) and our prior empirical work18,19 to distinguish missed 
opportunities from coincidental care. Specifically, the red line in Figure 2, depicts the 
expected number of SSD visits – these represent SSD-related visits that would be 
expected to occur in the absence of diagnostic delays. The solid-red line, reflects the 
observed trend in SSD-visits prior to the diagnostic opportunity window, while the 
dashed-red line reflects this trend extrapolated to the diagnostic opportunity window. 
The expected number of visits represents the number of SSD-visits one would expect if 
the disease of interest were not present. Notice that this extrapolation reflects a type of 
case-crossover design, where the period prior to diagnostic opportunity window is used 
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as a control period to estimate the expected number of visits (if the disease were 
absent). The visits approximated by the red shaded area, below the expected trend line 
represent the number of SSD visits that would be expected to occur in the absence of 
diagnostic opportunities. 
 
The blue curve in Figure 2 represents the observed trend in SSD-visits during the 
diagnostic opportunity window. The shaded blue area, between the observed and 
expected trends inside the diagnostic opportunity window, represents the excess 
number of SSD-visits. This area roughly approximates the number of visits representing 
missed diagnostic opportunities. However, some of the visits during the delay 
opportunity window would also be expected to occur based on trends prior to this period 
(i.e., visits shaded in red to the right of the dashed-grey line), which are not considered 
missed opportunities. For example, we would expect some patients with tuberculosis to 
have had pneumonia within 90 days prior to their tuberculosis diagnosis simply by 
coincidence. 
 
Given estimates for the observed and expected trends during the diagnostic opportunity 
window, one can approximate the number of missed opportunities on a given day by 
subtracting the number of expected SSD visits from the number of observed SSD visits. 
(Note: either the true number of observed visits or the estimated trend in observed 
visits, as depicted by the blue line, may be used in this context.) The observed and 
expected trends depicted in Figure 2 can be estimated in a variety of ways (e.g., linear 
or non-linear curves or non-parametric approaches). Once the trends have been 
estimated the number of missed opportunities on a given day can be computed by 
subtracting the number of expected SSD visits from the number of observed SSD visits. 
This and similar approaches using observed and expected visits have been used in 
prior investigations of diagnostic delays.17-19 
 
Simulation Approach to Identify Likely Missed Opportunities 
 
The above framework may be used to estimate the number of missed opportunities 
each day during the diagnostic opportunity window. However, because some visits 
represent expected SSD-related visits during the diagnostic opportunity window (i.e., 
the red shaded region in Figure 2), it is often not possible to directly identify which 
individual patient visits exactly represent a missed opportunity from observational data 
alone. Thus, from the estimate of the number of missed opportunities alone we cannot 
determine: (1) the number of patients who experienced a missed opportunity, (2) the 
typical duration of diagnostic delays nor (3) the number of missed opportunities that a 
typical patient experienced. Moreover, it may be challenging to estimate risk factors for 
experiencing a missed opportunity if individual visits representing a diagnostic 
opportunity cannot be identified. We refer to these types of measures as patient-level 
metrics associated with diagnostic delays. Our simulation framework is designed to 
estimate each of these patient-level metrics using a bootstrapping-based approach. We 
do so by simulating (i.e., randomly selecting) which visits represent a missed 
opportunity and then computing the individual-patient-level metrics of interest.  
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Let  𝑚! denote the number of estimated missed opportunities at each day 𝑡	 ∈
{𝑤,𝑤 + 1,… ,−2,−1	} during the diagnostic opportunity window, where 𝑤 < 0 
denotes the point representing the start of the diagnostic opportunity window (see 
dashed grey line in Figure 2).  
 
Below we describe three different algorithms that may be used to simulate missed visits. 
In general, these simulation approaches can be described by the following steps. Given 
estimates for 𝑚! and 𝑐𝑝, described above, do the following: 
 

1. For each time period in the delay opportunity window, 𝑡	 ∈ {𝑤,𝑤 + 1,… ,−2,−1}, 
randomly draw the estimated number of missed visits 𝑚! and label these as 
missed opportunities. 

2. Aggregate all visits and corresponding patients who were drawn to represent a 
missed opportunity. Compute the number of patients missed, duration of delay 
(the time between first missed visit and the index date) for each patient, and the 
number of missed opportunities drawn for each patient. 

3. Repeat steps 1 and 2 multiple times. 
4. Aggregate results. 

 
The following algorithms expand upon the selection procedure described in step 1 by 
preferentially drawing patient visits in relation to their perceived probability of 
representing a delay.  
 
Algorithm 1: Independent draws 
 
The first approach draws visits representing missed opportunities independent of one 
another at each time period in the delay opportunity window. A formal description of this 
algorithm is presented in Figure 3. This represents the simplest way to simulate missed 
opportunities, but provides no correlation structure between the patients or visits that 
are selected at subsequent time points. In other words, a patient who is drawn to have a 
missed opportunity because of symptoms occurring at 21 days before diagnosis would 
be no more likely to be drawn if they presented with symptoms 14 days prior to 
diagnosis. 
 
Algorithm 2: Preferential selection of previously drawn cases 
 
In general, SSD visits occurring near the index diagnosis may be more likely to 
represent a missed opportunity if that patient also experienced a missed opportunity at 
earlier points before the index diagnosis. For example, if a patient has an SSD visit 15 
days prior to the index diagnosis and they also have another SSD visit at 5 days prior to 
the index, these visits are more likely to be missed opportunities than a single SSD visit. 
Thus, there may be a desire to draw missed visits in a manner correlated with prior time 
steps.  
 
Thus, a second approach is to preferentially draw visits from patients who have 
previously been drawn at earlier time points in the diagnostic opportunity window. 
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Figure 4 presents a formal description of an algorithm to select patient visits in a 
correlated fashion, where visits are more likely to be selected if the patient also had a 
missed opportunity at a prior time point. This algorithm introduces a scaling parameter 
allowing one to define the preference given to selecting patients who have previously 
been drawn. Specifically, given a scaling parameter 𝛼	𝜖	[0,1],  𝑚! ∗ (1 − 𝛼) of the visits 
at time point 𝑡 will be selected from patients with previous missed visits (if available) and 
𝑚! ∗ 𝛼 of the visits at time point 𝑡 will be selected from patients not previously drawn to 
have a missed opportunity. Note that a value of 𝛼 = 0 denotes strict preference to 
previously drawn patients while 𝛼 = 0.5 denotes equal preference, and 𝛼 = 1 denotes 
strict preference to patients not drawn at prior time steps. Thus, using this selection 
procedure and given a set of estimates {𝑚!|𝑡	 ∈ [𝑐𝑝, −1]} for missed visits,	𝛼 = 0 will 
minimize the number of patients with at least one missed opportunity in the diagnostic 
opportunity window, while 𝛼 = 1 will maximize the number of patients with at least one 
missed opportunity. 
 
Algorithm 3: Generalized algorithm 
 
We may also want to preferentially select visits from patients who are more likely to 
represent a missed opportunity based on multiple criteria. For example, a patient who 
has multiple healthcare encounters with unresolved symptoms may be more likely to 
represent a missed diagnostic opportunity. Similarly, a patient who presents with 
multiple different symptoms may be more likely to represent a diagnostic delay. Figure 5 
presents an example of a more generalized algorithm that allows multiple criteria to be 
incorporated into the preferential selection criteria. This algorithm incorporates a 
functional weighting parameter based on the number of times a patient had SSD visits 
labeled as a missed opportunity and the number of distinct symptoms/SSDs the patient 
experienced during the current visit or prior visits in the SSD window. 
 
R Package 
We have developed an R package to implement the above algorithms. This package 
can be found at https://github.com/aarmiller/delaySim along with installation instructions 
and tutorial examples. 
 
Estimating Simulation Parameters 
 
In this section, we discuss approaches to estimate the primary parameters necessary to 
implement the simulations described above. We begin by describing approaches to 
estimate the number of missed opportunities each day during the diagnostic opportunity 
window. We then describe approaches to estimate the bounds of the diagnostic 
opportunity window. Note: depending on the approach one chooses, these two 
parameters may be estimated simultaneously. 
 
Estimating the expected trend and number of missed opportunities (𝑚!) 
 
Let 𝑡 ∈ −𝑇,−𝑇 + 1,… ,−2,−1represent time points prior to the index diagnosis, where 
−𝑇 represents the maximum amount of time prior to diagnosis that we wish to analyze. 
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Our goal is then to estimate 𝑦! = 𝑓(𝑡) + 𝜖!, where 𝑦!	is the number of SSD visits at time 
t over the interval [−𝑇,𝑤 − 1]. Then using this estimate we extrapolate 𝑦@!	to the interval 
[𝑤,−1].  
 
Alternatively, we can specify the estimation problem over the entire interval as a 
piecewise function as follows: 
 

𝑦! = A 𝑓
(𝑡)		𝑡 < 𝑤

	𝑔(𝑡)			𝑡 ≥ 𝑤 

 
where 𝑓(𝑡) is the trend in SSD visits prior to the diagnostic opportunity window, and 
𝑔(𝑡)	is the trend in SSD visits during the diagnostic opportunity window. A variety of 
model fitting approaches may be used to estimate 𝑓(𝑡) and/or 𝑔(𝑡). For example, Figure 
6 depicts a case where 𝑓(𝑡) is either a linear function of time (left) or an exponential 
function (right). Similarly, various time-series modeling approaches may be used to 
capture temporal aspects of the estimation problem (e.g., periodicity, autocorrelation). In 
general, we have found that the trend prior to the diagnostic opportunity window (𝑓(𝑡)) 
can be roughly approximated by a linear model, while the trend during the diagnostic 
opportunity window (𝑔(𝑡)) is typically non-linear. 
 
Once values for 𝑓D(𝑡) have been obtained, we can compute the number of missed 
opportunities at a given time point 𝑡 in one of two ways. First, if an explicit value for 𝑔@(𝑡) 
has not been obtained, we can use the observed count at time 𝑡 , such that 𝑚! = 𝑦! −
𝑓D(𝑡). Second, we can use the fitted value for	𝑔@(𝑡)such that 𝑚! = 𝑔@(𝑡) − 𝑓D(𝑡).  
Confidence bounds around the number of missed opportunities may also be computed 
using appropriate prediction intervals around 𝑓D(𝑡)or 𝑔@(𝑡) − 𝑓D(𝑡). 
 
Estimating the bounds of the diagnostic opportunity window (change-point detection) 
 
The lower bound of the diagnostic opportunity window, 𝑤, represents the cross-over 
point prior to diagnosis used to delineate the diagnostic opportunity window from the 
period where the expected pattern of care is estimated. Thus, 𝑤 must be defined prior 
to calculating 𝑚! as noted above. While this bound on the diagnostic opportunity 
window may be specified a priori based on clinical knowledge, it may also be desirable 
to estimate this “change point” as part of the analytical process. For example, the 
maximum duration of diagnostic delays is often the subject of investigation.  
 
One approach for finding this change point is to employ standard change-point finding 
algorithms to find the optimal value for 𝑐𝑝 = 𝑤 using the trends outlined above. For 
example, given a parametric specification for 𝑓(𝑡) and 𝑔(𝑡), one approach to find the 
optimal value 𝑐𝑝 may be achieved by iterating over different values for 𝑐𝑝 and 
comparing the fitted performance of 𝑓D(𝑡) and 𝑔@(𝑡) (e.g., by minimizing the Akaike or 
Bayesian information criterion [AIC/BIC] or maximizing mean squared error [MSE], etc.) 
Change-point-detection approaches may also be used that do not require explicit 
specification of functional forms for 𝑓(𝑡) or 𝑔(𝑡) such as the CUSUM method.25 
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Alternatively, if one wishes to use the formula 𝑚! = 𝑦! − 𝑓D(𝑡), described above, to 
estimate the number of missed opportunities without estimating 𝑔(𝑡), it may be possible 
to find 𝑐𝑝 by exploiting the fundamental assumption that 𝑦! > 𝑓(𝑡), ∀	𝑡 > 𝑐𝑝.	Specifically, 
we can define the change-point as the point 𝑐𝑝 such that 𝑦! >	𝑦@!	∀	𝑡 > 𝑐𝑝 or using the 
prediction bound we can define 𝑐𝑝 such that 𝑦! >	𝑦@! + 𝑐𝜎@!	∀	𝑡 > 𝑐𝑝, where 𝑐 is a critical 
value based on the coverage probability. We can then attempt to find a value of 𝑐𝑝, by 
choosing an initial guess  𝑐𝑝H ≤ 𝑐𝑝 that we believe is outside of the true diagnostic 
opportunity window, while using the interval [−𝑇, 𝑐𝑝]J  to estimate 𝑓(𝑡). Using this initial 
guess 𝑐𝑝H, we can then identify the value 𝑐𝑝 in the problem described above. This 
change-point finding approach is universally applicable regardless of the 
parameterization of 𝑓(𝑡). Of course the performance of this approach is highly 
dependent on the initial value 𝑐𝑝H, and it is desirable to choose a value as close to the 
true change point as possible. Note: this approach might be desirable if an upper bound 
on the feasible diagnostic opportunity window can be clinically justified but where the 
exact window remains unknown (e.g., diagnostic delays for HSV-encephalitis should 
never exceed 3 months). 
 
Applications 
 
We apply our simulation approach to three diseases where a type of “look-back” 
approach, has been previously applied to study diagnostic delays: stroke, AMI, and 
tuberculosis. For each of these conditions, we use criteria from these prior studies to 
identify case patients and the index diagnosis using a large administrative claims 
dataset. We then compute the number of SSD-related visits each day prior to the 
diagnosis and use these counts to estimate the number of missed opportunities. 
Supplementary Table 1 describes the diagnosis codes and sources used to identify 
each index condition. Supplementary Table 2 describes SSDs used for each condition 
and their corresponding diagnosis codes. Each of these criteria were selected based on 
prior investigations of diagnostic delays for these diseases. 8,9,13,16-18,26-29 
 
Study Population. We used administrative claims data from the IBM Marketscan 
Commercial Claims Databases from 2001-2017. This database contains longitudinal 
insurance claims for individuals with employer-sponsored health insurance along with 
spouses, partners and dependents of the primary enrollee. Over this study period, 
records are available for over 185 million distinct enrollees. Claims for inpatient, 
outpatient, emergency department (ED) and prescription medications are provided. For 
each of the study conditions, we identify the first time an enrollee was diagnosed with 
the disease of interest and labeled this as the index diagnosis. We exclude children <18 
years of age and enrollees that had less than 365 days of continuous enrollment prior to 
the index diagnosis. Based on prior investigations and clinical plausibility, delays 
associated with tuberculosis can be expected to exceed a few months while delays for 
AMI and stroke are typically a month or less. Thus, we used a value of 𝑇 = 365 days for 
tuberculosis and 𝑇 = 180 days for stroke and AMI. 
 
Estimation procedures for simulation parameters. For each condition, we compare three 
approaches to find the potential change-point marking the start of the diagnostic 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.22.21265386doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.22.21265386
http://creativecommons.org/licenses/by-nc-nd/4.0/


opportunity window. First, we fit a piecewise linear-cubic model with a linear trend over 
the interval [−𝑇, 𝑐𝑝 − 1] and a cubic trend over the period [𝑐𝑝, −1]. We then iterate over 
values for 𝑐𝑝 and choose the optimal value based on AIC. Second, we used the 
CUSUM method to detect the change point over the interval prior to the diagnostic 
opportunity window beginning at −𝑇. For this approach we use a linear model to 
estimate the expected trend during visits prior to the identified change-point 𝑐𝑝. Third, 
we use the prediction bound approach, described above, to identify the point where the 
observed values are systematically greater than the 95% prediction bound for the 
expected projections during the diagnostic opportunity window. For this approach, we 
also use a linear model to estimate the trend in expected SSD visits prior to the change 
point.  
 
After identifying the change point for each approach, we select the optimal change-point 
method based on two primary criteria. First, the change point approach should 
maximize the model fit during the period prior to the diagnostic opportunity window, 
where we intend to estimate the expected trend in SSD visits that will be extrapolated 
forward into the diagnostic opportunity window. We characterize this trend by choosing 
the model that minimizes the mean squared error over the period prior to the diagnostic 
opportunity window. Second, we evaluate the model performance just prior to the 
change-point to ensure that the model does not begin overestimating the trend prior to 
the delay opportunity window. Because the observed trend after the change-point is 
expected to monotonically increase, if the change-point is set inside the theoretical 
diagnostic opportunity window we would expect it to result in a negative error as the 
slope of the expected SSD curve will begin to shift upward. To evaluate this criterion, 
we evaluate the mean error within 7, 17, and 21 days prior to the change-point, and 
choose the model with a mean error consistently nearest to zero. 
 
After selecting the change-point approach that appears to best estimate the expected 
trend prior to the diagnostic opportunity window, we then estimate the number of missed 
opportunities at each day during the window. Specifically, we estimate the expected 
trend using a simple linear function of time prior to diagnosis 𝑡 by fitting the model	𝑦! =
𝛽" +	𝑡𝛽# + 𝜀! over the interval [−𝑇, 𝑐𝑝 − 1] and extrapolating 𝑦@!	over the interval 
[𝑐𝑝, −1]. We then compute the number of missed visits as the observed error 𝑚! = 𝑦! −
𝑦@!	using the observed count 𝑦! over the interval [𝑐𝑝, −1]. 
 
Simulation models. We compare three different simulation approaches using two of the 
simulation algorithms described above. First, we use Algorithm 1 to draw missed visits 
that are independent at each period. Second, we use Algorithm 2 while setting 𝛼 = 0. 
Third, we use Algorithm 2 while setting 𝛼 = 1. Thus, our first simulation approach will 
describe the expected number of patients with a delay using uncorrelated draws, while 
the second and third models will roughly summarize the minimum and maximum 
number of patients potentially experiencing a delay, respectively using correlated draws. 
For simplicity, we refer to these approaches as naïve draws (algorithm 1), minimal 
patient-delays (algorithm 2, 𝛼 = 0) and maximal patient-delays (algorithm 2, 𝛼 = 1).  
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Using these three simulation approaches, we estimate the following measures of the 
frequency of missed opportunities: the total number of visits representing a missed 
opportunity; the percent of missed opportunities occurring in inpatient, outpatient and 
emergency department settings; the percent of patients experiencing a missed 
opportunity; the mean number of missed opportunities each patient experienced; the 
mean duration of diagnostic delays (time from earliest missed opportunity to index 
diagnosis). We compute bootstrap-based 95% confidence intervals for each of these 
estimates by repeatedly redrawing 1,000 times which visits represented a missed 
opportunity, computing the above metrics, and using the 0.025 and 0.0975 percentile 
values. 
 
Sensitivity analysis. It is possible that our SSD list and corresponding SSD visits may 
not fully capture all visits where a patient presented with symptoms of the disease. For 
example, there may be other SSD codes that are not directly specified in our SSD list. 
Alternatively, symptoms that occur during a visit may not be captured in the 
administrative discharge record because of recording errors (e.g., clinician fails to 
record symptom) or due to billing issues (e.g., no corresponding ICD code applied to the 
insurance claim). To address this potential limitation, we repeat our change-point 
analysis, obtain the estimates of the number of missed opportunities and employ our 
simulation models for all visits, instead of SSD visits only. This provides an upper bound 
on the number of potential missed opportunities, if SSD records are incomplete. 
 
 
Results 
 
We identified 2,073 cases of tuberculosis, 359,625 cases of AMI, and 367,768 cases of 
stroke. Table 1 presents baseline characteristics for each of our study populations, 
including demographics, enrollment information and the number of observable visits per 
patient during the observation period prior to the index diagnosis. Figure 7 presents 
counts of SSD visits for each day leading up to the index diagnosis for each condition. 
There is a significant increase in SSD-related visits for all three conditions that occurs in 
the period before diagnosis.  
 
For each condition, we estimated the change-point, expected number of baseline visits, 
and the number of missed visits using 3 different change-point detection approaches. 
Supplementary Table 3 and Supplementary Figures 1-3 present the resulting change-
points, summaries of the number of missed opportunities and a visualization of the 
diagnostic opportunity window and expected number of SSD visits. For each condition, 
we identified the change-point approach that appeared to best fit the pattern of SSD 
visits based on the following criteria: (1) minimal MSE before the change-point, (2) 
mean error right before the change-point that is near zero. Supplementary Table 3 also 
lists these evaluation criteria for each of the methods and the three diseases 
considered. Note: each of these change-points that were “learned” by our change-point 
fitting approach are consistent with time periods that have been used to identify missed 
opportunities associated with each of these diseases. 
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For tuberculosis we selected the linear-cubic model which identified the change-point at 
113 days prior to diagnosis. For AMI we selected the prediction bound model, which 
resulted in a change-point at 39 days before diagnosis. For stroke we also selected the 
prediction bound model, which resulted in a change-point at 38 days before diagnosis. 
Table 2 summarizes these results for each condition and the final selected change-point 
approach. Figure 7 also provides visualizations of the SSD visit counts along with the 
expected trend and corresponding opportunity window. Supplementary Table 4 provides 
the final estimates of the number of missed opportunities at each time period that was 
used in the simulation models. 
 
For each condition we applied three different simulation approaches (naïve, minimal, 
and maximal), as described above, to identify which visits represented a missed 
opportunity. Table 2 presents the results of these simulations in terms of the settings 
where missed opportunities occurred (outpatient, inpatient or ED), the percentage of 
patients experiencing at least one missed opportunity, the mean number of missed 
opportunities such patients experienced and the average duration of diagnostic delays. 
The results shown in this table demonstrate the sensitivity of these estimates to the type 
of simulation algorithm applied. 
 
In general, across all three diseases the majority of diagnostic opportunities appeared to 
occur in outpatient settings, representing around 90% of missed opportunities for 
tuberculosis, 75% for AMI and 60% for stroke. The ED was the second most common 
setting for misses representing around 30% for stroke, 20% for AMI and 5% for 
tuberculosis. For all three diseases, around 4-6% of missed opportunities occurred in 
inpatient settings. The type of simulation algorithm did not dramatically alter these 
estimates, with the percentage by type of setting only differing by a percentage point or 
two across algorithms for each disease. However, the maximal patient-delays approach 
did tend to result in fewer missed opportunities ascribed to outpatient settings, while the 
minimal approach resulted in slightly more and the naïve approach tended to be in 
between algorithms 2 and 3. 
 
The differences between the algorithms are reflected more clearly in the estimates of 
the percentage of patients experiencing a missed opportunity, the number of missed 
opportunities ascribed to each patient who was missed, and the duration of diagnostic 
delays among patients who were delayed. The maximal tended to result in the largest 
number of patients experiencing a miss, as expected; the minimal resulted in the fewest 
while the naïve approach was somewhere in between. Patients with tuberculosis were 
most likely to experience a missed opportunity, with between 63.9% - 82.3% of patients 
experiencing at least one missed opportunity, depending on the algorithm, while 
patients with stroke were least likely, with 6.9% - 8.3% of patients experiencing a 
missed opportunity across the different algorithms. These differences across algorithms 
are consistent with the intuition described above where the maximal approach 
essentially identifies more patients (i.e., patients not previously drawn) at each 
successive draw, while the minimal approach tries to identify fewer patients (i.e., 
previously drawn patients). 
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Similarly, the correlated nature of successive draws results in differences in the average 
number of missed opportunities those patients who experience a delayed diagnosis 
were assigned. The minimal approach, which identified the fewest number of patients 
with a missed opportunity, resulted in more missed opportunities assigned to each 
patient who did experience at least one missed opportunity, compared to the maximal 
approach, which tended to identify the greatest number of individuals with at least one 
missed opportunity. Patients with tuberculosis experienced the greatest number of 
missed opportunities, with between 3.78 missed opportunities per patient for the 
maximal approach versus 4.87 missed opportunities for the minimal approach. Patients 
with AMI and stroke who experienced a missed opportunity had a similar number of 
missed opportunities across algorithms (1.36-1.63 per patient for stroke and 1.36-1.80 
for AMI). 
 
A somewhat counterintuitive result occurs across algorithms related to the estimated 
duration of diagnostic delays. The minimal approach, which identifies the fewest number 
of total patients with a diagnostic delay and results in more missed opportunities per 
patient, tended to result in a shorter average duration of diagnostic delays, compared to 
the maximal approach which produced longer diagnostic delays on average. This result 
is due to the skewed nature of SSD visits (see Figure 7) and the correlated nature of 
subsequent draws between the algorithms. Because the minimal approach attempts to 
draw missed opportunities at each subsequent time period from patients who have 
already been drawn (i.e., a longer delay), there is a clustering of the earlier SSD visits 
among patients with already long duration of delays; those visits which occur further 
before the index date are more likely to be assigned to patients already having a longer 
delay, while newly drawn patients are more likely to be selected corresponding to visits 
closer to the index date. Thus, the minimal approach generates a relatively small 
number of patients who have long delays but with many visits further before the index 
date while producing relatively more patients with short delays closer to the index. This 
difference between algorithms has a relatively large impact on the average duration for 
diagnostic delays in the case of tuberculosis, with the average duration of 34.35 days 
for the minimal approach versus 44.47 days for the maximal approach. However, the 
difference between algorithms is less dramatic for stroke (6.72 vs 7.64) and AMI (6.69 
vs 8.21). 
 
We also conducted a sensitivity analysis of the SSD list used to identify potential missed 
opportunities. In particular, we repeated our change-point analysis, estimated the 
observed and expected visit trends, computed the estimated numbers of missed 
opportunities and repeated all simulation analysis using all visits, instead of SSD visits 
only. These results are presented in Supplementary Table 10. In general, this analysis 
resulted in a much greater estimated number of missed opportunities (more than 5 
times as many for stroke, 1.63 times for AMI and 1.52 times for tuberculosis). The 
general trends across algorithms, described above, was the same with 3 notable 
exceptions. First, a greater proportion of missed opportunities were estimated to occur 
in outpatient settings. Second, a greater percentage of patients were estimated to have 
experienced a missed opportunity; this result was most exaggerated for AMI and stroke. 
Third, the mean number of missed opportunities and duration of delays among those 
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patients who experienced a delay was not consistently different; in some cases, the 
number of delays per patient and duration of delays increased, while in others it was the 
same or even decreased. Thus, this type of sensitivity analysis may help to broaden the 
number of missed opportunities and patients with missed opportunities identified, but 
may not dramatically change the dynamics of missed opportunities among patients 
identified to have a delay in terms of the number of missed opportunities they are 
estimated to experience or the estimated duration of delay. 
 
Discussion 
 
In this paper, we presented a general simulation-based approach to estimate individual-
level measures of missed diagnostic opportunities from longitudinal health records. 
Specifically, this approach allows one to estimate the frequency of missed opportunities 
at an aggregate level, along with individual-level metrics such as the number of patients 
experiencing a missed opportunity, the settings where missed opportunities occur, the 
number of missed opportunities that individual patients experience, and the duration of 
diagnostic delays. We applied these methods to TB, AMI, and stroke, and consistent 
with prior investigations for these diseases, we identified a significant number of missed 
opportunities associated with these diseases. We also demonstrated that a range of 
results may be generated based on different evaluation criteria.  
 
The simulation approach we describe, unlike many prior approaches to study diagnostic 
delays, such as retrospective chart reviews, autopsy studies, or malpractice claims is 
less costly and time consuming and can be applied to virtually any disease captured by 
longitudinal patient records. Moreover, our approach provides a high degree of flexibility 
in terms of estimation procedures, algorithms for selecting missed opportunities and 
output measures. While other approaches have used similar longitudinal data sources 
and a type of “look-back” approach to study diagnostic delays, these approaches often 
have a number of methodological limitations that our approach is designed to 
address.8,9,11,13,16 First, these studies are often unable to compute individual-level 
patient metrics, such as delay duration or frequency of misses in individual patients, as 
these metrics typically require analyzing individual patient records. Second, these 
studies generally require expert specification of criteria to define a delay (e.g., time prior 
to diagnosis). Third, the approaches very often do not account for the fact that many 
signs and symptoms occurring before diagnosis may be unrelated to the disease of 
interest and can be expected to occur even in absence of diagnostic delays; thus, prior 
approaches may not distinguish between likely missed opportunities and coincidental 
visits. To our knowledge, only a few prior studies have attempted to control for this 
coincidental level of care17-19 and our approach can be viewed as an extension of these 
prior methods.  
 
We presented three simulation algorithms and applied two of these to the diseases of 
interest. Given our findings, which demonstrated differing results across algorithms, we 
offer the following guidance to future investigators wishing to use this approach. First, 
because the application of these methods and data sources to study diagnostic delays 
is relatively novel, alternative algorithms may be used as means to provide a sensitivity 
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analysis around empirical estimates. In cases where relatively little is known about the 
correlation between patient revisits and the likelihood of an individual visit representing 
a delay, we recommend the general approach utilized in this paper. Namely, the naïve 
approach (Algorithm 1) should be considered as the baseline or default estimate. This 
algorithm places the fewest assumptions on the simulation process, and is conceptually 
the most straightforward. However, investigators may also consider Algorithm 2, while 
setting 𝛼 = 0 and 𝛼 = 1 to provide bounds related to algorithmic sensitivity. Second, in 
situations where more information is known about the correlation between repeated 
missed opportunities prior to diagnosis (e.g., symptoms are known to persist among 
patients who are delayed), expert evaluation may be used to determine if 𝛼, in Algorithm 
2, should be set closer to 0 or 1. Finally, as future investigations make use of these 
approaches, or as validation studies are conducted, such information may be used to 
develop a more realistic specification for the generalized algorithm (Algorithm 3) that 
may allow it to be better customized to disease-specific contexts. 
 
One of the most important contributions of our approach is that our method explicitly 
attempts to account for the expected healthcare that may coincidently occur prior to the 
index diagnosis of a disease of interest, while also providing a means for generating 
individual-level delay analysis. For example, not all respiratory events that occur prior to 
a tuberculosis diagnosis may be a direct result of tuberculosis, and many visits that 
appear to be potential missed opportunities may be coincidental. Failure to account for 
these expected trends may lead to significant overestimates in the frequency of 
diagnostic opportunities. However, prior investigations that have used similar data 
sources and approaches to identify individual missed diagnostic opportunities have 
typically labeled all events that meet pre-specified criteria (e.g., dizziness before stroke) 
as a “missed opportunity.” Consequently, these approaches, are often paired with 
additional criteria (e.g., treat and release ED visits8,9,11) to ensure greater specificity but 
come at the cost of decreasing the sensitivity in identifying missed opportunities. 
Attempts have been made to account for observed patterns of symptomatic visits 
relative to what would have been expected using either other visits11 or using a 
crossover period prior to when delays may be expected to occur,17 as we have 
proposed. However, these approaches have still been unable to compute individual-
level-patient metrics, such as delay duration or frequency of misses in individual 
patients. 
 
Another primary advantage of our approach is that it provides a fairly flexible set of 
criteria for guiding the estimation process of diagnostic delays. First, numerous 
estimation procedures can be used to estimate the simulation parameters described 
above, including the change-point for the diagnostic opportunity window and the trend in 
expected SSD visits. Second, we have presented three basic algorithms for 
drawing/simulating missed opportunities. Our generalized algorithm presents a 
customizable weighting parameter that can be used to adapt the simulation to a 
particular disease of interest. Multiple other extensions are possible, and the algorithms 
here can be customized for more complex scenarios. For example, a sequential 
selection criterion such as – a patient who experiences SSD A then SSD B is more 
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likely to represent a diagnostic delay than SSD B before SSD A. Thus, our results 
present a simulation outline upon which future investigations can build.  
 
Results from our different simulation approaches demonstrate that a range of estimates 
may be generated based on how one chooses to define the correlation structure 
between missed opportunities identified across sequential draws within the simulation. 
For example, the type of algorithm selected resulted in differences in the percent of 
individuals identified to have a delay, the setting where missed opportunities occurred 
(inpatient, outpatient, ED), the duration of delay and number of missed opportunities per 
patient. In some cases (e.g., mean duration of delays with tuberculosis), the difference 
in estimates between algorithms can be quite large. Thus, clinical knowledge should still 
be employed to guide the estimation process and identify the simulation approaches 
that best suit the particular disease. However, the simulations we present can provide 
bounds on the range of plausible results at an individual level. In addition, our sensitivity 
analysis using all visits prior to diagnosis may be one approach to provide an upper 
bound on the estimated number of missed opportunities.  
 
A final benefit of our simulation approach is that it may provide a unified approach for 
quantifying and comparing the frequency and duration of diagnostic delays across a 
variety of diseases in a more reproducible fashion. As noted above, there are 
considerable challenges when attempting to compare estimates of diagnostic delays 
across studies where differing methods and study populations are used. Our approach 
may provide one way to generate comparable results across diseases and studies, 
allowing investigators to directly compare which diseases may have a longer or shorter 
delay process and/or a greater/lesser frequency of delays. For example, in our 
applications, missed opportunities were far more common for tuberculosis compared to 
stroke and even less common for AMI. Average delays for AMI and stroke were similar 
at around 7-8 days versus tuberculosis, which was around 40 days. For all three 
diseases, only around 5% of the missed opportunities we identified occurred in inpatient 
settings, but there were considerable differences between ED and other outpatient care. 
These and similar metrics may also be useful for benchmarking purposes or providing a 
measure of diagnostic efficiency (e.g., how many healthcare resources are typically 
required to make a correct diagnosis) across diseases. Such measures may be useful 
for policy makers wishing to evaluate the relative importance of delays across a wide 
range of diseases using widely available data sources. 
 
 
Limitations  
 
There are a number of limitations with the simulation approach we present here. First, 
our approach generally requires a large data source of longitudinal patient records, 
especially for diseases that are relatively rare. While such records are often readily 
available in the form of administrative claims, discharge records or other observational 
data sources, such data typically do not contain the types of granular information 
necessary for in-depth validation of delays (e.g., clinic notes or vital signs). A second 
limitation of our approach is that the missed opportunities identified do not necessarily 
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imply diagnostic delays have occurred, and even “likely” missed opportunities for 
diagnosis may be unavoidable even in settings of ideal patient care. Our approach is 
simply designed to detect missed opportunities based on “excess” SSD visits that 
deviate from expectations to a statistically meaningful degree. However, we cannot 
assume that a healthcare provider would reasonably be expected to diagnose each of 
these cases, and our approach does not incorporate harms that may have resulted. 
Similarly, our approach may miss longer delays or those that do not generate a 
significant signal in aggregate visit counts. For example, the addition of a handful of 
missed opportunities occurring outside the delay opportunity window are unlikely to 
impact the detection of the optimal change-point. Thus, there may exist some patients 
whose delay is not completely captured by our approach. Finally, the approach outlined 
above assumes the defined SSD set is relatively complete. If a significant number of 
SSDs are unknown or not included in the primary analysis, results may be significantly 
underestimated. However, we also presented a sensitivity analysis using all visits that 
may be used to compute upper bounds on the number of delays and provide guidance 
on the relative completeness of the defined SSD set. 
 
Conclusions 
 
The simulation approach presented here provides an intuitive, flexible and broadly 
applicable framework that can be used to identify missed opportunities and study 
diagnostic delays using large longitudinal data sources. This approach is less costly and 
time intensive than traditional methods to study diagnostic delays. It builds upon recent 
efforts to utilize large real-world datasets to study diagnostic delays, but also addresses 
many of the limitations present in prior study designs. Our results demonstrate 
consistency with prior investigations of diagnostic delays, but also provide a means to 
generate future results for different diseases and study populations. Moreover, we 
outlined a number of flexible extensions upon which future investigations and clinical 
expertise may be used to expand and refine our general approach to individual 
diseases. 
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FIGURES 
 
Figure 1 – Count of SSD-related visits prior to tuberculosis diagnosis aggregated 
across all patients with index tuberculosis diagnosis 
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Figure 2 – Diagram of conceptual framework representing the number of missed 
diagnostic opportunities. The diagnostic opportunity window represents the period of 
time where diagnostic opportunities may occur. The red line depicts the trend in the 
number of SSD visits that would be expected to occur in absence of diagnostic delays. 
The blue curve represents the observed trend in SSD visits during the diagnostic 
opportunity window. The shaded blue region corresponds to the number of missed 
diagnostic opportunities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diagnostic 
Opportunity 

Window
Visits unrelated to 
diagnostic delay

Change-point
(upper bound for delay)

Missed 
Diagnostic  
Opportunities

●

●

●
●●●●

●
●
●

●
●
●●
●
●●●●

●
●
●●
●
●
●●●
●

●

●
●
●
●
●●

●
●
●
●
●

●●

●

●●●
●
●
●●●
●
●
●
●●

●

●●●●●●

●
●
●

●
●
●
●●
●

●

●
●●

●
●

●●●
●●
●

●

●●●●●
●●
●
●●
●
●
●
●
●●●
●

●

●

●

●

●
●
●●●
●●

●
●●●

●●
●●
●●●
●
●
●

●●
●

●

●
●

●
●●●
●
●●●

●
●
●
●●
●
●●●
●
●●
●
●
●
●●
●

●
●
●

●
●
●
●●

●

●●●
●●●
●●●●●

●●●
●●
●
●
●●

●
●
●●●
●

●

●●
●
●
●
●●
●

●
●

●
●●
●

●

●
●
●
●●●
●
●

●●
●●
●

●

●
●●

●
●●

●●

●
●●●
●
●

●●
●

●
●
●
●

●●●●
●

●
●

●
●●

●

●

●

●
●
●
●

●
●
●

●

●
●

●
●

●●
●●

●

●
●

●

●

●

●

●
●●●

●
●●

●

●
●
●
●
●

●
●
●
●●
●

●

●

●
●

●●

●

●

●
●
●

●●

●

●

●

●●
●

●●

●
●
●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0

200

400

600

0100200300
Days Prior to Tuberculosis Diagnosis

N
um

be
r o

f S
SD

 V
is

its

Expected SSD visits 
(i.e., unrelated)



Figure 3 – Simple algorithm to simulated missed opportunities using uncorrelated 
draws. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1: A simple algorithm to draw potential missed opportunities
at random across time periods

For a delay opportunity window between 1 and �w periods prior to the
initial diagnosis, where w is the start of the diagnostic opportunity
window, we draw a set of missed visits Vt at each time period
t 2 {w,w + 1, ...,�2,�1} prior to the index diagnosis.

Let mt denote the estimated number of missed visits to be drawn at
each period t;

for periods t 2 {w,w � 1, ...,�2,�1} do
randomly select mt of the SSD visits that occurred at period t, these
visits become Vt;

end
identify the set of patients S who had a miss visit in the set
{Vw, Vw+1, ..., V�1}, for each patient in S compute the total number of
missed visits and the duration of delay as the maximum time period in
which they had a missed visit.

1



Figure 4 - An algorithm to draw patients with preference given to patients 
previously drawn 
 

 
 

Algorithm 2: An algorithm to preferentially select potential missed op-
portunities from patients previously labeled as being missed

For a delay opportunity window between 1 and �w periods prior to the
initial diagnosis, we draw a set of missed visits Vt at each period t
starting at the period w and working in towards period -1. We identify
the corresponding set of patients St where � : V 7! S maps a set of
visits on a given date to the corresponding set of patients.

Let mt denote the estimated number of missed visits to be drawn at
each period t 2 {w,w � 1, ...,�2,�1};

Let ↵ 2 [0, 1] denote a scaling parameter that determines the preference
given to selecting visits from patients that previously had visits selected
as being missed, where ↵ = 0 denotes strict preference is given to
previously drawn agents (i.e., previously drawn agents are selected
prior to new agents) and ↵ = 1 denotes strict preference to previously
undrawn agents;

for periods t 2 {w,w + 1, ...,�2,�1} do
identify the set of visits ⌦t containing an SSD diagnosis in period t,
and the set of patients ⇥t =

St�1
j=w Sj previously drawn as having a

missed visit up to period t. Divide ⌦t into two subsets, among
patients with a prior missed visit ⌦1

t = {x|x 2 ⌦t,�(x) 2 ⇥t} and
those without a prior missed visit ⌦2

t = {x|x 2 ⌦t,�(x) /2 ⇥t};
if |⌦1

t | � mt(1� ↵) and |⌦2
t | � mt↵ then

randomly select mt(1� ↵) visits from ⌦1
t and mt↵ visits from ⌦2

t ,
these visits become Vt and the corresponding set of patients
�(Vt) become St;

else if |⌦1
t | < mt(1� ↵) then

select all visits from ⌦1
t and randomly select mt � |⌦1

t | visits from
⌦2

t , these visits become Vt and the corresponding set of patients
�(Vt) become St;

else
select all visits from ⌦2

t and randomly select mt � |⌦2
t | visits from

⌦1
t , these visits become Vt and the corresponding set of patients

�(Vt) become St;
end
analyze the final set of SSD visits {Vw, Vw+1, ..., V�1} associated with the
set of missed patients {Sw, Sw+1, ..., S�1} at each corresponding time
point, respectively, for each patient in S =

S�1
j=w Sj compute the total

number of missed visits and the duration of delay as the maximum time
period in which they had a missed visit.
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Figure 5 – a generalized algorithm to draw patients with preference to previously 
drawn patients and those with multiple symptoms  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 3: A generalized algorithm to preferentially select potential
missed opportunities from patients with SSD patterns more likely to
represent a delay and previously labeled as being missed

For a delay opportunity window between 1 and �w periods prior to the
initial diagnosis, we draw a set of missed visits Vt at each period t
starting at the period w and working in towards period -1.

Let � : V 7! S map a set of visits to the corresponding set of patients;
Let mt denote the estimated number of missed visits to be drawn at
each period t 2 {w,w + 1, ...,�2,�1};

Let SSDi,t be the set of distinct SSDs that patient i experienced at time t
(or between [w, t]), let i,t represent a count of the number of times
individual i has been selected for having a missed opportunity in period
[w, t), and let wt(SSDi,t, i,t�1) be a function that assigns a sampling
weight to the set of patient visits at time t as a function of SSDi,t and

i,t�1

for periods t 2 {w,w � 1, ..., 0} do
identify the set of visits ⌦t containing an SSD diagnosis in period t;
compute SSDi,t and i,t�1 for each i 2 �(⌦t);
randomly select mt visits from from ⌦t where each visit is selected
with the probability wt(SSDi,t, i,t�1)/

P
j2⌦t

wt(SSDj,t, j,t�1);
the set of selected visits are assigned to Vt and the corresponding
set of patients St = �(Vt).

end
analyze the final set of SSD visits {V�w, V�w+1, ..., V�1} associated with
the set of missed patients {Sw, Sw+1, ..., S�1} at each corresponding
time point, respectively, for each patient in S =

S�1
j=�w Sj compute the

total number of missed visits and the duration of delay as the maximum
time period in which they had a missed visit.
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Figure 6 – Estimating expected number of visits using linear (left) or exponential 
(right) curves to represent the expected number of SSD visits. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 7 – Counts of SSD visits each day prior to the index diagnosis – For each 
disease of interest there is an upward spike in the occurrence of healthcare visits with 
SSDs in the period just preceding the index diagnosis. The black vertical line represents 
the estimated change-point separating the diagnostic opportunity window from the prior 
crossover period. The red line represents the expected level of healthcare utilization 
(i.e., estimated to occur in absence of diagnostic delays). 

 
 
  



TABLES 
Table 1. Baseline characteristics – of the study cohorts for Stroke, AMI and 
Tuberculosis used for evaluating our simulation approach 

 
Stroke AMI Tuberculosis 

N 367,768 359,625 2,073 
Age at Diagnosis (n (%))    
  18-30 17,972 (4.89%) 4,174 (1.16%) 252 (12.16%) 
  31-45 61,820 (16.81%) 45,835 (12.75%) 620 (29.91%) 
  46-55 121,995 (33.17%) 131,604 (36.59%) 588 (28.36%) 
  >55 165,981 (45.13%) 178,012 (49.50%) 613 (29.57%) 
Sex (n (%))    
  Male 186,966 (50.84%) 249,899 (69.49%) 988 (47.66%) 
  Female 180,802 (49.16%) 109,726 (30.51%) 1,085 (52.34%) 
Enrollment Time Prior to Index (years)    
  Mean 3.62 3.70 3.86 
  Median 2.60 2.65 2.87 
  Range 0.49 - 17.01 0.49 - 17.01 1.00 - 15.79 
  Count ≥ 1 year (n (%)) 306,800 (83.42%) 302,026 (83.98%) 2,073 (100.00%) 
  Count ≥ 1.5 years (n (%)) 260,581 (70.85%) 257,661 (71.65%) 1,719 (82.92%) 
  Count ≥ 2 years (n (%)) 221,360 (60.19%) 219,651 (61.08%) 1,419 (68.45%) 
  Count ≥ 3 years (n (%)) 162,047 (44.06%) 161,224 (44.83%) 997 (48.09%) 
Number of Visits in Period Prior to Diagnosis 
(i.e. 365 days prior for tuberculosis and 180 
days prior for stroke and AMI) (n (%)) 

   

  0 52,737 (14.34%) 63,141 (17.56%) 52 (2.51%) 
  1-5 124,630 (33.89%) 137,677 (38.28%) 251 (12.11%) 
  6-10 71,075 (19.33%) 66,292 (18.43%) 345 (16.64%) 
  11-20 64,189 (17.45%) 52,606 (14.63%) 606 (29.23%) 
  > 20 55,137 (14.99%) 39,909 (11.10%) 819 (39.51%) 

 
 
 
 
 
 
 
 
 
 
  



Table 2. Selected Simulation Results – Estimates of the frequency of missed 
opportunities and duration of delays using different simulation algorithms 

 
Stroke AMI Tuberculosis 

Change Point (Start of diagnostic 
opportunity Window 39 40 114 

Total Number of Missed Opportunities 
During Delay Window (% of SSD visits 
during delay window) 

41,577 (60.55%) 103,874 (40.93%) 6,444 (58.15%) 

    
Percent of Missed Opportunities in 
Outpatient Settings     

   Naïve Approach 62.64 (62.42 - 62.88) 75.83 (75.68 - 75.99) 89.23 (88.83 - 89.66) 
   Minimal Delays Approach 63.04 (62.80 - 63.30) 76.41 (76.25 - 76.56) 90.25 (89.82 - 90.72) 
   Maximal Delays Approach 61.52 (61.34 - 61.71) 74.57 (74.44 - 74.70) 88.58 (88.21 - 88.97) 
Percent of Missed Opportunities in 
Inpatient Settings    

   Naïve Approach 4.37 (4.25 - 4.48) 5.89 (5.79 - 5.98) 5.03 (4.72 - 5.31) 
   Minimal Delays Approach 4.26 (4.15 - 4.37) 5.86 (5.77 - 5.95) 4.89 (4.61 - 5.17) 
   Maximal Delays Approach 4.50 (4.40 - 4.61) 5.90 (5.81 - 5.98) 5.07 (4.81 - 5.32) 
Percent of Missed Opportunities in ED 
Settings     

   Naïve Approach 33.00 (32.78 - 33.21) 18.28 (18.15 - 18.41) 5.74 (5.40 - 6.05) 
   Minimal Delays Approach 32.70 (32.47 - 32.92) 17.73 (17.60 - 17.87) 4.86 (4.52 - 5.18) 
   Maximal Delays Approach 33.98 (33.80 - 34.16) 19.53 (19.42 - 19.64) 6.35 (6.07 - 6.60) 
Percent of Patients Experiencing 
Missed Opportunities (95% CI)    

   Naïve Approach 7.46 (7.43 - 7.48) 18.50 (18.45 - 18.54) 78.11 (77.33 - 78.87) 
   Minimal Delays Approach 6.93 (6.91 - 6.96) 16.01 (15.96 - 16.07) 63.90 (62.81 - 65.03) 
   Maximal Delays Approach 8.29 (8.28 - 8.31) 21.31 (21.28 - 21.34) 82.28 (81.96 - 82.59) 
Mean Number of Missed Opportunities 
among Patients Missed (95% CI)    

   Naïve Approach 1.52 (1.51 - 1.52) 1.56 (1.56 - 1.57) 3.98 (3.94 - 4.02) 
   Minimal Delays Approach 1.63 (1.62 - 1.64) 1.80 (1.80 - 1.81) 4.87 (4.78 - 4.95) 
   Maximal Delays Approach 1.36 (1.36 - 1.37) 1.36 (1.35 - 1.36) 3.78 (3.76 - 3.79) 
Mean Duration (days) of Missed 
Opportunities among Patients Missed 
(95% CI)  

   

   Naïve Approach 7.41 (7.38 - 7.44) 8.10 (8.08 - 8.12) 39.86 (39.31 - 40.37) 
   Minimal Delays Approach 6.72 (6.67 - 6.76) 6.69 (6.64 - 6.73) 34.35 (33.52 - 35.15) 
   Maximal Delays Approach 7.64 (7.63 - 7.66) 8.21 (8.20 - 8.22) 44.47 (44.16 - 44.75) 



 

 
 
 
 
 
 
 
 
 
 
 
 
 


