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mean corpuscular volume; O3I, omega-3 index; RBC, red blood cells. RDW, red blood cell 24 

distribution width; SD, standard deviation. 25 
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Summary 27 

Low red blood cell (RBC) membrane content of EPA and DHA, i.e., the omega-3 index (O3I), 28 

and elevated RBC distribution width (RDW) are risk factors for all-cause mortality. O3I and RDW 29 

are related with membrane fluidity and deformability. Our objective was to determine if there 30 

is a relationship between O3I and RDW in healthy adults. Subjects without inflammation or 31 

anemia, and with values for O3I, RDW, high-sensitivity C-reactive protein (CRP), body mass 32 

index (BMI), age and sex were identified (n=25,485) from a clinical laboratory dataset of 33 

>45,000 individuals. RDW was inversely associated with O3I in both sexes before and after 34 

(both p<0.00001) adjusting models for sex, age, BMI and CRP. Stratification by sex revealed a 35 

sex-O3I interaction with the RDW-O3I slope (p<0.00066) being especially steep in females with 36 

O3I ≤5.6%. In healthy adults of both sexes, the data suggested that an O3I of >5.6% may help 37 

maintain normal RBC structural and functional integrity.  38 

 39 

Keywords: hematology, red blood cells, omega-3 index, eicosapentaenoic acid, 40 

docosahexaenoic acid 41 

 42 
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1. Introduction 44 

Mean red blood cell (RBC) corpuscular volume (MCV) and reticulocyte count were the 45 

principal metrics traditionally used to identify anemic disorders until the advent of automated 46 

blood cell analyzers that could routinely measure the types and distribution of blood cells. 47 

Among these metrics is the RBC distribution width (RDW) [1] which reflects RBC size 48 

heterogeneity. High RDW values are associated with decreased deformability [2] and RDW is 49 

used to diagnose sickle cell [3] and nutritional anemias (iron, folic acid and vitamin B12) [1,4,5]. 50 

In recent years, RDW has been found to be a predictor of multiple adverse health outcomes 51 

unrelated to anemia, including increased risk for death from cardiovascular disease [6–12], 52 

SARS-CoV-2 [13–15], sepsis [16,17], lung disease [18], and cancer [19,20].  53 

Like all cell membranes, RBC membranes are a complex lipid bilayer [21]. Fatty acids 54 

esterified in phospholipids contribute to the structural integrity and function of cell 55 

membranes. In particular, the membrane content of omega-3 fatty acids, EPA and DHA, the 56 

sum of which is called the omega-3 index (O3I) [22], increases with omega-3 fatty acid intake 57 

[23,24] and affects cell deformability [25–28]. The O3I is a stable biomarker of long term EPA 58 

and DHA intake [24,29]. Since both a low O3I [30] and an elevated RDW [7,31,32] are known to 59 

be associated with risk for earlier all-cause mortality (Supplemental Table 1), the aim of this 60 

cross-sectional analysis was to determine if there was an inverse relationship between the O3I 61 

and RDW in healthy adults without evidence of inflammation or tissue injury. If there was, then 62 

the former may play a role in maintaining a healthy distribution of RBC sizes in adults. 63 

Furthermore, such a relationship could support the identification of a target or healthy O3I. By 64 

establishing a nutrient: structure-function relationship in healthy individuals, these data could 65 
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be used as the basis for establishing a Dietary Reference Intake (DRI) for the long-chain omega-66 

3 fatty acids, i.e., EPA+DHA. 67 

 68 

2. Patients and Methods 69 

This was a cross-sectional analysis of data from blood samples submitted for testing to 70 

Health Diagnostic Laboratory, Inc (HDL, Inc., Richmond VA) as part of routine clinical 71 

assessment between 2011-2012. Data on RBC structural characteristics, i.e., MCV and RDW, 72 

along with hemoglobin (Hb), high-sensitivity C-reactive protein (CRP), arachidonic acid (AA), 73 

EPA, DHA, and O3I were extracted from 45,715 adults (≥18 years) without any linked patient 74 

identifiers except age, sex and BMI (Supplemental Table 2). Next, 598 individuals with extreme 75 

O3I values (i.e., <2.15 and >11.5%, the upper and lower 0.5 percentiles of the cohort), were 76 

excluded (n=45,257). Since inflammation affects erythropoiesis, modulates RBC life span, and 77 

increases RDW [33], 14,329 individuals with chronic inflammation (CRP >3mg/L) [34–38] were 78 

excluded. Similarly, anemia also increases RDW [1,39], and so individuals with MCV >100 fL and 79 

low Hb (Hb <13 g/dL for men and Hb <12 g/dL for women [40] were also excluded (Figure 1). 80 

This resulted in a final, analytical dataset of 25,485 individuals (49.7% female) without 81 

laboratory evidence of anemia or active infection, tissue injury, or inflammation (Table 1). 82 

2.1 Laboratory methods 83 

Blood samples were drawn after an overnight fast and shipped with cold packs to HDL, Inc. 84 

for analysis with a Beckman-Coulter DxH 800 hematology analyzer (Brea, CA, USA). Samples 85 

were prepared at each clinical site according to standardized instructions as previously 86 

described [41]. RDW is the SD of the RBC volume divided by the MCV multiplied by 100 [39].  87 
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For fatty acid analysis, RBCs were separated from plasma by centrifugation and analyzed using 88 

gas chromatography as previously described [42]. The University of South Dakota Institutional 89 

Review Board reviewed and approved the analysis of deidentified HLD, Inc. laboratory data 90 

(IRB-21-147).  91 

2.2 Statistical methods 92 

Sample characteristics were summarized using standard statistical methods (e.g., means, 93 

SDs, correlations) with t-tests or adjusted linear models used to compare characteristics of male 94 

and female participants above and below O3I values that were ultimately identified as primary 95 

cut points in the RDW-O3I curves (see below). Splines were fit using 3rd degree polynomials 96 

with knots at each decile in R (version 3.6.2; splines package). Unadjusted models used a linear 97 

model to predict RDW values by splines of O3I. Adjusted models accounted for sex, age, BMI 98 

and CRP values in the linear models accounting for potential non-linear relationships using 99 

splines.   100 

In order to identify significant changes in the shape of the RDW-O3I relationship, we used a 101 

“sliding O3I window” approach. The width of each window was three O3I percentage points 102 

(e.g., 3% to 6%). By moving the window up by 0.1% increments and repeatedly testing for 103 

significant differences between the mean RDW in the lower vs. the upper half of the window, 104 

we sought to discover O3I cut points where the RDW-O3I relationship appeared to flatten. 105 

These would be O3I values above which the “effect” of an increase in O3I on RDW had little 106 

impact. We began with a window midpoint of O3I =2.6%, and we used adjusted linear models in 107 

R to test for upper vs lower half differences. We identified the first window which did not have 108 

a statistically significant difference in upper and lower mean RDW values. The midpoint of this 109 
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window was chosen as the O3I cut point to be used in further analysis. To evaluate the 110 

potential moderating effect of sex on the O3I relationship with RDW, MCV, Hb, CRP, BMI and 111 

age, we inserted an interaction term into the relevant, adjusted model. Pearson correlations 112 

were used to assess strength and direction of linear association between covariates and RDW. 113 

Statistical significance was set to 0.05 for all analyses and 95% confidence bands are provided 114 

where appropriate.  115 

3. Results 116 

The final dataset included 25,485 individuals (Figure 1) without acute inflammation or 117 

anemia. Mean BMI, O3I, MCV, Hb, and CRP values differed significantly between males and 118 

females in adjusted models (Table 1). RDW was significantly (p<0.00001) and inversely 119 

associated with O3I in unadjusted (Figure 2A) and adjusted models (p<0.00001) (Figure 2B). 120 

Independently, EPA and DHA had similar ‘hockey stick’ RDW-fatty acid relationships with the 121 

bases of the curves being ~3% and ~7.3%, respectively (Supplemental Figure 2). RDW was not 122 

significantly related with AA (Supplemental Figure 2, r=0.06). Pearson correlations (r) with RDW 123 

were r=0.21 (age), r=0.11 (CRP), r=0.14 (BMI), r=-0.25 (MCV), and r=-0.12 (Hb). The O3I cut 124 

point determined in the sliding window analysis, i.e. when the lower and upper half of an “O3I 125 

sliding window” yielded mean RDW values that did not significantly differ, was 5.6% (Figure 2B). 126 

That is, below an O3I of 5.6%, the curve was clearly steeper than it was above 5.6%. Because of 127 

significant sex differences in RDW and O3I in the adjusted model (Table 1), and because of the 128 

clear differences in the shapes of the RDW-O3I relationship between men and women (Figure 129 

2), we stratified by sex and by O3I (≤5.6% vs >5.6%) (Table 2). Within sex comparisons found 130 

significant differences between individuals with O3I ≤5.6% vs. >5.6% for all variables in the 131 
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adjusted model for females and males (Table 2). We observed a significant sex by O3I 132 

interaction in the adjusted model for RDW and BMI for both sexes with the difference in RDW 133 

below 5.6% being larger in females than males. Across all O3I concentrations, RDW continued 134 

to decrease with increasing O3I in females whereas there was a plateauing in males, and even a 135 

modest increase in RDW as O3I exceeded 8% (Figure 3).  136 

 137 

4. Discussion and Conclusions 138 

RBCs are by far the most common cell in the body (83%), and as such, they have recently 139 

been viewed as a separate organ deeply involved with homeostasis [43]. Their primary role is to 140 

transport oxygen and carbon dioxide, and to accomplish this RBCs must pass through capillaries 141 

whose diameter is half of their own [44]. Thus, RBCs must be highly flexible and able to 142 

withstand high-shear stress. Here, we report an inverse relationship between the percentage of 143 

omega-3 fatty acids in RBC membranes and the distribution of RBC sizes in a generally healthy 144 

(i.e., not anemic and without inflammation) cohort (Figure 2), as well as an interaction with sex 145 

(Figure 3). In both males and females, RDW was observed to be increasing with decreasing O3I 146 

below 5.6% (Figure 2; Table 2). The direction of the O3I-RDW relationship changed in males 147 

with O3I >~8% but the increase in RDW is unlikely to have clinical significance.  148 

Changes in saturated and unsaturated fatty acid composition in cell membranes affect 149 

membrane fluidity [45–47] and deformability [28,48]. EPA and DHA have specific biophysical 150 

properties that affect the properties of membranes enriched in them [49]. Among these 151 

properties are fluidity, deformability, and susceptibility to aggregation of RBCs [26,28]. 152 

Increases in membrane DHA (a highly flexible molecule) influence the flexibility and structural 153 
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integrity, i.e. lipid-protein interactions, of RBC membranes [50]. Increasing EPA intake alone or 154 

EPA+DHA together increases RBC membrane fluidity [48] and RBC deformability [25–27,51]. 155 

RBC deformability is affected by membrane lipid composition and lipid-protein interactions, and 156 

reduced deformability is a characteristic of aged RBCs [52]. Since an elevated RDW is likewise 157 

associated with decreased RBC membrane flexibility [2], one possible explanation for our 158 

findings is that a reduced EPA+DHA content of RBC membranes is causing the elevation in RDW. 159 

An elevated RDW can also be caused by disordered erythropoiesis and/or RBC clearance 160 

[53]. A delay in clearance allows smaller RBCs to continue circulating, increasing the average 161 

age (lifespan) of RBC, and contributes to increased RDW [2]. Oxidative stress is a characteristic 162 

of aging, malnutrition, inflammation, and the pathogenesis of chronic disease [54]. Oxidative 163 

stress changes cytoskeletal arrangement and contributes to lipid asymmetry, causing 164 

erythrocytes lose flexibility and RDW to increase [55]. A systematic review and meta-analysis of 165 

39 clinical trials (2,875 participants) found omega-3 supplementation improved antioxidant 166 

stability by significantly increasing serum total antioxidant capacity and decreasing serum 167 

glutathione peroxidase and malondialdehyde concentrations [56]. This represents another 168 

means by which omega-3 fatty acids could improve the RDW.  169 

Alternatively, there may be a connection between omega-3, inflammation and the RDW. 170 

Inflammation marked by elevated CRP, interleukin-6, etc. can suppress RBC maturation in bone 171 

marrow, and larger immature RBCs, i.e. reticulocytes, enter the circulation and increase the 172 

RDW [16]. This relationship between RDW and inflammation may partially explain the 173 

relationship of higher RDW with risk of cardiovascular disease and mortality 174 

[10,11,14,30,32,57]. Similarly, lower omega-3 fatty acid levels are associated with a heightened 175 
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inflammatory state [58–60], and omega-3 supplementation lowers inflammatory mediators 176 

[61]. Thus, a possible explanation of our findings may be that higher omega-3 fatty acid levels 177 

(O3I >5.6%) lower inflammatory markers which thereby lowers the RDW. Because it has been 178 

recommended that a DRI be established for EPA+DHA [62–65], the RDW-O3I analysis was 179 

purposefully constrained to healthy individuals with an objective of establishing a nutrient 180 

(EPA+DHA) structure-function (RDW) relationship. When the 14,239 individuals with 181 

inflammation (CRP >3 mg/L) were also included in the adjusted and unadjusted models, a 182 

similar inverse RDW-O3I relationship was determined (Supplemental Figure 2).   183 

Because of its cross-sectional nature, we cannot draw causal inferences from these data. 184 

However, there is evidence that raising RBC membrane omega-3 content can improve RDW. In 185 

patients with sickle cell disease, RBC rheological disturbances, hemolysis, and abnormalities of 186 

membrane fatty acids, have been ameliorated by omega-3 fatty acid treatment [66,67]. 187 

Supplementation with both EPA alone or EPA+DHA lowered RDW values in patients with 188 

coronary heart disease [51,68] and with abdominal aortic aneurysm [69]. In the latter study, 189 

supplementation increased O3I from ~4.5% to 8% and decreased RDW from 14.8% to 13.8%. 190 

So, one of the mechanisms underlying the health benefits of EPA and DHA could be via an 191 

improved RDW.  192 

The primary strength of this study was its large sample size which enabled us to explore 193 

RDW and O3I relationships in healthy individuals (males and females separately) free of 194 

laboratory signs of anemia or inflammation, i.e., a population suitable for the establishment of 195 

a DRI. The most obvious limitations of this study, besides its cross-sectional nature, was the lack 196 

of information on confounding metabolic events, dietary behaviors, medications, other medical 197 
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conditions and/or physical activities that might have also been associated with O3I and with 198 

RDW. Another potential limitation is that these data were drawn from a clinical laboratory 199 

database, not a formal national survey, so the representativeness of these patients to healthy 200 

US adults is not clear. However, previous studies in this specific cohort found that standard risk 201 

biomarkers (cholesterol, glucose, etc.) generally reflected those of typical adults living in the 202 

United States examined in Nutrition And Health Examination Surveys (NHANES) [70]. Also, O3I 203 

values were similar to those from a representative US sample [71], and RDW, MCV, and Hb 204 

were within normal ranges [7,72,73]. These considerations suggest this cohort was generally 205 

representative of the US population. The mean serum EPA+DHA concentration for adults 20+ 206 

years from NHANES was 2% [71] which is equivalent to an O3I of about 4.8%.  Hence, roughly 207 

half of Americans have an O3I <5%, i.e., the range where higher RDW may be more common.  208 

In conclusion, low O3I levels (≤5.6%) were associated with a potentially unhealthy 209 

distribution of RBC cell sizes. This suggests a role for EPA+DHA in maintaining RBC structure in 210 

healthy individuals. We propose that achieving an O3I >5.6% could help maintain a normal RBC 211 

size distribution. Our finding complements evidence that a higher O3I is linearly and inversely 212 

associated with risk for death from any cause [30], with values of >8% characterizing the lowest 213 

risk population [74].  Numerous researchers have called for the establishment of Dietary 214 

Reference Intake (DRI) for EPA+DHA [63–65]. To that end, our observations that maintaining an 215 

RBC EPA+DHA percentage above 5.6% may help maintain a normal RDW, could provide the 216 

scientific basis for a DRI. 217 

  218 
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Table 1. Characteristics of the study population. Mean±SD. 

Variable1 All 
(n=25,485) 

Males 
(n=12,811) 

Females 
(n=12,674) 

Male vs Female 
Adjusted2  

p-value 

O3I (%) 4.99±1.83 4.90±1.81 5.07±1.85 0.0003 

RDW (%) 13.60±0.90 13.60±0.83 13.69±0.96 0.0002 

MCV (fL) 92.45±4.27 92.33±4.25 92.57±4.28 0.36 

Hb (g/dL) 14.40±1.21 15.14±1.03 13.65±0.88 <0.00001 

CRP (mg/L) 1.23±0.77 1.21±0.75 1.25±0.78 <0.00001 

BMI (kg/m2) 27.7±5.3 28.8±4.8 25.6±5.5 <0.00001 

Age (years) 54.3±14.8 54.1±14.4 54.4±15.2 0.077 

1O3I, Omega-3 index; RDW, red blood cell distribution width; MCV, mean corpuscular volume; Hb, 

hemoglobin; CRP, high-sensitivity C-reactive protein; BMI, body mass index. 
2Models were adjusted for age, BMI, and CRP (except when the model was predicting these 

variables).  
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Table 2. Characteristics of subjects by sex and omega-3 index (O3I) classification. (Mean±SD) 

Variable1 

Female2 

 (n=12,674) 
Male3  

(n=12,811) Sex*O3I Interaction 

O3I ≤5.6% 
(n=8,475) 

O3I >5.6% 
(n=4,199) 

O3I ≤5.6% 
(n=9,037) 

O3I >5.6% 
(n=3,774) 

Adjusted4 

p-value 

O3I (%) 3.99±0.86 7.26±1.32 3.94±0.86 7.21±1.33 0.47 

RDW 13.64±0.98 13.52±0.90 13.60±0.84 13.59±0.80 0.00066 

CRP (mg/L) 1.31±0.79 1.13±0.75 1.26±0.76 1.09±0.71 0.03 
BMI (kg/m2) 27.2±5.7 25.3±4.9 29.1±4.9 28.1±4.5 <0.00001 

Age (years) 52.6±15.6 57.9±13.5 52.6±14.6 57.9±13.3 0.90 
1 O3I, omega-3 index; RDW, red blood cell distribution width; MCV, mean corpuscular volume; Hb, 

hemoglobin; CRP, high-sensitivity C-reactive protein; BMI, body mass index. 
2 All variables between O3I categories (≤5.6% vs >5.6%) for females were p<0.0001 in both 

adjusted and unadjusted analyses. 
3 All variables between O3I categories (≤5.6% vs >5.6%) for males were p<0.0001 in both adjusted 

and unadjusted analyses, except for unadjusted difference in RDW by O3I category, p=0.31. 
4 Model further adjusted for age, BMI, and CRP. 
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Figure 1. Analytical sample flow chart. RDW, red blood cell distribution width; O3I, omega-3 507 

index; MCV, mean corpuscular cell volume; Hb, hemoglobin.  508 

 509 

Figure 2. The unadjusted (A) and adjusted for age, sex, BMI and CRP (B) relationship between 510 

the red blood cell distribution width (RDW) and omega-3 index (O3I) in 25,485 adults without 511 

inflammation or anemia. (Predicted means and 95% confidence bands).  512 

 513 

Figure 3. The unadjusted (A) and adjusted for age, BMI, and CRP (B) relationships between the 514 

red blood distribution width (RDW) and omega-3 index (O3I) in 12,811 males (A) and 12,674 515 

females (B) without inflammation or anemia. (Predicted means and 95% confidence bands).  516 
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