1	Omega-3 Index is Directly Associated with a Healthy Red Blood Cell Distribution Width
2	Michael I. McBurney ¹⁻³ , Nathan L. Tintle ^{1,4} , and William S. Harris ^{1,5}
3	¹ Fatty Acid Research Institute, Sioux Falls, SD 57106, USA (MIM, NLT, WSH); ² Department of
4	Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
5	(MIM), ³ Division of Biochemical and Molecular Biology, Friedman School of Nutrition Science
6	and Policy, Tufts University, Boston, MA 02111, USA (MIM); ⁴ Department of Population Health
7	Nursing Science, College of Nursing, University of Illinois – Chicago, Chicago, IL 60612,
8	USA(NLT); ⁵ Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
9	(WSH).
10	
11	Authors' last names: McBurney, Tintle, Harris
12	Corresponding author: M.I. McBurney, Department of Human Health & Nutritional Sciences,
13	University of Guelph, Guelph, ON N1G 2W1, Canada. E-mail: mim@faresinst.com
14	Reprint requests: W.S. Harris, Fatty Acid Research Institute, Sioux Falls, SD 57106, USA. E-mail:
15	wsh@faresinst.com
16	Sources of Support: This work was supported by the Fatty Acid Research Institute (FARI). FARI is
17	a non-profit foundation bringing together nutrition scientists and biostatistical experts to
18	accelerate discovery of the relationships between fatty acids, especially omega-3 fatty acids,
19	and health. Pending application and approval, data described in the manuscript, code book, and
20	analytic code will be made available upon request to the Fatty Acid Research Institute
21	(https://www.faresinst.org/).
22	Abbreviations: BMI, body mass index; CRP, high-sensitivity C-reactive protein; CV, coefficient of
23	variation; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; Hb, hemoglobin; MCV,

- 24 mean corpuscular volume; O3I, omega-3 index; RBC, red blood cells. RDW, red blood cell
- 25 distribution width; SD, standard deviation.

3

27 Summary

28	Low red blood cell (RBC) membrane content of EPA and DHA, i.e., the omega-3 index (O3I),
29	and elevated RBC distribution width (RDW) are risk factors for all-cause mortality. O3I and RDW
30	are related with membrane fluidity and deformability. Our objective was to determine if there
31	is a relationship between O3I and RDW in healthy adults. Subjects without inflammation or
32	anemia, and with values for O3I, RDW, high-sensitivity C-reactive protein (CRP), body mass
33	index (BMI), age and sex were identified (n=25,485) from a clinical laboratory dataset of
34	>45,000 individuals. RDW was inversely associated with O3I in both sexes before and after
35	(both p<0.00001) adjusting models for sex, age, BMI and CRP. Stratification by sex revealed a
36	sex-O3I interaction with the RDW-O3I slope (p<0.00066) being especially steep in females with
37	O3I ≤5.6%. In healthy adults of both sexes, the data suggested that an O3I of >5.6% may help
38	maintain normal RBC structural and functional integrity.
39	
40	Keywords: hematology, red blood cells, omega-3 index, eicosapentaenoic acid,

- 41 docosahexaenoic acid
- 42
- 43

1. Introduction

45	Mean red blood cell (RBC) corpuscular volume (MCV) and reticulocyte count were the
46	principal metrics traditionally used to identify anemic disorders until the advent of automated
47	blood cell analyzers that could routinely measure the types and distribution of blood cells.
48	Among these metrics is the RBC distribution width (RDW) [1] which reflects RBC size
49	heterogeneity. High RDW values are associated with decreased deformability [2] and RDW is
50	used to diagnose sickle cell [3] and nutritional anemias (iron, folic acid and vitamin B12) [1,4,5].
51	In recent years, RDW has been found to be a predictor of multiple adverse health outcomes
52	unrelated to anemia, including increased risk for death from cardiovascular disease [6–12],
53	SARS-CoV-2 [13–15], sepsis [16,17], lung disease [18], and cancer [19,20].
54	Like all cell membranes, RBC membranes are a complex lipid bilayer [21]. Fatty acids
55	esterified in phospholipids contribute to the structural integrity and function of cell
56	membranes. In particular, the membrane content of omega-3 fatty acids, EPA and DHA, the
57	sum of which is called the omega-3 index (O3I) [22], increases with omega-3 fatty acid intake
58	[23,24] and affects cell deformability [25–28]. The O3I is a stable biomarker of long term EPA
59	and DHA intake [24,29]. Since both a low O3I [30] and an elevated RDW [7,31,32] are known to
60	be associated with risk for earlier all-cause mortality (Supplemental Table 1), the aim of this
61	cross-sectional analysis was to determine if there was an inverse relationship between the O3I
62	and RDW in healthy adults without evidence of inflammation or tissue injury. If there was, then
63	the former may play a role in maintaining a healthy distribution of RBC sizes in adults.
64	Furthermore, such a relationship could support the identification of a target or healthy O3I. By
65	establishing a nutrient: structure-function relationship in healthy individuals, these data could

66	be used as the basis for establishing a Dietary Reference Intake (DRI) for the long-chain omega-

- 67 3 fatty acids, i.e., EPA+DHA.
- 68

69 2. Patients and Methods

70	This was a c	cross-sectional	analysis of	f data from	blood sam	ples submitted	for testing to
----	--------------	-----------------	-------------	-------------	-----------	----------------	----------------

71 Health Diagnostic Laboratory, Inc (HDL, Inc., Richmond VA) as part of routine clinical

assessment between 2011-2012. Data on RBC structural characteristics, i.e., MCV and RDW,

along with hemoglobin (Hb), high-sensitivity C-reactive protein (CRP), arachidonic acid (AA),

74 <u>EPA, DHA,</u> and O3I were extracted from 45,715 adults (≥18 years) without any linked patient

75 identifiers except age, sex and BMI (Supplemental Table 2). Next, 598 individuals with extreme

76 O3I values (i.e., <2.15 and >11.5%, the upper and lower 0.5 percentiles of the cohort), were

77 excluded (n=45,257). Since inflammation affects erythropoiesis, modulates RBC life span, and

78 increases RDW [33], 14,329 individuals with chronic inflammation (CRP >3mg/L) [34–38] were

rescluded. Similarly, anemia also increases RDW [1,39], and so individuals with MCV >100 fL and

80 low Hb (Hb <13 g/dL for men and Hb <12 g/dL for women [40] were also excluded (Figure 1).

81 This resulted in a final, analytical dataset of 25,485 individuals (49.7% female) without

82 laboratory evidence of anemia or active infection, tissue injury, or inflammation (**Table 1**).

83 2.1 Laboratory methods

Blood samples were drawn after an overnight fast and shipped with cold packs to HDL, Inc.
for analysis with a Beckman-Coulter DxH 800 hematology analyzer (Brea, CA, USA). Samples
were prepared at each clinical site according to standardized instructions as previously
described [41]. RDW is the SD of the RBC volume divided by the MCV multiplied by 100 [39].

6

88	For fatty acid analysis, RBCs were separated from plasma by centrifugation and analyzed using
89	gas chromatography as previously described [42]. The University of South Dakota Institutional
90	Review Board reviewed and approved the analysis of deidentified HLD, Inc. laboratory data
91	(IRB-21-147).
92	2.2 Statistical methods
93	Sample characteristics were summarized using standard statistical methods (e.g., means,
94	SDs, correlations) with t-tests or adjusted linear models used to compare characteristics of male
95	and female participants above and below O3I values that were ultimately identified as primary
96	cut points in the RDW-O3I curves (see below). Splines were fit using 3 rd degree polynomials
97	with knots at each decile in R (version 3.6.2; splines package). Unadjusted models used a linear
98	model to predict RDW values by splines of O3I. Adjusted models accounted for sex, age, BMI
99	and CRP values in the linear models accounting for potential non-linear relationships using
100	splines.
101	In order to identify significant changes in the shape of the RDW-O3I relationship, we used a
102	"sliding O3I window" approach. The width of each window was three O3I percentage points
103	(e.g., 3% to 6%). By moving the window up by 0.1% increments and repeatedly testing for
104	significant differences between the mean RDW in the lower vs. the upper half of the window,
105	we sought to discover O3I cut points where the RDW-O3I relationship appeared to flatten.
106	These would be O3I values above which the "effect" of an increase in O3I on RDW had little
107	impact. We began with a window midpoint of O3I =2.6%, and we used adjusted linear models in
108	R to test for upper vs lower half differences. We identified the first window which did not have
109	a statistically significant difference in upper and lower mean RDW values. The midpoint of this

110	window was chosen as the O3I cut point to be used in further analysis. To evaluate the
111	potential moderating effect of sex on the O3I relationship with RDW, MCV, Hb, CRP, BMI and
112	age, we inserted an interaction term into the relevant, adjusted model. Pearson correlations
113	were used to assess strength and direction of linear association between covariates and RDW.
114	Statistical significance was set to 0.05 for all analyses and 95% confidence bands are provided
115	where appropriate.
116	3. Results
117	The final dataset included 25,485 individuals (Figure 1) without acute inflammation or
118	anemia. Mean BMI, O3I, MCV, Hb, and CRP values differed significantly between males and
119	females in adjusted models (Table 1). RDW was significantly (p<0.00001) and inversely
120	associated with O3I in unadjusted (Figure 2A) and adjusted models (p<0.00001) (Figure 2B).
121	Independently, EPA and DHA had similar 'hockey stick' RDW-fatty acid relationships with the
122	bases of the curves being ~3% and ~7.3%, respectively (Supplemental Figure 2). RDW was not
123	significantly related with AA (Supplemental Figure 2, r=0.06). Pearson correlations (r) with RDW
124	were r=0.21 (age), r=0.11 (CRP), r=0.14 (BMI), r=-0.25 (MCV), and r=-0.12 (Hb). The O3I cut
125	point determined in the sliding window analysis, i.e. when the lower and upper half of an "O3I
126	sliding window" yielded mean RDW values that did not significantly differ, was 5.6% (Figure 2B).
127	That is, below an O3I of 5.6%, the curve was clearly steeper than it was above 5.6%. Because of
128	significant sex differences in RDW and O3I in the adjusted model (Table 1), and because of the
129	clear differences in the shapes of the RDW-O3I relationship between men and women (Figure
130	2), we stratified by sex and by O3I (≤5.6% vs >5.6%) (Table 2). Within sex comparisons found
131	significant differences between individuals with O3I ≤5.6% vs. >5.6% for all variables in the

132	adjusted model for females and males (Table 2). We observed a significant sex by O3I
133	interaction in the adjusted model for RDW and BMI <u>for both sexes</u> with the difference in RDW
134	below 5.6% being larger in females than males. <u>Across all O3I concentrations, RDW continued</u>
135	to decrease with increasing O3I in females whereas there was a plateauing in males, and even a
136	modest increase in RDW as O3I exceeded 8% (Figure 3).
 137	
138	4. Discussion and Conclusions
139	RBCs are by far the most common cell in the body (83%), and as such, they have recently
140	been viewed as a separate organ deeply involved with homeostasis [43]. Their primary role is to
141	transport oxygen and carbon dioxide, and to accomplish this RBCs must pass through capillaries
142	whose diameter is half of their own [44]. Thus, RBCs must be highly flexible and able to
143	withstand high-shear stress. Here, we report an inverse relationship between the percentage of
144	omega-3 fatty acids in RBC membranes and the distribution of RBC sizes in a generally healthy
145	(i.e., not anemic and without inflammation) cohort (Figure 2), as well as an interaction with sex
146	(Figure 3). In both males and females, RDW was observed to be increasing with decreasing O3I
147	below 5.6% (Figure 2; Table 2). The direction of the O3I-RDW relationship changed in males
148	with O3I >~8% but the increase in RDW is unlikely to have clinical significance.
 149	Changes in saturated and unsaturated fatty acid composition in cell membranes affect
150	membrane fluidity [45–47] and deformability [28,48]. EPA and DHA have specific biophysical
151	properties that affect the properties of membranes enriched in them [49]. Among these
152	properties are fluidity, deformability, and susceptibility to aggregation of RBCs [26,28].
153	Increases in membrane DHA (a highly flexible molecule) influence the flexibility and structural

154	integrity, i.e. lipid-protein interactions, of RBC membranes [50]. Increasing EPA intake alone or
155	EPA+DHA together increases RBC membrane fluidity [48] and RBC deformability [25–27,51].
156	RBC deformability is affected by membrane lipid composition and lipid-protein interactions, and
157	reduced deformability is a characteristic of aged RBCs [52]. Since an elevated RDW is likewise
158	associated with decreased RBC membrane flexibility [2], one possible explanation for our
159	findings is that a reduced EPA+DHA content of RBC membranes is causing the elevation in RDW.
160	An elevated RDW can also be caused by disordered erythropoiesis and/or RBC clearance
161	[53]. A delay in clearance allows smaller RBCs to continue circulating, increasing the average
162	age (lifespan) of RBC, and contributes to increased RDW [2]. Oxidative stress is a characteristic
163	of aging, malnutrition, inflammation, and the pathogenesis of chronic disease [54]. Oxidative
164	stress changes cytoskeletal arrangement and contributes to lipid asymmetry, causing
165	erythrocytes lose flexibility and RDW to increase [55]. A systematic review and meta-analysis of
166	39 clinical trials (2,875 participants) found omega-3 supplementation improved antioxidant
167	stability by significantly increasing serum total antioxidant capacity and decreasing serum
168	glutathione peroxidase and malondialdehyde concentrations [56]. This represents another
169	means by which omega-3 fatty acids could improve the RDW.
170	Alternatively, there may be a connection between omega-3, inflammation and the RDW.
171	Inflammation marked by elevated CRP, interleukin-6, etc. can suppress RBC maturation in bone
172	marrow, and larger immature RBCs, i.e. reticulocytes, enter the circulation and increase the
173	RDW [16]. This relationship between RDW and inflammation may partially explain the
174	relationship of higher RDW with risk of cardiovascular disease and mortality
175	[10,11,14,30,32,57]. Similarly, lower omega-3 fatty acid levels are associated with a heightened

176	inflammatory state [58–60], and omega-3 supplementation lowers inflammatory mediators
177	[61]. Thus, a possible explanation of our findings may be that higher omega-3 fatty acid levels
178	(O3I >5.6%) lower inflammatory markers which thereby lowers the RDW. <u>Because it has been</u>
179	recommended that a DRI be established for EPA+DHA [62–65], the RDW-O3I analysis was
180	purposefully constrained to healthy individuals with an objective of establishing a nutrient
181	(EPA+DHA) structure-function (RDW) relationship. When the 14,239 individuals with
182	inflammation (CRP >3 mg/L) were also included in the adjusted and unadjusted models, a
183	similar inverse RDW-O3I relationship was determined (Supplemental Figure 2).
 184	Because of its cross-sectional nature, we cannot draw causal inferences from these data.
185	However, there is evidence that raising RBC membrane omega-3 content can improve RDW. In
186	patients with sickle cell disease, RBC rheological disturbances, hemolysis, and abnormalities of
187	membrane fatty acids, have been ameliorated by omega-3 fatty acid treatment [66,67].
188	Supplementation with both EPA alone or EPA+DHA lowered RDW values in patients with
189	coronary heart disease [51,68] and with abdominal aortic aneurysm [69]. In the latter study,
190	supplementation increased O3I from ~4.5% to 8% and decreased RDW from 14.8% to 13.8%.
191	So, one of the mechanisms underlying the health benefits of EPA and DHA could be via an
192	improved RDW.
193	The primary strength of this study was its large sample size which enabled us to explore
194	RDW and O3I relationships in healthy individuals (males and females separately) free of
492	laboratory signs of anemia or inflammation, i.e., a nonulation suitable for the establishment of
196	<u>a DRI</u> . The most obvious limitations of this study, besides its cross-sectional nature, was the lack
197	of information on confounding metabolic events, dietary behaviors, medications, other medical

198	conditions and/or physical activities that might have also been associated with O3I and with
199	RDW. Another potential limitation is that these data were drawn from a clinical laboratory
200	database, not a formal national survey, so the representativeness of these patients to healthy
201	US adults is not clear. However, previous studies in this specific cohort found that standard risk
202	biomarkers (cholesterol, glucose, etc.) generally reflected those of typical adults living in the
203	United States examined in Nutrition And Health Examination Surveys (NHANES) [70]. Also, O3I
204	values were similar to those from a representative US sample [71], and RDW, MCV, and Hb
205	were within normal ranges [7,72,73]. These considerations suggest this cohort was generally
206	representative of the US population. The mean serum EPA+DHA concentration for adults 20+
207	years from NHANES was 2% [71] which is equivalent to an O3I of about 4.8%. Hence, roughly
208	half of Americans have an O3I <5%, i.e., the range where higher RDW may be more common.
209	In conclusion, low O3I levels (\leq 5.6%) were associated with a potentially unhealthy
210	distribution of RBC cell sizes. This suggests a role for EPA+DHA in maintaining RBC structure in
211	healthy individuals. We propose that achieving an O3I >5.6% could help maintain a normal RBC
212	size distribution. Our finding complements evidence that a higher O3I is linearly and inversely
213	associated with risk for death from any cause [30], with values of >8% characterizing the lowest
214	risk population [74]. Numerous researchers have called for the establishment of Dietary
215	Reference Intake (DRI) for EPA+DHA [63–65]. To that end, our observations that maintaining an
216	RBC EPA+DHA percentage above 5.6% may help maintain a normal RDW, could provide the
217	scientific basis for a DRI.

219	Disclosures: M.I. McBurney serves on the Board of Directors of the American Society for
220	Nutrition and has or has held consulting agreements in the past 3 years with Council for
221	Responsible Nutrition; Church & Dwight; DSM Nutritional Products; International Life Sciences
222	Institute, North America; McCormick; OmegaQuant Analytics; PepsiCo; and VitaMe
223	Technologies. W.S. Harris holds an interest in OmegaQuant Analytics, a lab that offers omega-3
224	blood testing; and is a member of the RB Schiff Science and Innovation Advisory Board. N.L.
225	Tintle has no conflicts to disclose.
226	Funding: This work was supported by the Fatty Acid Research Institute (FARI). FARI is a non-
227	profit foundation bringing together nutrition scientists and biostatistical experts to accelerate
228	discovery of the relationships between fatty acids, especially omega-3 fatty acids, and health.
229	CReditT authorship contribution statement: M.I. McBurney: Conceptualization & analytical
230	design, Writing - original draft, Writing - review & editing. W.S. Harris: Conceptualization &
231	analytical design, Funding - acquisition, Writing- review & editing. N.L. Tintle: Formal analysis,
232	Writing - review & editing.
233	Acknowledgements: The authors wish to thank Dr. Patrick Moriarty, Department of Internal
234	Medicine, Kansas University Medical Center, Kansas City, KS for the initial suggestion to explore
235	the relationship between omega-3 status and RDW. We also are indebted to Steven Varvel, PhD
236	for his help in acquiring and collating the dataset used in this study.

13

238 References

- [1] J.D. Bessman, P.R. Gilmer, F.H. Gardner, Improved Classification of Anemias by MCV and
- 240 RDW, Am J Clin Pathol. 80 (1983) 322–326. https://doi.org/10.1093/ajcp/80.3.322.
- 241 [2] K.V. Patel, J.G. Mohanty, B. Kanapuru, C. Hesdorffer, W.B. Ershler, J.M. Rifkind, Association
- of the Red Cell Distribution Width with Red Blood Cell Deformability, in: W.J. Welch, F.
- 243 Palm, D.F. Bruley, D.K. Harrison (Eds.), Oxygen Transport to Tissue XXXIV, Springer New
- 244 York, New York, NY, 2013: pp. 211–216. https://doi.org/10.1007/978-1-4614-4989-8_29.
- [3] D.J. Schweiger, Red cell distribution width in sickle cell anemia, Am J Med Technol. 47
- 246 (1981) 231–233.
- [4] R.O. Wallerstein, Laboratory Evaluation of Anemia, West J Medicine. 146 (1987) 443–451.
- 248 [5] W.G. Thompson, T. Meola, M. Lipkin, M.L. Freedman, Red Cell Distribution Width, Mean

249 Corpuscular Volume, and Transferrin Saturation in the Diagnosis of Iron Deficiency, JAMA

- 250 Intern. Med. 148 (1988) 2128–2130.
- 251 [6] M. Tonelli, F. Sacks, M. Arnold, L. Moye, B. Davis, M. Pfeffer, Relation between Red Blood

252 Cell Distribution Width and Cardiovascular Event Rate in People with Coronary Disease,

253 Circulation. 117 (2008) 163–168. https://doi.org/10.1161/CIRCULATIONAHA.107.727545.

- 254 [7] S.K. Zalawadiya, V. Veeranna, S.S. Panaich, L. Afonso, J.K. Ghali, Gender and Ethnic
- 255 Differences in Red Cell Distribution Width and Its Association With Mortality Among Low
- 256 Risk Healthy United State Adults, The American Journal of Cardiology. 109 (2012) 1664–
- 257 1670. https://doi.org/10.1016/j.amjcard.2012.01.396.
- 258 [8] B.F. Makhoul, A. Khourieh, M. Kaplan, F. Bahouth, D. Aronson, Z.S. Azzam, Relation
- 259 between changes in red cell distribution width and clinical outcomes in acute

- 260 decompensated heart failure, Int J Cardiol. 167 (2013) 1412–1416.
- 261 https://doi.org/10.1016/j.ijcard.2012.04.065.
- 262 [9] N. Li, H. Zhou, Q. Tang, Red Blood Cell Distribution Width: A Novel Predictive Indicator for
- 263 Cardiovascular and Cerebrovascular Diseases, Disease Markers. 2017 (2017) 1–23.
- 264 https://doi.org/10.1155/2017/7089493.
- 265 [10] N. Shah, M. Pahuja, S. Pant, A. Handa, V. Agarwal, N. Patel, R. Dusaj, Red cell distribution
- 266 width and risk of cardiovascular mortality: Insights from National Health and Nutrition
- 267 Examination Survey (NHANES)-III, Int. J. Cardiol. 232 (2017) 105–110.
- 268 https://doi.org/10.1016/j.ijcard.2017.01.045.
- 269 [11] S. Huang, Q. Zhou, N. Guo, Z. Zhang, L. Luo, Y. Luo, Z. Qin, L. Ge, Association between red
- 270 blood cell distribution width and in-hospital mortality in acute myocardial infarction,
- 271 Medicine. 100 (2021) e25404. https://doi.org/10.1097/MD.00000000025404.
- 272 [12] D. Lazzeroni, L. Moderato, P.L. Marazzi, C. Pellegrino, E. Musiari, P. Castiglioni, U.
- 273 Camaiora, M. Bini, S. Geroldi, L. Brambilla, V. Brambilla, P. Coruzzi, Red blood cell
- distribution width as a novel prognostic marker after myocardial revascularization or
- 275 cardiac valve surgery, Sci Rep. 11 (2021) 7889. https://doi.org/10.1038/s41598-021-
- 276 87075-4.
- 277 [13] B.H. Foy, J.C.T. Carlson, E. Reinertsen, R. Padros I. Valls, R. Pallares Lopez, E. Palanques-
- 278 Tost, C. Mow, M.B. Westover, A.D. Aguirre, J.M. Higgins, Association of Red Blood Cell
- 279 Distribution Width with Mortality Risk in Hospitalized Adults With SARS-CoV-2 Infection,
- 280 JAMA Network Open. 3 (2020) e2022058.
- 281 https://doi.org/10.1001/jamanetworkopen.2020.22058.

- 282 [14] J.L. Rapp, D. Tremblay, N. Alpert, W. Lieberman-Cribbin, J. Mascarenhas, E. Taioli, S.
- 283 Ghaffari, Red cell distribution width is associated with mortality in non-anemic patients
- 284 with COVID-19, J Med Virol. (2021) jmv.27011. https://doi.org/10.1002/jmv.27011.
- 285 [15] Z. Wang, Y.-W. Lin, X. Wei, F. Li, X.-L. Liao, H. Yuan, D. Huang, T. Qin, H. Geng, S. Wang,
- 286 Predictive Value of Prognostic Nutritional Index on COVID-19 Severity, Front. Nutr. 7
- 287 (2021) 582736. https://doi.org/10.3389/fnut.2020.582736.
- [16] E. Dalbaşı, Ö.L. Akgül, Are average platelet volume, red cell distribution width and platelet
- 289 distribution width guiding markers for acute appendicitis treatment options?, Int J Clin
- 290 Pract. (2021). https://doi.org/10.1111/ijcp.14232.
- 291 [17] Y. Li, Y. She, L. Fu, R. Zhou, W. Xiang, L. Luo, Association Between Red Cell Distribution
- 292 Width and Hospital Mortality in Patients with Sepsis, J Int Med Res. 49 (2021)

293 030006052110042. https://doi.org/10.1177/03000605211004221.

- [18] H. Go, H. Ohto, K.E. Nollet, K. Sato, H. Ichikawa, Y. Kume, Y. Kanai, H. Maeda, N.
- 295 Kashiwabara, K. Ogasawara, M. Sato, K. Hashimoto, M. Hosoya, Red cell distribution width
- as a predictor for bronchopulmonary dysplasia in premature infants, Sci Rep. 11 (2021)
- 297 7221. https://doi.org/10.1038/s41598-021-86752-8.
- 298 [19] Y. Koma, A. Onishi, H. Matsuoka, N. Oda, N. Yokota, Y. Matsumoto, M. Koyama, N. Okada,
- 299 N. Nakashima, D. Masuya, H. Yoshimatsu, Y. Suzuki, Increased Red Blood Cell Distribution
- 300 Width Associates with Cancer Stage and Prognosis in Patients with Lung Cancer, PLoS ONE.
- 301 8 (2013) e80240. https://doi.org/10.1371/journal.pone.0080240.
- 302 [20] Q. Chen, R. Mao, J. Zhao, X. Bi, Z. Li, Z. Huang, Y. Zhang, J. Zhou, H. Zhao, J. Cai,
- 303 Nomograms incorporating preoperative RDW level for the prediction of postoperative

- 304 complications and survival in colorectal liver metastases after resection, Ann Palliat Med.
- 305 10 (2021) 4143–4158. https://doi.org/10.21037/apm-20-2418.
- 306 [21] T. Dingjan, A.H. Futerman, The fine-tuning of cell membrane lipid bilayers accentuates
- their compositional complexity, BioEssays. (2021) 1–15.
- 308 https://doi.org/10.1002/bies.202100021.
- 309 [22] W.S. Harris, C. von Schacky, The Omega-3 Index: a new risk factor for death from coronary
- 310 heart disease?, Prev. Med. 39 (2004) 212–220.
- 311 https://doi.org/10.1016/j.ypmed.2004.02.030.
- 312 [23] H.M. Vidgren, J.J. Agren, U. Schwab, T. Rissanen, O. Hänninen, M.I. Uusitupa,
- 313 Incorporation of n-3 fatty acids into plasma lipid fractions, and erythrocyte membranes
- and platelets during dietary supplementation with fish, fish oil, and docosahexaenoic acid-
- rich oil among healthy young men, Lipids. 32 (1997) 697–705.
- 316 [24] M.R. Flock, A.C. Skulas-Ray, W.S. Harris, T.D. Etherton, J.A. Fleming, P.M. Kris-Etherton,
- 317 Determinants of erythrocyte omega-3 fatty acid content in response to fish oil
- 318 supplementation: A dose–response randomized controlled trial, J. Am. Heart Assoc. 2
- 319 (2013) e000513. https://doi.org/10.1161/JAHA.113.000513.
- 320 [25] T. Terano, A. Hirai, T. Hamazaki, S. Kobayashi, T. Fujita, Y. Tamura, A. Kumagai, Effect of
- 321 oral administration of highly purified eicosapentaenoic acid on platelet function, blood
- viscosity and red cell deformability in healthy human subjects, Atherosclerosis. 46 (1983)
- 323 321–331.
- 324 [26] I.J. Cartwright, A.G. Pockley, J.H. Galloway, M. Greaves, F.E. Preston, The effects of dietary
- 325 omega-3 polyunsaturated fatty acids on erythrocyte membrane phospholipids,

326	erythrocyte deformabilit and bloo	d viscosity in healthy	y volunteers, Atherosclerosis. 55
-----	-----------------------------------	------------------------	-----------------------------------

- 327 (1985) 267–281.
- 328 [27] R. Bach, U. Schmidt, F. Jung, H. Kiesewetter, B. Hennen, E. Wenzel, H. Schieffer, L. Bette, S.
- 329 Heyden, Effects of Fish Oil Capsules in Two Dosages on Blood Pressure, Platelet Functions,
- 330 Haemorheological and Clinical Chemistry Parameters in Apparently Healthy Subjects, Ann
- 331 Nutr Metab. 33 (1989) 359–367. https://doi.org/10.1159/000177559.
- 332 [28] E. Hessel, J.J. Agren, M. Paulitschke, O. Hanninen, A. Hanninen, D. Lerche, Freshwater fish
- diet affects lipid composition, deformability and aggregation properties of erythrocytes,
- 334 Atherosclerosis. 82 (1990) 37–42.
- 335 [29] R.E. Walker, K.H. Jackson, N.L. Tintle, G.C. Shearer, A. Bernasconi, S. Masson, R. Latini, B.
- Heydari, R.Y. Kwong, M. Flock, P.M. Kris-Etherton, A. Hedengran, R.M. Carney, A. Skulas-
- 337 Ray, S.S. Gidding, A. Dewell, C.D. Gardner, S.M. Grenon, B. Sarter, J.W. Newman, T.L.
- 338 Pedersen, M.K. Larson, W.S. Harris, Predicting the effects of supplemental EPA and DHA
- on the omega-3 index, Am. J. Clin. Nutr. 110 (2019) 1034–1040.
- 340 https://doi.org/10.1093/ajcn/nqz161.
- 341 [30] W.S. Harris, N.L. Tintle, F. Imamura, F. Qian, A.V. Ardisson Korat, M. Marklund, L. Djoussé,
- 342 J.K. Bassett, P.-H. Carmichael, Y.-Y. Chen, Y. Hirakawa, L.K. Kupers, M. Lankinen, R.A.
- 343 Murphy, C. Samieri, M.K. Senn, P. Shi, J.K. Virtanen, I.A. Brouwer, K.-L. Chien, G.
- 344 Eiriksdottir, N.G. Forouhi, J.M. Geleijnse, G.G. Giles, V. Gudnason, C. Helmer, A. Hodge, R.
- Jackson, K.-T. Khaw, M. Laakso, H. Lai, D. Laurin, J. Lindsay, R. Micha, J. Mursu, T.
- 346 Ninomiya, W. Post, B.M. Psaty, U. Riserus, J.G. Robinson, A.H. Shadyab, L. Snetselaar, A.
- 347 Sala-Vila, Y. Sun, L.M. Steffen, M.Y. Tsai, N.J. Wareham, A.C. Wood, J.H.Y. Wu, F. Hu, Q.

- 348 Sun, D.S. Siscovick, R.N. Lemaitre, D. Mozaffarian, F. The Fatty Acids and Outcomes
- 349 Research Consortium, Blood n-3 fatty acid levels and total and cause-specific mortality
- 350 from 17 prospective studies, Nature Commun. 12 (2021) 1–9.
- 351 https://doi.org/10.1038/s41467-021-22370-2.
- 352 [31] C. Fava, F. Cattazzo, Z.-D. Hu, G. Lippi, M. Montagnana, The role of red blood cell
- distribution width (RDW) in cardiovascular risk assessment: useful or hype?, Ann. Transl.
- 354 Med. 7 (2019) 581–581. https://doi.org/10.21037/atm.2019.09.58.
- 355 [32] P.M. Moriarty, P.G. Steg, L.K. Gorby, A.M. Zeiher, H.D. White, T. Sourdille, M.T. Roe, M.J.
- Louie, J.W. Jukema, R.A. Harrington, S.G. Goodman, R. Diaz, V.A. Bittner, D.L. Bhatt, M.
- 357 Szarek, Q.H. Li, G.G. Schwartz, Relation of Red Blood Cell Distribution Width to Risk of
- 358 Major Adverse Cardiovascular Events, Death, and Effect of Alirocumab After Acute
- 359 Coronary Syndrome, in: American Heart Association, American Heart Association,
- 360 Phildadelphia, PA, 2019: p. 1.
- 361 [33] J. Lappegård, T. Ellingsen, K. Hindberg, E. Mathiesen, I. Njølstad, T. Wilsgaard, M.-L.
- 362 Løchen, S. Brækkan, J.-B. Hansen, Impact of Chronic Inflammation, Assessed by hs-CRP, on
- 363 the Association between Red Cell Distribution Width and Arterial Cardiovascular Disease:
- 364 The Tromsø Study, TH Open. 02 (2018) e182–e189. https://doi.org/10.1055/s-0038-
- 365 1651523.
- 366 [34] M.A. Zimmerman, Diagnostic Implications of C-Reactive Protein, Arch Surg. 138 (2003)
- 367 220. https://doi.org/10.1001/archsurg.138.2.220.
- 368 [35] A. Villaseñor, S.W. Flatt, C. Marinac, L. Natarajan, J.P. Pierce, R.E. Patterson, Postdiagnosis
- 369 C-Reactive Protein and Breast Cancer Survivorship: Findings from the WHEL Study, Cancer

370 Epidemiol Biomarkers Prev. 23 (2014) 189–199. https://doi.org/10.1158/1055-99	65.EPI-
---	---------

- 371 13-0852.
- 372 [36] WHO, C-reactive protein concentrations as a marker of inflammation or infection for
- 373 interpreting biomarkers of micronutrient status., World Health Organization, Geneva,
- 374 Switzerland, 2014.
- 375 http://apps.who.int/iris/bitstream/10665/133708/1/WHO_NMH_NHD_EPG_14.7_eng.pdf
 376 ?ua=1.
- 377 [37] M.L. Knight, The Application of High-Sensitivity C-Reactive Protein in Clinical Practice: A
- 378 2015 Update, US Pharmacist. 40 (2015) 50–53.
- 379 [38] S. Jafarnejad, V. Boccardi, B. Hosseini, M. Taghizadeh, Z. Hamedifard, A Meta-analysis of
- 380 Randomized Control Trials: The Impact of Vitamin C Supplementation on Serum CRP and
- 381 Serum hs-CRP Concentrations, (2018).
- 382 https://doi.org/10.2174/1381612824666181017101810.
- 383 [39] T.C. Evans, D. Jehle, The red blood cell distribution width, J. Emerg. Med. 9 (1991) 71–74.
- 384 https://doi.org/10.1016/0736-4679(91)90592-4.
- 385 [40] M.D. Cappellini, I. Motta, Anemia in Clinical Practice—Definition and Classification: Does
- 386 Hemoglobin Change With Aging?, Sem. Hematol. 52 (2015) 261–269.
- 387 https://doi.org/10.1053/j.seminhematol.2015.07.006.
- 388 [41] T.D. Dayspring, S.A. Varvel, L. Ghaedi, D.L. Thiselton, J. Bruton, J.P. McConnell, Biomarkers
- of cholesterol homeostasis in a clinical laboratory database sample comprising 667,718
- 390 patients, Journal of Clinical Lipidology. 9 (2015) 807–816.
- 391 https://doi.org/10.1016/j.jacl.2015.08.003.

20

392	[42] W.S.	Harris, J.V.	Pottala, R.S.	Vasan, M.G.	Larson, S.J.	Robins,	Changes in e	rythrocyte
-----	-----------	--------------	---------------	-------------	--------------	---------	--------------	------------

393 membrane trans and marine fatty acids between 1999 and 2006 in older Americans, J.

394 Nutr. 142 (2012) 1297–1303. https://doi.org/10.3945/jn.112.158295.

- 395 [43] T. Nemkov, J.A. Reisz, Y. Xia, J.C. Zimring, A. D'Alessandro, Red blood cells as an organ?
- 396 How deep omics characterization of the most abundant cell in the human body highlights
- 397 other systemic metabolic functions beyond oxygen transport, Expert Review of

398 Proteomics. 15 (2018) 855–864. https://doi.org/10.1080/14789450.2018.1531710.

- 399 [44] R. Huisjes, A. Bogdanova, W.W. van Solinge, R.M. Schiffelers, L. Kaestner, R. van Wijk,
- 400 Squeezing for Life Properties of Red Blood Cell Deformability, Front. Physiol. 9 (2018)
- 401 656. https://doi.org/10.3389/fphys.2018.00656.
- 402 [45] P.L. Else, A.J. Hulbert, Membranes as metabolic pacemakers, Clin Exp Pharmacol Physiol.

403 30 (2003) 559–564. https://doi.org/10.1046/j.1440-1681.2003.03883.x.

- 404 [46] T.R. Witte, A.J. Salazar, O.F. Ballester, W.E. Hardman, RBC and WBC fatty acid composition
- 405 following consumption of an omega 3 supplement: Lessons for future clinical trials, Lipids

406 Health Dis. 9 (2010) 31. https://doi.org/10.1186/1476-511X-9-31.

- 407 [47] U. Radzikowska, A.O. Rinaldi, Z. Çelebi Sözener, D. Karaguzel, M. Wojcik, K. Cypryk, M.
- 408 Akdis, C.A. Akdis, M. Sokolowska, The Influence of Dietary Fatty Acids on Immune
- 409 Responses, Nutrients. 11 (2019) 2990. https://doi.org/10.3390/nu11122990.
- 410 [48] T. Kamada, T. Yamashita, Y. Baba, M. Kai, S. Setoyama, Y. Chuman, S. Otsuji, Dietary
- 411 Sardine Oil Increases Erythrocyte Membrane Fluidity in Diabetic Patients, Diabetes. 35
- 412 (1986) 604–611.

21

413	[49] H.F. Turk, R.S	5. Chapkin, Memb	orane lipid raft organiza	tion is uniquely modified l	oy n-3
-----	---------------------	------------------	---------------------------	-----------------------------	--------

- 414 polyunsaturated fatty acids, PLEFA. 88 (2013) 43–47.
- 415 [50] K. Gawrisch, N.V. Eldho, L.L. Holte, The structure of DHA in phospholipid membranes,
- 416 Lipids. 38 (2003) 445–452.
- 417 [51] E. Tajima, S. Abe, R. Watanabe, Y. Koyabu, F. Saito, H. Kaneda, M. Sakuma, S. Toyoda, T.
- 418 Inoue, Effects of purified eicosapentaenoic acid on red blood cell distribution width and
- 419 vascular endothelial function in patients with coronary artery disease, Vasc Fail. 1 (2017)
- 420 15–21. https://doi.org/10.30548/vascfail.1.1_15.
- 421 [52] J. Kim, H. Lee, S. Shin, Advances in the measurement of red blood cell deformability: A
- 422 brief review, J. Cell Biotechnol. 1 (2015) 63–79. https://doi.org/10.3233/JCB-15007.
- 423 [53] G.L. Salvagno, F. Sanchis-Gomar, A. Picanza, G. Lippi, Red blood cell distribution width: A
- 424 simple parameter with multiple clinical applications, Critical Reviews in Clinical Laboratory

425 Sciences. 52 (2015) 86–105. https://doi.org/10.3109/10408363.2014.992064.

- 426 [54] I. Liguori, G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F.
- 427 Cacciatore, D. Bonaduce, P. Abete, Oxidative stress, aging, and diseases, Clin. Intervent.
- 428 Aging. Volume 13 (2018) 757–772. https://doi.org/10.2147/CIA.S158513.
- 429 [55] M. Minetti, L. Agati, W. Malorni, The microenvironment can shift erythrocytes from a
- 430 friendly to a harmful behavior: Pathogenetic implications for vascular diseases,
- 431 Cardiovascular Research. 75 (2007) 21–28.
- 432 https://doi.org/10.1016/j.cardiores.2007.03.007.
- 433 [56] J. Heshmati, M. Morvaridzadeh, S. Maroufizadeh, A. Akbari, M. Yavari, A. Amirinejad, A.
- 434 Maleki-Hajiagha, M. Sepidarkish, Omega-3 fatty acids supplementation and oxidative

- 435 stress parameters: A systematic review and meta-analysis of clinical trials,
- 436 Pharmacological Research. 149 (2019) 104462.
- 437 https://doi.org/10.1016/j.phrs.2019.104462.
- 438 [57] S. Ranka, S. Lahan, T. Dalia, A. Tripathi, A. Goyal, J. Sreenivasan, S. Taduru, M. Muhammed,
- 439 P. Moriarty, Association Between Red Cell Distribution Width and Cardiovascular
- 440 Outcomes Systematic Review and Meta-Analysis, MRAJ. 9 (2021).
- 441 https://doi.org/10.18103/mra.v9i7.2468.
- 442 [58] P.C. Calder, Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms
- 443 and clinical relevance, Bioch. Biophys. Acta: Mol Cell Biol Lipids. 1851 (2015) 469–484.
- 444 https://doi.org/10.1016/j.bbalip.2014.08.010.
- 445 [59] P.C. Calder, Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving
- 446 mediators: Concentrations in humans and the effects of age, sex, disease and increased
- 447 omega-3 fatty acid intake, Biochimie. 178 (2020) 105–123.
- 448 https://doi.org/10.1016/j.biochi.2020.08.015.
- 449 [60] J.D. Fontes, F. Rahman, S. Lacey, M.G. Larson, R.S. Vasan, E.J. Benjamin, W.S. Harris, S.J.
- 450 Robins, Red blood cell fatty acids and biomarkers of inflammation: A cross-sectional study
- 451 in a community-based cohort, Atherosclerosis. 240 (2015) 431–436.
- 452 https://doi.org/10.1016/j.atherosclerosis.2015.03.043.
- 453 [61] K. Li, T. Huang, J. Zheng, K. Wu, D. Li, Effect of Marine-Derived n-3 Polyunsaturated Fatty
- 454 Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor α: A Meta-Analysis,
- 455 PLoS ONE. 9 (2014) e88103. https://doi.org/10.1371/journal.pone.0088103.

456	[62] US Dept Health &	Human Services, Nutrient	t Assessment for DRI Review, Nutient
-----	-----------------------	--------------------------	--------------------------------------

- 457 Assessment for DRI Review. (2014). https://health.gov/our-work/food-nutrition/dietary-
- 458 reference-intakes-dris/nutrient-assessment-dri-review (accessed October 20, 2020).
- 459 [63] M.I. McBurney, J.B. Blumberg, R.B. Costello, M. Eggersdorfer, J.W.E. Jr, W.S. Harris, E.J.
- 460 Johnson, S.H. Mitmesser, R.C. Post, D. Rai, L.J. Schurgers, Beyond Nutrient Deficiency—
- 461 Opportunities to Improve Nutritional Status and Promote Health Modernizing DRIs and
- 462 Supplementation Recommendations, Nutrients. 13 (2021) 1–25.
- 463 https://doi.org/10.3390/nu13061844.
- 464 [64] P.M. Kris-Etherton, J.A. Grieger, T.D. Etherton, Dietary Reference Intakes for DHA and EPA,
- 465 PLEFA. 81 (2009) 99–104. https://doi.org/10.1016/j.plefa.2009.05.011.
- 466 [65] W.S. Harris, D. Mozaffarian, M. Lefevre, C.D. Toner, J. Colombo, S.C. Cunnane, J.M. Holden,
- 467 D.M. Klurfeld, M.C. Morris, J. Whelan, Towards establishing dietary reference intakes for
- 468 eicosapentaenoic and docosahexaenoic acids, J. Nutr. 139 (2009) 804S-819S.
- 469 https://doi.org/10.3945/jn.108.101329.
- 470 [66] A. Daak, A. Rabinowicz, K. Ghebremeskel, Omega-3 fatty acids are a potential therapy for
- 471 patients with sickle cell disease, Nat Rev Dis Primers. 4 (2018) 15.
- 472 https://doi.org/10.1038/s41572-018-0012-9.
- 473 [67] A.A. Daak, M.A. Lopez-Toledano, M.M. Heeney, Biochemical and therapeutic effects of
- 474 Omega-3 fatty acids in sickle cell disease, Complement. Therap. Med. 52 (2020) 102482.
- 475 https://doi.org/10.1016/j.ctim.2020.102482.
- 476 [68] M. Takahashi, M. Myojo, A. Watanabe, A. Kiyosue, K. Kimura, J. Ando, Y. Hirata, I. Komuro,
- 477 Effect of purified eicosapentaenoic acid on red cell distribution width in patients with

- 478 ischemic heart disease, Heart Vessels. 30 (2015) 587–594.
- 479 https://doi.org/10.1007/s00380-014-0526-3.
- 480 [69] L.T. Meital, M.T. Windsor, R.M.L. Ramirez Jewell, P. Young, K. Schulze, R. Magee, J.
- 481 O'Donnell, P. Jha, M. Perissiou, J. Golledge, T.G. Bailey, P. Brooks, C.D. Askew, F.D. Russell,
- 482 n-3 PUFAs improve erythrocyte fatty acid profile in patients with small AAA: a randomized
- 483 controlled trial, J. Lipid Res. 60 (2019) 1154–1163. https://doi.org/10.1194/jlr.P093013.
- 484 [70] E. Wolin, J. White, J.V. Pottala, M. Sasinowski, T. Dall, T.D. Dayspring, J.P. McConnell, D.M.
- 485 Hoefner, S.A. Varvel, D.L. Thiselton, G.R. Warnick, W.S. Harris, Comparison of
- 486 cardiometabolic risk biomarkers from a national clinical laboratory with the US adult
- 487 population, J. Clin. Lipid. 9 (2015) 817–823. https://doi.org/10.1016/j.jacl.2015.07.014.
- 488 [71] R.A. Murphy, P.P. Devarshi, S. Ekimura, K. Marshall, S. Hazels Mitmesser, Long-chain
- 489 omega-3 fatty acid serum concentrations across life stages in the USA: an analysis of
- 490 NHANES 2011–2012, BMJ Open. 11 (2021) e043301. https://doi.org/10.1136/bmjopen-
- 491 2020-043301.
- 492 [72] V. Veeranna, S.K. Zalawadiya, S. Panaich, K.V. Patel, L. Afonso, Comparative analysis of red
- 493 cell distribution width and high sensitivity C-reactive protein for coronary heart disease
- 494 mortality prediction in multi-ethnic population: Findings from the 1999–2004 NHANES, Int.
- 495 J. Cardiol. 168 (2013) 5156–5161. https://doi.org/10.1016/j.ijcard.2013.07.109.
- 496 [73] N. Shah, M. Pahuja, S. Pant, A. Handa, V. Agarwal, N. Patel, R. Dusaj, Red cell distribution
- 497 width and risk of cardiovascular mortality: Insights from National Health and Nutrition
- 498 Examination Survey (NHANES)-III, International Journal of Cardiology. 232 (2017) 105–110.
- 499 https://doi.org/10.1016/j.ijcard.2017.01.045.

- 500 [74] W.S. Harris, The Omega-3 Index: Clinical Utility for Therapeutic Intervention, Curr Cardiol
- 501 Rep. 12 (2010) 503–508. https://doi.org/10.1007/s11886-010-0141-6.

26

Table 1. Characteristics of the study population. Mean±SD.						
Variable ¹	All (n=25,485)	Males (n=12,811)	Females (n=12,674)	Male vs Female Adjusted ² p-value		
O3I (%)	4.99±1.83	4.90±1.81	5.07±1.85	0.0003		
RDW (%)	13.60±0.90	13.60±0.83	13.69±0.96	0.0002		
MCV (fL)	92.45±4.27	92.33±4.25	92.57±4.28	0.36		
Hb (g/dL)	14.40±1.21	15.14±1.03	13.65±0.88	<0.00001		
CRP (mg/L)	1.23±0.77	1.21±0.75	1.25±0.78	<0.00001		
BMI (kg/m²)	27.7±5.3	28.8±4.8	25.6±5.5	<0.00001		
Age (years)	54.3±14.8	54.1±14.4	54.4±15.2	0.077		

¹O3I, Omega-3 index; RDW, red blood cell distribution width; MCV, mean corpuscular volume; Hb,

hemoglobin; CRP, high-sensitivity C-reactive protein; BMI, body mass index.

²Models were adjusted for age, BMI, and CRP (except when the model was predicting these variables).

503

27

Table 2. Characteristics of subjects by sex and omega-3 index (O3I) classification. (Mean±SD)						
Variable ¹	Female ² (n=12,674)		Male ³ (n=12,811)		Sex*O3I Interaction	
	O3I ≤5.6% (n=8,475)	O3l >5.6% (n=4,199)	O3I ≤5.6% (n=9,037)	O3l >5.6% (n=3,774)	Adjusted⁴ p-value	
O3I (%)	3.99±0.86	7.26±1.32	3.94±0.86	7.21±1.33	0.47	
RDW	13.64±0.98	13.52±0.90	13.60±0.84	13.59±0.80	0.00066	
CRP (mg/L)	1.31±0.79	1.13±0.75	1.26±0.76	1.09±0.71	0.03	
BMI (kg/m²)	27.2±5.7	25.3±4.9	29.1±4.9	28.1±4.5	<0.00001	
Age (years)	52.6±15.6	57.9±13.5	52.6±14.6	57.9±13.3	0.90	

¹O3I, omega-3 index; RDW, red blood cell distribution width; MCV, mean corpuscular volume; Hb, hemoglobin; CRP, high-sensitivity C-reactive protein; BMI, body mass index.

² All variables between O3I categories (≤5.6% vs >5.6%) for females were p<0.0001 in both adjusted and unadjusted analyses.

³ All variables between O3I categories (≤5.6% vs >5.6%) for males were p<0.0001 in both adjusted and unadjusted analyses, except for unadjusted difference in RDW by O3I category, p=0.31.

⁴ Model further adjusted for age, BMI, and CRP.

505

- 507 Figure 1. Analytical sample flow chart. RDW, red blood cell distribution width; O3I, omega-3
- 508 index; MCV, mean corpuscular cell volume; Hb, hemoglobin.
- 509
- 510 Figure 2. The unadjusted (A) and adjusted for age, sex, BMI and CRP (B) relationship between
- 511 the red blood cell distribution width (RDW) and omega-3 index (O3I) in 25,485 adults without
- 512 inflammation or anemia. (Predicted means and 95% confidence bands).
- 513
- 514 Figure 3. The unadjusted (A) and adjusted for age, BMI, and CRP (B) relationships between the
- red blood distribution width (RDW) and omega-3 index (O3I) in 12,811 males (A) and 12,674
- 516 females (B) without inflammation or anemia. (Predicted means and 95% confidence bands).

