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2 

Abstract  42 

Background: COVID-19 has overwhelmed the US healthcare system, with over 44 43 

million cases and over 700,000 deaths as of October 6, 2021. There is evidence that 44 

some communities are disproportionately affected. This may result in geographic 45 

disparities in COVID-19 hospitalization risk that, if identified, could guide control efforts. 46 

Therefore, the objective of this study is to investigate Zip Code Tabulation Area (ZCTA)-47 

level geographic disparities and identify predictors of COVID-19 hospitalization risk in 48 

the St. Louis area. 49 

Methods: Hospitalization data for COVID-19 and several chronic diseases were 50 

obtained from the Missouri Hospital Association. ZCTA-level data on socioeconomic 51 

and demographic factors were obtained from the US Census Bureau American 52 

Community Survey. Age-adjusted COVID-19 and several chronic disease 53 

hospitalization risks were calculated. Geographic disparities in distribution of COVID-19 54 

age-adjusted hospitalization risk, socioeconomic and demographic factors as well as 55 

chronic disease risks were investigated using choropleth maps. Predictors of ZCTA-56 

level COVID-19 hospitalization risks were investigated using global negative binomial 57 

and local geographically weighted negative binomial models. 58 

Results: There were geographic disparities of COVID-19 hospitalization risks. COVID-59 

19 hospitalization risks were significantly higher in ZCTAs with high diabetes 60 

hospitalization risks (p<0.0001), high risks of COVID-19 cases (p<0.0001), as well as 61 

high percentages of black population (p=0.0416) and populations with some college 62 

education (p=0.0005). The coefficients of the first three predictors varied across ZCTAs, 63 

implying that the associations between COVID-19 hospitalization risks and these 64 
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predictors varied by geographic location. This implies that a “one-size-fits-all” approach 65 

may not be appropriate for management and control. 66 

Conclusions: There is evidence of geographic disparities in COVID-19 hospitalization 67 

risks that are driven by differences in socioeconomic, demographic and health-related 68 

factors. The impacts of these factors vary by geographical location with some factors 69 

being more important predictors in some locales than others. Use of both global and 70 

local models leads to a better understanding of the determinants of geographic 71 

disparities in health outcomes and utilization of health services. These findings are 72 

useful for informing health planning to identify geographic areas likely to have high 73 

numbers of individuals needing hospitalization as well as guiding vaccination efforts. 74 

 75 
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Background 84 

There have been over 184 million confirmed Coronavirus Disease 2019 (COVID-19) 85 

cases and over 4 million deaths worldwide as of July 8, 2021, with over 33 million 86 

confirmed cases and over 600,000 deaths in the United States [1]. As of the same date, 87 

the state of Missouri has reported over 633,000 cases and 9,700+ deaths. The disease 88 

has overwhelmed many United States hospital systems, with large numbers of patients 89 

requiring critical care and interventions such as mechanical ventilation [2–4]. This surge 90 

of COVID-19 patients has put strain on hospital resources, potentially impacting the 91 

care available to both COVID-19 and non-COVID-19 patients [5]. 92 

 93 

There is evidence of geographic disparities in the severity of the disease with certain 94 

population groups experiencing more severe disease than others. These disparities 95 

might be driven by population characteristics such as socioeconomic, demographic, and 96 

chronic disease factors [6–10]. For instance, there is evidence that Non-Hispanic 97 

American Indian, non-Hispanic Black, and Hispanic people have higher hospitalization 98 

risks than their non-Hispanic Asian and non-Hispanic White counterparts [11].There are 99 

also reports that conditions such as diabetes mellitus, obesity, chronic lung conditions, 100 

renal disease, cancer, and cardiovascular disease may increase the severity of the 101 

condition and risk of hospitalizations among COVID-19 patients with these co-102 

morbidities [6, 12–14]. Identifying geographic disparities in COVID-19 hospitalization 103 

risks and determinants of these disparities is important in providing information to guide 104 

hospital preparedness to handle the patient surge and for targeting resources for public 105 

health efforts to control the condition at the community level. 106 
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 107 

Improved understanding of the geographic disparities and predictors of COVID-19 108 

hospitalization risk at the local level, such as the Zip Code Tabulation Areas (ZCTA), 109 

would help identify local geographic areas with higher needs for hospital beds and other 110 

healthcare resources. This is useful information for healthcare planning and service 111 

provision at the local level. It may also inform vaccination efforts by helping to identify 112 

areas where higher vaccination coverage may have the largest effect in reducing 113 

hospital burden. Therefore, the objective of this study is to identify geographic 114 

disparities and predictors of COVID-19 hospitalization risk in the St. Louis Area, 115 

Missouri, United States.  116 
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Methods 117 

Study Area 118 

This study was performed in an area of Missouri that includes 108 ZCTAs located in St. 119 

Charles county, St. Louis county, and St. Louis City as well as parts of Jefferson, 120 

Franklin and Warren counties (Figure 1). The area had a population of approximately 2 121 

million people comprising 74% white, 20% black, 3% Hispanic/Latino, and 3% Asian. 122 

Forty-eight percent of the population was male, while 52% was female. Thirty-one 123 

percent of the population was older than 25 years old, 53% was 25-64, and 16% was 124 

older than 65 years of age. The ZCTA-level population density varied from 10 people 125 

per square mile in St. Charles County to 9,368 people per square mile in St. Louis City 126 

County. 127 

 128 

Data Sources 129 

COVID-19 and Chronic Disease Hospitalization Data 130 

Data on COVID-19 and chronic condition hospitalizations were obtained from the 131 

Hospital Industry Data Institute, a not-for-profit organization founded by the Missouri 132 

Hospital Association that summarizes state level discharge data. The COVID-19 data 133 

provided information on the numbers of COVID-19 discharges by patient ZCTA and by 134 

age group from April 1, 2020 to September 30, 2020. In addition to the COVID-19 135 

hospitalization data, data on the number of confirmed COVID-19 cases were obtained 136 

from the county Departments of Health. COVID-19 case data were included as one of 137 

the potential predictors of COVID-19 hospitalization risks. Data on chronic conditions 138 

were extracted for the time period 2019-2020 based on ICD-10 codes and included the 139 
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following conditions/behaviors: obesity, tobacco use, cancer (breast, colorectal, 140 

prostate, lung, endometrial, leukemia and lymphoma), chronic obstructive pulmonary 141 

disease, chronic kidney disease, heart failure, and diabetes. These conditions were 142 

selected due to their potential association with COVID-19 severity. All data were 143 

aggregated to the ZCTA-level to facilitate subsequent ZCTA-level analyses. The ZCTA-144 

level risks of these conditions were then computed and presented as disease-specific 145 

hospitalizations per 100 population.  146 

 147 

Socioeconomic, demographic and base map data 148 
 149 
ZCTA-level data on socioeconomic and demographic factors including age, sex, race, 150 

population density, education level, and median income, were obtained from the U.S. 151 

Census Bureau 2018 American Community Survey (ACS) 5-year estimates [15]. The 152 

cartographic boundary files, used for generating maps, were obtained from the US 153 

Census Bureau Website [16].  154 

 155 

Descriptive Analyses 156 
 157 
All descriptive analyses were performed in R version 4.1.0 [17]  using RStudio version 158 

1.4.1103 [18]. Normality of distribution of continuous variables was assessed using 159 

Shapiro-Wilk test. Medians as well as 1st and 3rd quartiles were used as measures of 160 

central tendency and spread for all continuous variables since they were all non-161 

normally distributed. The COVID-19 ZCTA-level hospitalization risks were directly age-162 

standardized, in STATA version 16 [19], using the 2010 US population as the standard 163 

population. 164 
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 165 

Investigation of Predictors of COVID-19 Hospitalizations 166 

Global Models 167 

Univariable global Poisson models were used to assess simple associations between 168 

each of the potential predictors and COVID-19 hospitalization risk. As opposed to local 169 

models that estimate as many regression coefficients per predictor as the number of 170 

geographic units, global models assume constant relationships between each potential 171 

predictor and the outcome and therefore estimate one regression coefficient per 172 

potential predictor. These models were fit under the Generalized Linear Model (GLM) 173 

framework in R [17] specifying log link. The dependent variable was the expected count 174 

of COVID-19 hospitalizations in each ZCTA based on the age-adjusted/standardized 175 

number of COVID-19 hospitalizations and the offset was the natural log of the 176 

population in each ZCTA. A relaxed α of 0.15 was used to assess potentially significant 177 

predictors in univariable models. The linearity of the relationships between the log risk 178 

and potential predictor variables was assessed graphically. 179 

 180 

Spearman rank correlation coefficients were computed to assess bivariate correlations 181 

among the potential predictor variables identified during the univariable analyses using 182 

R [17]. Variables with correlation coefficients greater than 0.7 were considered highly 183 

correlated. To avoid multicollinearity, only one of a pair of highly correlated variables 184 

was retained for further assessments using multivariable Poisson model. Biological and 185 

statistical considerations were used to determine which of a pair of highly correlated 186 

variables to retain. Non-correlated variables that had univariable p≤0.15 were assessed 187 
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in a multivariable global Poisson model, built using manual backwards elimination and 188 

an α of 0.05. Variables were considered as confounders if their removal from the model 189 

resulted in changes of at least 20% of the coefficients of any of the variables in the 190 

model. Confounders were retained in the final main effects model. Biologically plausible 191 

two-way interactions between variables in the final main effects multivariable model 192 

were assessed and the significant ones retained in the final model. The final Poisson 193 

regression model was then assessed for overdispersion.    194 

 195 

Due to the presence of overdispersion in the final Poisson model (based on comparison 196 

of model deviance and degrees of freedom), a global negative binomial model was built. 197 

The process of building the negative binomial (NB) model was similar to that of the 198 

Poisson model described above. However, the glm.nb function of the MASS package 199 

[20] of R [17] was used instead of the glm function. The rest of the model specifications 200 

were similar to the Poisson model. Goodness-of-fit of the final global NB model was 201 

assessed using Pearson and Deviance chi-square goodness-of-fit tests. 202 

 203 

Local Models 204 

To assess if the association between each of the predictors and hospitalization risks 205 

varied by geographic location, a geographically weighted negative binomial (GWNB) 206 

model, proposed by Silva and Rodrigues [21], was fit to the data specifying the same 207 

outcome, link function, offset and significant predictors as in the final global 208 

multivariable NB model. However, unlike the global multivariable NB model that 209 

estimates one regression coefficient for each predictor and thus assumes a constant 210 
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strength of association across all ZCTAs, the GWNB theoretically estimates as many 211 

regression coefficients as the number of ZCTAs. Essentially, GWNB evaluates a local 212 

model of the outcome by fitting a regression equation to every ZCTA in the dataset. 213 

These separate model equations are constructed by incorporating the outcome and 214 

predictor variables of the ZCTAs that fall within the neighborhood of each target ZCTA. 215 

Therefore, the GWNB allows identification of local variations in the strength of 216 

associations and therefore giving the importance of specific predictors in different local 217 

areas (ZCTAs). This implies that some factors may be more important predictors of 218 

hospitalization risk in some ZCTAs than others. 219 

 220 

The local GWNB model was fit in SAS version 9.4 [22] using a SAS/IML macro [23].  221 

The estimation of local regression coefficients was based on biquadratic kernel 222 

weighting function [23], while the bandwidth was estimated using the adaptive method 223 

which allows the size of the bandwidth to vary based on the density of observations. 224 

Bias-corrected Akaike Information Criteria (AICc) was used to determine the optimum 225 

kernel bandwidth and for comparing the goodness-of-fit of the global NB and GWNB 226 

models. The better fitting model was identified as the one with the lower AICc value. 227 

 228 

Stationarity of the GWNB coefficients was assessed using: (a) randomization non-229 

stationarity test based on 999 replications [24]; (b) comparison of the interquartile range 230 

of the local GWNB model coefficients with the standard error estimates of the global NB 231 

model. Local coefficients whose interquartile ranges were larger than twice the standard 232 
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error of the regression coefficient from the global NB model were considered non-233 

stationary [25, 26].  234 

 235 

Cartographic Displays 236 

Choropleth maps showing the geographic distributions of ZCTA-level age-adjusted 237 

COVID-19 hospitalization risks, the socioeconomic, demographic and chronic disease 238 

factors as well as local regression coefficients from the GWNB models were generated 239 

using QGIS 3.16.6 [27]. Jenk’s optimization classification scheme [28–30] was used to 240 

determine the critical intervals of the choropleth maps.  241 
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Results 242 

Descriptive Statistics 243 

The ZCTA-level median percentage of males was 48.6% while that of black and 244 

Hispanic populations were 3.7% and 2.2%, respectively (Table 1). For education 245 

variables, 38.2% of the population had high school education, 23% had some college 246 

education while 8.6% had associate’s degree and 18% had bachelor’s degree. The 247 

median household income was just over $59,400 with 9.5% of the ZCTA-level 248 

population living below the poverty line. Among chronic conditions investigated, Chronic 249 

Kidney Disease had the highest hospitalization risk (7.6%) followed by diabetes (7.5%) 250 

and heart failure had the lowest (3.2%) (Table 1). The ZCTA-level median number of 251 

confirmed cases of COVID-19 was 360 cases which was equivalent to 2.2% of the 252 

population at ZCTA-level (Table1). 253 

 254 

Predictors of COVID-19 Hospitalization Risks 255 

Global Model 256 

A number of variables had univariable associations with COVID-19 hospitalization risks 257 

at a relaxed p<0.2 (Table 2). Of the assessed demographic variables, only percentage 258 

of black population had a univariable association (p<0.001) with hospitalization risk. By 259 

contrast, all the assessed educational, economic, health behavior and chronic disease 260 

variables had significant univariable associations with COVID-19 hospitalization risks 261 

(Table 2). The ZCTA-level risk of confirmed COVID-19 cases had a significant 262 

(p<0.001) univariable association with COVID-19 hospitalization risk but the raw count 263 

of COVID-19 cases per ZCTA did not (p=0.9) (Table 2). 264 
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 265 

Based on the final global multivariable NB model, the ZCTA-level hospitalization risks 266 

were higher in ZCTAs that were high in the following predictors: percentage of black 267 

population (p=0.0416), percentage of population with some college education 268 

(p=0.0005), percentage of individuals hospitalized with diabetes (p<0.0001), and 269 

number of ZCTA-level COVID-19 cases per 100 population (p=0.0001) (Table 3). A 270 

map of the distribution of age-adjusted COVID-19 hospitalization risks and each of the 271 

significant predictors is shown in Figure 2.  High age-adjusted COVID-19 hospitalization 272 

risks tended to occur in the Northeast of the study area and included ZCTAs in parts of 273 

St. Charles, St. Louis and Louis City counties. These areas also had high percentages 274 

of black population, individuals with some college education, those with high diabetes 275 

hospitalization risks as well as high risks of COVID-19 cases (Figure 2). High 276 

hospitalization risks were also evident in the Southwest areas of the study area that 277 

included parts of Warren and Franklin counties. It is worth noting that these areas also 278 

tended to have high diabetes hospitalization risks and percentages of the population 279 

with some college education (Figure 2). Since the global model did not show evidence 280 

of good fit based on both Deviance (p=0.03) and Pearson (p=0.01) goodness-of-fit 281 

tests, stationarity of the regression coefficients was assessed using a local GWNB 282 

model.  283 
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Local Model 284 

The p-values of the stationarity tests from the GWNB model indicate that the 285 

coefficients for the association between COVID-19 hospitalization risks and percentage 286 

of black population (p=0.001) and number of hospitalized patients with diabetes per 100 287 

population (p=0.032) were non-stationary (Table 4). Additionally, comparison of the 288 

2×SEs of the global coefficients and IQR of the local coefficients showed evidence of 289 

non-stationarity of the coefficients of the above two predictors as well as the population 290 

adjusted cases of COVID-19 (Table 4). 291 

 292 

The spatial distribution of the local coefficients of the three predictors whose relationship 293 

with COVID-19 hospitalizations were identified as non-stationary provides visual 294 

evidence for variability of the local relationships (Figure 3). Thus, associations of 295 

COVID-19 hospitalization risks with percentage of black population, diabetes 296 

hospitalization risks and COVID-19 adjusted cases varied considerably across the study 297 

area, with a strong East-West gradient. The association between percentage of black 298 

population and COVID-19 hospitalization risks, for instance, was positive in the 299 

Northeast and negative in the West and Southwest. Moreover, the strength of the 300 

association was higher in ZCTAs in the West compared to those near the center of the 301 

study area. The strength of association between COVID-19 hospitalization risks with 302 

diabetes hospitalization risks was also higher in the Northeast and lower in the West. All 303 

ZCTAs, except one (63025), showed evidence of positive association between COVID-304 

19 hospitalization risks and diabetes hospitalization risks. Finally, the association 305 

between COVID-19 hospitalization and population adjusted cases of COVID-19 306 
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increased from West to East, with the association staying positive in all ZCTAs of the 307 

study area. It is worth noting that the local GWNB model had a much better goodness-308 

of-fit (AICc=986.4) than the global model (AICc=1002.7).  309 
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Discussion 310 

The goal of this study was to investigate geographic disparities and identify predictors of 311 

ZCTA-level COVID-19 hospitalization risks in the St. Louis area. The findings of this 312 

study can be used to identify areas where the population is at higher risk of 313 

hospitalization due to COVID-19 in order to guide planning and control efforts and to 314 

reduce potential overburdening of hospitals during COVID-19 surges.  315 

 316 

There was evidence of geographic disparities in COVID-19 age-adjusted hospitalization 317 

risks in the study area. Urban ZCTAs in St. Louis City and St. Louis County exhibited 318 

high hospitalization risks. These ZCTAs also have high percentages of the population 319 

that are black, some as high as 98.4%. Some of these ZCTA also had high diabetes 320 

hospitalization risks. It is worth noting that some rural ZCTAs in Franklin and Warren 321 

counties had high COVID-19 hospitalization risk but very low percentages of the 322 

population that were black. However, these ZCTAs had high diabetes hospitalization 323 

risks implying that the COVID hospitalization risks in these rural ZCTAs was more 324 

driven by diabetes burden than demographic factors. Thus, although COVID-19 325 

hospitalization risks in the more urban areas seems to be driven by the demographic 326 

composition of the population, the risks in the more rural areas seem to be driven more 327 

by diabetes burden. Geographic areas with intermediate to high COVID-19 328 

hospitalization risks tended to have high percentages of the population with some 329 

college education and included ZCTAs in Franklin, Jefferson, St. Louis City and St. 330 

Louis County. It is worth noting that St. Louis City and St. Louis County tend to have 331 

similar restrictions, but often time, the restrictions from the other counties are more 332 
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laxed. Previous ecological and individual level studies have not considered education 333 

level as a predictor of hospitalization risk. The level of education may be a proxy of 334 

occupation and other sociodemographic factors that may impact both the risk of 335 

infection and the resulting severity of the disease and hence hospitalization risks.  336 

 337 

The above findings are consistent with those from previous ecological studies that 338 

investigated risk factors and predictors of COVID-19 hospitalization. For instance, an 339 

ecological study by Nguyen et al. reported that diabetes was a significant predictor of 340 

increased COVID-19 hospitalization risk at the county level in Georgia, USA even after 341 

controlling for sociodemographic and economic factors [31]. On the contrary, an Iranian 342 

study conducted at the provincial level did not find a significant association when only 343 

controlling for chronic disease factors [32]. This may indicate differences of relationships 344 

in different geographic areas and populations as well as the importance of controlling for 345 

sociodemographic factors when evaluating the impact of chronic disease variables on 346 

COVID-19 hospitalization risk. Considering the fact that ZCTAs with high diabetes 347 

hospitalization risks also tended to have high COVID-19 hospitalization risks, COVID-19 348 

mitigation efforts may need to be targeted to these ZCTAs to reduce the potential 349 

burden of the disease. 350 

 351 

Interestingly, the study by Nguyen et al., which also considered sociodemographic and 352 

economic factors as well as comorbidities, did not find a significant association between 353 

percentage of black population with COVID-19 hospitalization risk [31]. However, it did 354 

identify other socioeconomic factors that this study did not consider, including: 355 
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percentage of children in poverty and percentage of the population with severe housing 356 

problems. Although not directly comparable with the current ecological study, previous 357 

individual level studies have also identified associations between black race and 358 

COVID-19 hospitalization risk [8, 13, 33].  359 

 360 

The local GWNB model allowed modeling of geographically varying associations 361 

between COVID-19 hospitalization risks and its predictors instead of assuming constant 362 

associations across the study area. Although the coefficients of percentage of black 363 

population, diabetes hospitalization risk and risk of COVID-19 infections varied spatially, 364 

the coefficients of percentage of the population with some college education did not and 365 

hence was modeled as stationary. This suggests that the coefficients for the percentage 366 

of the population with some college education are generalizable to all ZCTAs in the 367 

study area. In contrast, geographic variations in the associations between COVID-19 368 

hospitalization risks and the percentage of black population, diabetes hospitalization 369 

risks and risks of COVID-19 infections suggest that global coefficients do not 370 

adequately describe the associations between COVID-19 hospitalization risks and these 371 

predictors across the study area. These findings have health planning and service 372 

provision implications. For instance, a “one size fits all” approach would not be suitable 373 

for addressing geographic disparities in COVID-19 hospitalization risks across the study 374 

area since some predictors are more important in some locales than others. Thus, 375 

different locales may require slightly different strategies depending on the most 376 

important predictors driving COVID-19 hospitalization risk in the location. Therefore, 377 

planning for hospital capacity and other disease management and control efforts will 378 
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need to use evidence-based approaches informed by empirical evidence from both 379 

global and local models.  380 

 381 

Strengths and limitations 382 

This study used both global and local models to investigate geographic disparities and 383 

identify predictors of COVID-19 hospitalization risks in St. Louis region of Missouri. The 384 

use of local models to investigate stationarity of regression coefficients of significant 385 

predictors and model non-stationary coefficients is a key strength of the study. This 386 

approach is particularly important in guiding local health planning since the importance 387 

of different predictors are not constant across the study area implying that different 388 

management and control strategies may need to be used in different areas. Therefore, 389 

modeling approaches that use both global and local models help to better understand 390 

the relationships between the outcome and predictors and may be more useful in 391 

guiding control efforts at the local level.  However, the study is not without limitations. 392 

The hospital data has limitations associated with diagnostic classifications of COVID-19 393 

in situations when the patient has co-morbidities that may have contributed to 394 

hospitalization. Additionally, there may be geographic differences in COVID-19 case 395 

ascertainment and reporting. 396 

 397 

Conclusions 398 

There is evidence of geographic disparities in COVID-19 hospitalization risks in the St. 399 

Louis area of Missouri. These disparities are driven by socioeconomic, demographic 400 

and health-related factors. The impacts of these factors vary by geographical location 401 
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with some factors being more important predictors of COVID-19 hospitalization risk in 402 

some locales than others. This demonstrates the importance of using not only global but 403 

also local models to investigate determinants of geographic disparities in health 404 

outcomes and utilization of health services. This study’s findings are useful for informing 405 

healthcare system planning to identify geographic areas likely to have high numbers of 406 

individuals needing hospitalization as well as in guiding vaccination efforts.  407 

  408 
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Tables 538 

 539 
Table 1: Descriptive Statistics of ZCTA-level Potential Predictors of COVID-19 540 
Hospitalization Risks in the St. Louis Area, Missouri  541 

Type of Variable Variable Median First 
Quartile 

Third 
Quartile 

Demographic Factors     
 % male population 48.6 47.4 50.3 
 % black population 3.7 0.9 34.2 
 % Hispanic/Latino population 2.2 1.0 3.2 
Educational Variables     
 % with ≤ high school education 38.2 23.9 47.6 
 % with some college  23.0 19.8 25.6 
 % with associate's degree  8.6 6.6 10.6 
 % with bachelor’s degree 18.0 9.4 25.9 
Economic Variables     
 % below poverty level 9.5 5.8 16.8 
 median household income  59,768.5 46005.3 77504.0 
Health Behavior (ZCTA-level number of hospitalized patients that use tobacco per 100 

  % tobacco1  10.4 6.8 14.5 
Co-morbidities (ZCTA-level number of hospitalized patients with specific condition per 100 

   % obesity 7.0 5.6 8.0 
 % diabetes  7.5 6.5 9.2 
 % cancer  3.8 3.3 4.3 
 % COPD2 4.0 3.1 4.9 
 % CKD3 7.6 6.4 8.9 
 % heart failure  3.2 2.6 3.8 
COVID-19 Cases     
 total cases 360 118 607 
 cases per 100 population  2.2 1.9 2.5 

1ZCTA-level % of COVID-19 hospitalized patients that were tobacco users 542 
2Chronic Obstructive Pulmonary Disease 543 
3Chronic Kidney Disease  544 
  545 
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Table 2: Univariable Associations of Sociodemographic, Economic, and Chronic 546 
Disease Potential Predictors of COVID-19 Hospitalization Risk in the St. Louis 547 
Area, Missouri 548 

Type of Variable Variable Coefficient 95% Confidence 
Interval P-values 

Demographic Factors         
 % male population 0.004 -0.015, 0.024 0.727 
 % black population 0.007 0.005, 0.009 <0.0001 
 % Hispanic/Latino population -0.021 -0.056, 0.016 0.292 

Educational Variables         
 % with ≤ high school education 0.015 0.010, 0.020 <0.0001 
 % with some college education 0.035 0.022, 0.049 <0.0001 
 % with associate's degree 0.028 0.0002, 0.055 0.036 
 % with bachelor’s degree -0.021 -0.028, -0.014 <0.0001 

Economic Variables         
 % below poverty level 0.017 0.009, 0.024 <0.0001 
 median income -5.00E-06 -0.000008, -0.000003 <0.0001 

Health Behavior (ZCTA-level number of hospitalized patients that use tobacco per 100 Population) 
 % tobacco1 0.046 0.034, 0.058 <0.0001 

Co-morbidities (ZCTA-level number of hospitalized patients with specific condition per 100 Population)  
 % obesity 0.138 0.104, 0.171 <0.0001 
 % cancer -0.029 -0.096,0.032 0.377 
 % COPD2 0.11 0.055, 0.164 <0.0001 
 % CKD3 0.1 0.068, 0.131 <0.0001 
 % heart failure 0.194 0.123, 0.265 <0.0001 
 % diabetes 0.11 0.083, 0.136 <0.0001 

Confirmed COVID-19 
Cases         

 total cases 1.40E-05 -0.0002, 0.00023 0.9 
 cases per 100 population 0.277 0.192, 0.3621 <0.0001 

1ZCTA-level % of COVID-19 hospitalized patients that were tobacco users 549 
2Chronic Obstructive Pulmonary Disease 550 
3Chronic Kidney Disease  551 
  552 
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Table 3: Final Global Negative Binomial Model Showing Significant Determinants 553 
of COVID-19 Hospitalization Risk in the St. Louis area  554 

Name Coefficient 95 % Confidence 
Interval p-value 

% black population  0.0014 0.0001, 0.0027 0.0416 
% with some college education 0.0180 0.0078, 0.0281 0.0005 
% diabetes1  0.0628 0.0397, 0.0860 <0.0001 
Confirmed COVID-19 cases 
per 100 population 0.2623 0.2027, 0.3218 <0.0001 

1Number of hospitalized patients with diabetes per 100 Population 555 

 556 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.21.21265289doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.21.21265289
http://creativecommons.org/licenses/by/4.0/


27 

Table 4: Results of assessment of stationarity of the coefficients of the predictors of the COVID-19 hospitalization 557 
risks in the St. Louis Area, Missouri 558 

 Global 
SE1 

Global 
SE1x2 

IQR2 of Local 
Coefficient IQR-2(SE) Stationarity 

test p-value 
Is Coefficient 
Stationary? 

 

% Black Population 0.0007 0.0014 0.0148676 0.0134676 0.001 No4  

% With Some College Education 0.0052 0.0104 0.0092401 -0.0011599 0.406 Yes  

% diabetes3 0.0118 0.0236 0.0416903 0.0180903 0.032 No4  

Cases of COVID-19 per 100 population 0.0304 0.0608 0.1164299 0.0556299 0.109 No5  
1Standard Error 559 
2Interqurtile Range 560 
3Number of hospitalized patients with diabetes per 100 Population 561 
4Coefficients are non-stationary based on both the p-value of the stationarity test and IQR-2(SE) assessment 562 
5Coefficient is non-stationary based on IQR-2(SE) assessment 563 
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Figure Titles 564 
 565 
Figure 1: Map of study area showing geographic distribution of Zip Code Tabulation 566 
Areas and Counties 567 
 568 
Figure 2: Geographic distribution of ZCTA-level COVID-19 age-adjusted 569 
hospitalization risks and its significant predictors in the St. Louis area, Missouri. 570 
 571 
Figure 3: Geographically Varying Coefficients of the Local Geographically 572 
Weighted Negative Binomial Model Predicting COVID-19 Age-adjusted 573 
Hospitalization Risks in the St. Louis area 574 
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