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Abstract

In populations with mixed vaccination status, testing programs focused on only the unvaccinated
population are being enacted to mitigate SARS-CoV-2 spread. However, it is not well understood how
viral spread occurs in mixed-status populations, including the possible benefits of unvaccinated-only
testing. Here, we analyze a model of SARS-CoV-2 transmission in which a variable fraction of the
population is fully vaccinated and unvaccinated individuals are proactively tested for infection, while
varying transmission rates, vaccine effectiveness (VE) parameters, and prior infection rates. This anal-
ysis reveals principles of viral spread in communities of mixed vaccination status, with implications for
testing policies. As vaccination rates increase, the proportions of infections occurring in unvaccinated
individuals and the amount of transmission driven by the unvaccinated both decrease, such that at ∼65-
75% vaccine coverage, most infections are vaccine breakthroughs, and at ∼76-83% vaccine coverage,
most community spread is driven by breakthrough infections, under baseline mRNA VE assumptions.
These ranges shift lower with waning VE and higher with boosted VE. In highly vaccinated communi-
ties proactive unvaccinated-only testing had little impact on community spread. Instead, the benefits of
weekly unvaccinated-only testing were restricted to regimes with high or moderate ongoing transmission
due to lower vaccination rates and strongly depended on near-perfect test compliance. By evaluating a
wide range of scenarios, this work finds broadly that resources devoted to routine unvaccinated-only
testing could be reallocated when vaccine coverage is sufficiently high.

∗ C.E.M. and K.M.B. contributed equally to this work.
To whom correspondence should be addressed: daniel.larremore@colorado.edu

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2021. ; https://doi.org/10.1101/2021.10.19.21265231doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.10.19.21265231
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

SARS-CoV-2 has created a pandemic that is beginning to be countered in some areas by widespread vacci-
nation. COVID-19 vaccines are not only extremely effective at preventing severe disease (vaccine efficacy,
VE>90%, [1]), but they also decrease susceptibility to infection (VES) and further decrease rates of onward
transmission (VEI ). In spite of these reductions, so-called vaccine breakthrough infections and subsequent
transmission have been widely documented [2], raising the question of how to further mitigate transmission
in partially vaccinated populations.

Prior to the approval of COVID-19 vaccines, transmission mitigation via consistent population testing
was shown to be an effective approach to break chains of transmission and decrease the burden of COVID-19
using both RT-PCR [3–5] and rapid antigen testing [5, 6]. Specifically, testing is effective at the community
level because it decreases transmission from individuals who are already infected [5, 7]. However, this
means that the impact of testing focused only on the unvaccinated population, as has been proposed [8–10],
may be limited by the extent to which transmission is driven by the unvaccinated population.

Complicating matters further, the role of vaccines in reducing transmission is complex and changing.
First, VES and VEI vary depending on which vaccine was administered [11]. Second, both VES and VEI

wane with time since vaccination [12–14], but may also be boosted to higher levels for those receiving an
additional dose [15]. Third, those who have experienced a SARS-CoV-2 infection also show decreased risks
of infection and transmission [11], not only providing partial protection to those who are unvaccinated and
previously infected, but augmenting protection for those who are vaccinated and previously infected [15].
Thus, the relative estimates of risk reductions due to vaccination, prior infection, or both, as well as the
sizes of the populations falling into each category of immunity, will affect transmission dynamics—with or
without testing.

In this study, we model the spread of SARS-CoV-2 in populations of mixed vaccination status, focusing
on two critical questions. First, how do vaccinated and unvaccinated populations each contribute to commu-
nity spread, and how do those contributions vary with rates of vaccination and prior infection? Second, how
do testing programs focused on unvaccinated individuals alone affect community spread? Our study’s goals
are not to make perfectly calibrated predictions but instead to elucidate more general principles of trans-
mission and unvaccinated-only testing in partially vaccinated populations. As such, our analyses consider a
wide range of parameters and scenarios.

Results

High vaccination rates drive total infections down, increase the proportion of breakthrough
infections, and shift the drivers of transmission

To examine the dynamics of transmission in a population with mixed vaccination status, we first modeled
transmission within and between communities of vaccinated (V ) and unvaccinated (U ) individuals in the
absence of a testing program. Based on a standard Susceptible Exposed Infected Recovered (SEIR) model,
we tracked the four transmission modes by which an infection might spread: U → U , U → V , V → U ,
and V → V (Fig. 1a). A constant fraction of both populations was assumed to have experienced prior
SARS-CoV-2 infection, resulting in four categories of imperfect immunity: unprotected, infection-acquired,
vaccine-acquired, and both vaccine- and infection-acquired with so-called “hybrid” immunity. To account
for introductions of infection from outside the population, all susceptible individuals were subject to a small,
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Figure 1: Vaccination affects which population dominates infection and drives transmission. (a) Diagram of four
transmission modes within and between vaccinated and unvaccinated communities, where vaccines and prior infection
decrease risks of both infection and transmission. (b) Total infections over time (solid black), stratified by unvaccinated
(dashed gray) and vaccinated (solid gray) populations. (c) Cumulative total infections as a percentage of population
(black), and vaccine breakthrough infections as a percentage of total infections (gray) for varying vaccination rates.
(d) Daily transmission events separated and colored by transmission mode (see legend). (e) Transmission mode as
a percentage of total infections (see legend) for varying vaccination rates. Black arrows in panels c and e indicate
vaccination rate at which Reff = 1; green dashed lines indicate the lowest vaccination rates for which vaccinated
individuals account for the majority of infections and transmission as annotated. R0 = 4 for all plots, with baseline
VE and immunity parameters (Materials and Methods, Supplementary Table S1); no testing. Panels b and d: 58%
vaccination rate and 35% rate of prior infection.

constant rate of exposure, with infection-acquired or vaccine-acquired immunity providing partial protec-
tion against subsequent infection. Because precise estimates of the basic reproductive number R0 vary by
context and over time, our analyses consider values inclusive of possible non-pharmaceutical interventions
like masking and physical distancing, and thus range from 4 to 6. In our baseline modeling scenario, vac-
cines were assumed to reduce susceptibility to infection by VES = 65% and the likelihood of transmission
to others by VEI = 35%, values which land within plausible literature estimates for the effectiveness of two
doses of mRNA vaccine in the absence of dramatic waning and without boosting [11, 15, 16]. Though less
often studied in the literature, we assumed that prior SARS-CoV-2 infection would lead to 63% and 13%
decreases in risk of infection and transmission based on a statistical model relating immunity to neutraliza-
tion [15], and that hybrid immunity would be superior to either vaccination or prior SARS-CoV-2 infection
alone. See Materials and Methods and Supplementary Table S1 for a complete description of the model and
parameters.

In a modeled population of N = 20, 000 with 58% vaccination rate (corresponding to U.S. estimates
as of Nov. 4, 2021 [17]) and 35% past infection rate, outbreaks still occurred, despite assuming a partially
mitigated delta variant (R0 = 4) and immunity from past infection, vaccination, or both. During the ensuing
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Figure 2: Vaccination and prior infection rates affect epidemic potential, vaccine breakthroughs, and drivers
of transmission. Heatmaps show (a) the total number of infections, (b) the percentage of total infections occurring
in the unvaccinated population and (c) the percentage of total infections caused by the unvaccinated population, for
simulated epidemics (see text). White annotation curves show (a) isoclines of the effective reproductive number Reff
calculated at t = 0, (b) the line of parameters along which 50% of infections were breakthroughs, and (c) the line of
parameters long which 50% of transmission was due to breakthrough infections. N = 20, 000 and R0 = 4 for all
plots, with baseline VE and immunity parameters (Materials and Methods, Supplementary Table S1); no testing. See
Supplementary Figure S1 for R0 = 6.

outbreak, 59% of total infections occurred in unvaccinated individuals, despite making up only 42% of the
population (Fig. 1c), with the remaining 41% of infections occurring among the vaccinated (breakthrough
infections). Furthermore, the peak burden of disease occurred first in the unvaccinated community and then
one week later in the vaccinated community (Fig. 1b), a known consequence of disease dynamics in popu-
lations with heterogeneous susceptibility and transmissibility [18, 19]. By categorizing transmission events
into four distinct modes (Fig 1a), we observe that infections in both communities were driven predominantly
and consistently by the unvaccinated community (U→U , U→V ; Fig. 1d), but that there was nevertheless
some transmission from the vaccinated community (breakthrough transmission). These differences occurred
despite a “well mixed” modeling assumption—namely, that neither type of individual is more or less likely
to associate with a member of their own group vs the other group.

Vaccination and past infection rates vary widely across the U.S. [17] and the world [20] due to impacts
of both vaccine availability [20] and refusal [21], as well as the success or failure of transmission mitiga-
tion policies. We therefore asked how a population’s vaccination and past infection rates would affect our
observations about total infections, breakthrough infections, and the relative impacts of the four modes of
transmission. This analysis revealed three important points.

First, our results reinforce the fact that increased vaccination rates lead to decreased total infections,
both before and after the herd immunity threshold at Reff = 1 (Fig. 1c). Moreover, when large proportions
of the population are also partially protected by immunity from prior infection, the vaccination levels at
which Reff = 1 decrease considerably (Fig. 2a). For instance, increasing prior infection rates from 35% to
50% decreases the required vaccination rate for Reff = 1 from 87% to 80%. Combinations of immunity
from past infection and vaccination thus have the potential to create a herd immunity frontier, beyond which
transmission is no longer self-sustaining even in the absence of testing.

Second, as vaccination rates increased, the fraction of infections classified as vaccine breakthroughs
increased (Fig. 1c), creating a transition point such that when 68% of the population was vaccinated, 50% of
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all infections were breakthrough infections under our baseline modeling conditions. To determine whether
this transition point of 68% was sensitive to the precise fraction of the population with immunity from past
infection (35%, Fig. 1), we varied the fraction with infection-acquired immunity between 0% and 100%,
finding that the 50/50 breakthrough infection transition occurred between 63% and 75% vaccine coverage
(Fig. 2b). Thus, our results set the expectation that increasing vaccination rates will decrease total infections,
but a higher proportion of those infections will be breakthroughs, irrespective of levels of immunity due to
prior infection.

Third, as vaccination rates increased, the unvaccinated community ceased to be the primary driver of
transmission. Under our baseline modeling conditions (R0 = 4, 35% with infection-acquired immunity),
this transition occurred when 80% or more of the population was vaccinated (Fig. 1e). When we varied
the fraction of the population with infection-acquired immunity between 0% and 100%, this transition point
varied from 76% to 82% (Fig 2c). Thus, while COVID-19 morbidity and mortality are likely to remain
concentrated primarily in unvaccinated populations, only a minority of infections will occur in, or be driven
by, the unvaccinated community when vaccine coverage is sufficiently high. Note that this implies that
unvaccinated individuals living in highly vaccinated communities will still be exposed to SARS-CoV-2 and
thus remain at risk of infection.

These findings are driven by reductions in susceptibility and infectiousness arising from vaccination,
prior SARS-CoV-2 infection, or both. However, quantitative estimates of those reductions vary depending
on which vaccine was administered [14], time since vaccination or SARS-CoV-2 infection [12–14], whether
an additional “booster” dose was given [15], and the variant circulating at the time of the study [22, 23].
We therefore sought to determine how our findings might change under different sets of assumptions about
vaccine effectiveness by comparing our baseline scenario (VES = 0.65, VEI = 0.35) with a waning/low
immunity scenario (VES=0.5, VEI=0.1) and a boosted/high immunity scenario (VES=0.8, VEI=0.6).

To explore the impact of waning and boosted vaccine effectiveness, we simulated outbreaks for all
combinations of vaccination and infection-acquired immunity rates under the three VE scenarios. Across
simulations, we found that total infections were well predicted by calculatingReff at the start of each simula-
tion. In particular, outbreaks were small when vaccination or past infection rates crossed the herd immunity
threshold (Reff < 1). When Reff > 1, total infections monotonically increased as Reff increased (Sup-
plementary Fig. S2). The herd immunity threshold was impossible to cross with vaccination alone in the
waning VE scenario with partially mitigated transmission (R0 = 4, Fig. 3a, Supplementary Fig. S2) and in
both waning and baseline VE scenarios with unmitigated transmission (R0 = 6; see Supplementary Fig. S2),
as evidenced by the fact that the Reff = 1 curves fail to intersect the vaccination rate axis.

Waning and boosting assumptions altered the proportions of infections occurring in, and transmission
from, the unvaccinated vs vaccinated communities. All else being equal, waning immunity led to increased
fractions of breakthrough infections and breakthrough transmission from the vaccinated community, while
boosted immunity led to decreases of both. In turn, population vaccination rates at which the majority of
infections were breakthroughs shifted down (waning; Fig. 3a), while vaccination rates at which the majority
of transmission was driven by vaccinated individuals shifted up (boosting; Fig. 3c).

Among the three transition points identified in transmission dynamics, we observe that, in each VE sce-
nario, Reff is driven by both vaccination and past infection rates, as evidenced by curvature in Reff = 1
isoclines (Fig. 3, black lines). In contrast, isoclines representing the transition points between majority-
unvaccinated vs majority-breakthrough infections (Fig. 3, light green lines) and the transition points be-
tween majority-unvaccinated vs majority-breakthrough transmission (Fig. 3, dark green lines) are relatively
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Figure 3: Transition points in dynamics of transmission, breakthrough infections, and breakthrough trans-
mission. Figures show the transition vaccination rates at which the vaccinated population makes up the majority of
infections (light green) and transmission (dark green) considering low (a), baseline (b), and high (c) vaccine effective-
ness, with Reff = 1 isoclines (black). See Supplementary Table S1 for immunity parameter values. R0 = 4 in all
panels.

insensitive to variation in rates of infection-acquired immunity, as evidenced by vertical or near-vertical
isoclines. These findings suggest that the relative proportions of breakthrough infections and breakthrough
transmission are driven by vaccination rates and VE, but not by rates of past infection or proximity to herd
immunity; indeed, after the herd immunity threshold, both infection and transmission isoclines show es-
sentially no variation. These observations suggest that unvaccinated-only testing programs, which decrease
rates of U → U and U → V transmission, may be highly effective only in regimes where transmission is
driven by the unvaccinated (i.e. to the “left” of dark green isoclines, Fig. 3), an intuition we now explore in
detail.

Unvaccinated-only testing may be of limited value in highly vaccinated populations

To explore the impact of unvaccinated-only testing on population transmission, we modified our simulations
so that a positive test would result in an unvaccinated individual isolating to avoid infecting others [5, 24].
We considered test sensitivity equivalent to RT-PCR with a one-day delay between sample collection and
diagnosis under two testing paradigms: weekly testing with 99% compliance and weekly testing with 50%
compliance—a value which reflects observed compliance with a weekly testing mandate in a university
setting [3].

Our simulations show that the benefits of an unvaccinated-only testing program fall into one of three
categories, depending on the population vaccination rate and transmission dynamics. These categories align
with three distinct regions in parameter space, denoted in Fig. 4 as regions I, II and III. In region I, testing
is insufficient to fully control transmission, yet nevertheless markedly reduces total infections (Fig. 4a). In
region II, testing successfully brings transmission under control (Fig. 4b). In region III, testing has little
impact on transmission due to the fact that outbreaks are already mitigated by population immunity and
other control measures (Fig. 4c). Unvaccinated-only testing is therefore impactful in the first two regions,
sufficient for transmission control in only the second region, and largely inconsequential to transmission in
the third.
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Figure 4: The impact of unvaccinated-only testing corresponds to three distinct parameter regions. Total number
of infections with no testing (black) and weekly testing with 99% compliance (pink) are shown for 25% (a), 75% (b),
and 95% (c) population vaccination rates. (d) Effective reproductive number over various population vaccination rates,
where Reff = 1 is denoted by gray dashed line. Testing’s impacts fall into three categories (see text) depending on
whether vaccination rate falls into region I, II, or III, as annotated. R0 = 4 and 35% rate of prior infection with
baseline VE and immunity parameters (Materials and Methods, Supplementary Table S1).

The three regions that correspond to different impacts of testing are separated by boundaries which can
be estimated from two analytical calculations of Reff—one which includes the effects of testing and one
which does not. The boundary separating regions I and II is given by those parameters for which Reff = 1
with testing, while the boundary separating regions II and III is given by those parameters for whichReff = 1
without testing (Fig. 4d). Thus, the value of an unvaccinated-only testing program can be evaluated based
on which of three regions the current vaccination rate, prior infection rate, and VE fall into.

To illustrate the value of this Reff-based analysis, we considered vaccination rates and prior infection
rates ranging from 0-100% and varied VE between waning, baseline, and boosted scenarios. Across sce-
narios, dramatic relative reductions in infections are concentrated only within the envelope between the
boundaries of Reff = 1 with and without testing, i.e., region II (Fig. 5). Outside of this effective testing en-
velope, percent reductions in infections decreased markedly, either because unvaccinated-only testing was
an insufficient intervention during a rapidly growing outbreak (region I), or because existing population
immunity prevented large outbreaks in the first place (region III). Assuming a 35% past infection rate and
R0 = 4, region III appeared only for baseline and boosted vaccine effectiveness assumptions, and only
when vaccination rates were approximately 90% or greater (baseline VE) or 75% or greater (boosted VE).
Sensitivity analyses show that increasing R0 to 6, potentially representing pre-pandemic contact rates and
the SARS-CoV-2 delta variant, cause region III to shrink further. Thus continued testing for SARS-CoV-2
among the unvaccinated may be of limited value, but only when vaccination rates become sufficiently high.

The role of compliance—the fraction of scheduled tests that are actually taken—can also be clarified
by examining the three regions of testing impact. Both the simulations and equations for Reff show that
increasing compliance from 50% to 99% causes the lower boundary of the effective testing envelope to shift
to lower vaccination and prior infection rates, decreasing the size of region I and increasing the size of region
II (Fig. 5). Moreover, increased testing compliance increases the magnitude of infection reductions within
both regions, visible as an intensification of color in the infection reduction heatmaps (Fig. 5). As a result of
these observations, we conclude that, in addition to test sensitivity, frequency, and turnaround time [5], high
participation in testing programs is critical to expanding the impact of unvaccinated-only testing programs.
However, we also note that testing compliance had little effect in region III where Reff < 1, a result which
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Figure 5: The impacts of unvaccinated-only testing depend on population immunity, testing compliance, and
vaccine effectiveness. Percent reduction in infections due to testing over various population vaccination rates assum-
ing low (a,d), baseline (b,e), and high (c,f) vaccine effectiveness with once-weekly testing at 50% (top row) and 99%
(bottom row) compliance. White lines indicate the population immunity rate at which Reff = 1 with testing (solid)
and without testing (dashed), which divide the space into three regions, labeled I, II and III. See text or Supplementary
Table S1 for immunity parameter values. R0 = 4 in all panels; see Figure S3 for R0 = 6.

parallels analysis of universal testing programs [7].

By reducing transmission from unvaccinated individuals, testing programs specifically mitigate U→U
and U → V transmission modes, thus diminishing the role of the unvaccinated population in transmission
dynamics and amplifying the relative role of breakthrough transmission. As a consequence, we observe
that in the presence of testing, the vaccination rates at which the unvaccinated cease to drive a majority of
transmission decrease by 5 to 15 percentage points (Fig. 6b), with the largest decreases for 99% compliance
testing and waning vaccine effectiveness, and the smallest decreases for 50% compliance testing and boosted
vaccine effectiveness. In other words, unvaccinated-only testing programs shrink the regime in which the
unvaccinated population drives outbreaks.

In contrast, unvaccinated-only testing programs had little effect on the percentage of infections that were
breakthroughs. Instead, majority breakthrough regimes remained primarily dependent on vaccination rates
and vaccine effectiveness (Fig. 6a), with transitions to majority-breakthrough infection regimes beginning
at 55 to 67% vaccination rates (waning VE), 63 to 75% vaccination rates (baseline VE) and 83 to 84%
vaccination rates (boosted VE). We therefore conclude that unvaccinated only testing programs do not
markedly alter the expectations of majority-breakthrough infections at high vaccination levels, particularly
if VE is low or waning.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2021. ; https://doi.org/10.1101/2021.10.19.21265231doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.19.21265231
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.5

0.6

0.7

0.8

50 60 70 80 90 100
Population vaccination rate (%)

V
E

Transition to majority
 breakthrough infections   a 

50 60 70 80 90 100
Population vaccination rate (%)

Transition to majority
 breakthrough transmission    b

Boosted 

(High VE)

Baseline VE

Waning 

(Low VE) No testing

50% compliance
99% compliance

Figure 6: Testing and vaccine effectiveness affect transition points to majority-breakthrough regimes. The
vaccination rates at which the vaccinated population makes up the majority of (a) infections and (b) transmission
for low, moderate, and high vaccine effectiveness scenarios. Minimum (filled circle) and maximum (open circle)
endpoints show the variation in transition points over all combinations of vaccination and prior infection rates for no
testing (black), 50% compliance (purple), and 99% compliance (pink) over all possible values for past infection rates.
R0 = 4 for all plots; see Supplementary Figure S5 for R0 = 6.

Discussion

In this analysis, we find that in communities with mixed vaccination status, routine SARS-CoV-2 testing
programs focused on the unvaccinated community can reduce infection, but in a manner dependent on two
conditions. First, effective screening testing requires high participation to be most impactful, reinforcing
the need for mechanisms to encourage or enforce high participation. Second, when vaccination and past
infection rates are high enough to curtail transmission on their own, testing the remaining unvaccinated
population averts few infections in both relative and absolute terms. Thus, targeted unvaccinated testing
programs lose effectiveness once vaccination rates exceed the threshold at which population immunity and
other interventions push Reff below 1. These results echo related work focused on universal testing pro-
grams [7].

The critical vaccination rates, above which unvaccinated-only testing programs provide little transmis-
sion reduction, depend on vaccine effectiveness, rates of infection-acquired immunity, and whether trans-
mission is mitigated by other means such as physical distancing and masking. In particular, our analysis
suggests that with boosted vaccine effectiveness (VES = 80%, VEI = 60%) and 35% past infection rates,
unvaccinated-only testing is not needed when vaccination rates exceed 70% with other control measures in
place (R0 = 4) or 85% in their absence (R0 = 6), with lower thresholds possible as rates of past SARS-
CoV-2 infection increase. In contrast, with baseline vaccine effectiveness (VES = 65%, VEI = 35%) and
35% past infection rates, unvaccinated-only testing is not needed only when 85% or more were vaccinated,
and only then with other control measures (R0 = 4). For waning VE scenarios, practically no vaccination
rates existed at which testing could cease. Thus, combinations of vaccination, boosting, masking or other
mitigation measures, and past infections may allow some communities to cease testing and reallocate limited
public health resources elsewhere (including to further increase vaccination rates), but such combinations
are practically nonexistent for pre-pandemic contact rates and waning VE.
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Our study predicts two critical transitions as vaccination rates increase. First, when vaccination rates are
sufficiently high, a majority of the albeit reduced number of infections will be vaccine breakthrough infec-
tions. This fact should come as no surprise, as this transition must occur at some point for any vaccine below
100% effectiveness; our modeling estimates it to take place between 63% and 75% vaccine coverage (base-
line VE; 55-67% vaccinated with waning VE; 83-84% vaccinated with boosted VE). Second, while at low
vaccination rates, community spread is driven by the unvaccinated population, at higher vaccination rates,
community spread is driven by the vaccinated population (Fig. 3). These vaccination rate transition points
separating majority-unvaccinated transmission and majority-breakthrough transmission are driven lower by
unvaccinated-only testing programs (Fig. 6). Taken together, these results suggest that while the overall
number of cases in highly vaccinated communities will be low, vaccine breakthrough infections and trans-
mission events from vaccinated individuals should not be surprising—vaccine effectiveness is not 100%.
Consequently, in anticipation of continued community transmission even in highly vaccinated communities,
those at increased risk of severe COVID-19 should take additional precautions to limit their risk of infection
or severe disease.

Our analyses identify two limitations of testing programs in reducing community transmission. First,
for a testing program to be effective, testing must have high rates of compliance; weekly testing with 50%
compliance—a rate which reflects observed compliance in a population with a weekly testing mandate [3]—
is likely to be relatively ineffective. Second, the ability of a testing program to prevent community spread
is restricted to a limited “envelope” of past infection rate and vaccination rate combinations in which Reff
without testing is greater than one, and Reff with testing is less than one. However, it is important to
note that while our analyses focus on the benefits of testing in reducing transmission, testing also plays
an important role in diagnosis and treatment, detection of variants, situational awareness and surveillance,
and decreasing pressure on the healthcare system during outbreaks. Furthermore, testing focused on the
unvaccinated population may provide additional incentives to get vaccinated and thus avoid regular testing.
Our study did not explore the benefits of unvaccinated-only testing mandates for these additional purposes.

Our analysis is limited in at least three different manners. First, our modeling incorporated fixed param-
eters that are difficult to estimate in practice. For instance, while our analysis considered boosted, baseline,
and waning scenarios for vaccines’ reductions in susceptibility VES and infectiousness VEI based on ranges
of estimates in the current literature, few studies are available to guide estimates of similar risk reductions
associated with prior SARS-CoV-2 infection, with or without vaccination (but see Refs. [11] and [15]). Al-
ternative parameter assumptions may be explored via the provided open-source code. Second, we assumed
perfect isolation after receiving a positive test result in all testing regimens, effectively removing all infec-
tiousness once a diagnosis is received. Were this assumption to be violated by imperfect or delayed isolation,
we predict a proportional loss of testing impact across all scenarios. Third, our model assumed that vaccina-
tion and past infection statuses are uncorrelated at the population level, yet they may be anticorrelated due
to the protective effects of vaccination or because those with past infection may choose to forgo subsequent
vaccination. We similarly assumed no homophily in contact patterns based on vaccination status, yet those
who choose to be vaccinated may be more likely to be situated in a social network with others who choose
to be vaccinated, and vice versa [25]. Analyses of simulated communities with homophily by vaccination
status only slightly increased vaccination rates at which the key transitions discussed above were observed.
Finally, our model assumes values of R0 and immunity associated with the delta variant, but emerging vari-
ants such as omicron (identified a week prior to the present writing) may dramatically shift the values of
these parameters. These limitations affect the exact vaccination and past infection rates at which the three
transitions identified in our study occur, and thus our analyses describe fundamental phenomena but do not
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make projections or predictions for specific communities.

More broadly, our work is situated within a family of research which uses mathematical modeling to
estimate the impact of targeted interventions or strategies in populations with heterogeneous susceptibil-
ity, transmissibility, and/or contact rates. Other areas of focus include the allocation of scarce personal
protective equipment to reduce transmission [26], the prioritization of vaccines by subpopulation [27–29],
proactive testing programs in specific workplace structures [30] or contact networks [7], immunity “pass-
port” programs [24], or immune shielding strategies [31]. Our contribution to this literature is primarily
to show that testing programs focused on the unvaccinated will substantially reduce transmission only with
strict adherence, and only until population immunity is sufficiently high as to obviate the need for this form
of targeted intervention.
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Materials and Methods

SEIR model

Our analyses are based on a continuous time ordinary differential equation compartmental model with Sus-
ceptible, Exposed, Infectious, and Recovered (SEIR) compartments, stratified into vaccinated V and unvac-
cinated U groups. In addition to tracking infections among these two groups separately, we also tracked
infections from both groups separately, enabling us to investigate four modes of transmission: from U to U ,
from U to V , from V to U , and from V to V . In all simulations, we used a constant total population size of
N = 20, 000 and denoted the vaccinated fraction of the population with φ.

To incorporate the possibility that individuals may have experienced prior infections, we further subdi-
vided U and V into SARS-CoV-2 naive and SARS-CoV-2 experienced subpopulations, such that a fraction
ψ of each was assumed to be previously infected and 1 − ψ remains naive. For notation, we denote the
subpopulations of U to be u (unvaccinated, naive) and x (unvaccinated, experienced/prior infection), and
the subpopulations of V to be v (vaccinated, naive) and h (vaccinated, experienced). We assumed that
vaccination and SARS-CoV-2 experience statuses were fixed at the start of each simulation and immutable
throughout, such that there was no ongoing vaccination, and individuals who were infected and recovered
during each simulation were not reassigned to SARS-CoV-2 experienced status [32].

We denote the protective effects of immunity as XE, VE, HE, expressed as reductions in risk due to
prior infection alone (x), vaccination alone (v), or prior infection and vaccination (i.e. so-called “hybrid”
immunity; h), respectively. Immunity was modeled to (i) decrease the risk of infection upon exposure, and
(ii) decrease the risk of transmission upon infection, placing our vaccine and immunity model in the broader
category of leaky models [33]. Reductions in the risk of infection upon exposure (XES , VES , HES) and
reductions in the risk of transmission when infected (XEI , VEI , HEI ) were parameterized separately, based
on ranges of estimates from the literature. See Table S1. Due to broad uncertainty in these effects over time
since exposure [11, 32] or vaccination [11–13], by vaccine manufacturer and schedule [14, 15, 34, 35], by
context [23, 36], and by variant [15], our analyses intentionally consider a range of values. We assumed
that hybrid immunity would always be superior to either vaccination alone or prior infection alone, via the
simple formula HE = (1− VE)XE + VE.

Fig. S4 shows a model schematic diagram for the SEIR model used in the manuscript, where solid and
dashed lines denote movement and transmission between classes, respectively. Because our study focuses
on transmission, we did not track disease, hospitalization, or mortality variables nor include vaccination’s
(or past infection’s) impacts on them.

To model a community with open boundaries, we included a uniform risk of exposure to infection from
an external source at a rate of N−1 per person per day. For instance, in a completely naive population,
Su/N individuals would be infected per day. After including the protective effects of vaccination and past
infection this resulted in importation of infections at per-capita rates of (1 − VES)N

−1, (1 − HES)N
−1,

(1− XES)N
−1, and N−1 new infections per day in the v, h, x, and u groups respectively.

All simulations were run for 270 days, and all individuals were initially in one of the susceptible com-
partments Su, Sx, Sv, or Sh in proportions (1−φ)(1−ψ), (1−φ)ψ, φ(1−ψ), and φψ, respectively. Model
equations were solved using lsoda solver from the package deSolve, R version 4.1.0.
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Incorporation of testing

Testing of the unvaccinated population, with subsequent isolation of those testing positive, was modeled
by increasing the rate at which infected individuals were removed from the unvaccinated Iu and Ix com-
partments. We estimated increased rates of removal using a previously established method that takes into
account (i) the calibrated trajectories of viral loads within individual infection [37], (ii) the relationship
between viral load and infectiousness [5], (iii) the frequency of testing, (iv) the test’s analytical sensitivity
(i.e. limit of detection) and turnaround time [24], and (v) testing compliance and valid sample rates, i.e.
the fraction of scheduled or mandated tests which actually produce a valid sample [3]. In particular, our
adaptation takes a previous model [5, 24] and updates viral load dynamics for the delta variant of SARS-
CoV-2 [38, 39], the dominant variant at the time of the present analysis. To incorporate the effectiveness of
testing θ, we reduce the duration of infectiousness 1/γ by a factor (1− θ). Parameter values for θ are found
in Table S1, and are based on weekly PCR testing with a one-day turnaround, analytical limit of detection of
103 RNA copies per ml sample, and compliance rates of 50% (as in [3]) or 99% (as in [6]). These values as-
sume that individuals immediately and successfully isolate upon receiving a positive diagnosis. We note that
estimated effects of rapid antigen tests (with higher analytical limits of detection, but zero turnaround time)
are highly similar to PCR testing under the assumptions above, provided that testing program frequencies
and compliance rates are identical [5].

Transmission modes and forces of infection

Inclusive of all effects introduced above, the forces of infection are given by

λu = α

(
Iu
Nu

cu→u + [1− XEI ]
Ix
Nx

cx→u + [1− VEI ]
Iv

Nv
cv→u + [1− HEI ]

Ih
Nh

ch→u

)
+

1

N
(1)

λi =

[
α

(
Iu
Nu

cu→i + [1− XEI ]
Ix
Nx

cx→i + [1− VEI ]
Iv

Nv
cv→i + [1− HEI ]

Ih
Nh

ch→i

)
+

1

N

]
[1− (RRS)i] ,

(2)

where i = {x, v, h}, and reductions in susceptibility due to immunity are given by (RRS)i = {XES ,VES ,HES},
correspondingly. The parameter α is the probability of infection given an infectious contact, tuned to achieve
the desired R0, ci→j is the number of times an individual in group j is contacted by individuals from group
i per day, and Nj is a convenience variable representing the number of people in subpopulation j.

To produce counts of how many infections were caused by each of the transmission modes U → U ,
U → V , V → U , and V → V , we integrated the appropriate terms of Eqs. (1) and (2) over the duration of
each simulation. For instance, the cumulative number of vaccinated infections caused by the unvaccinated
population is given by integrating over the forces of infection from u and x to v and h,

U → V = α

∫ 270

0

[
Iu(t)

Nu

(
cu→vSv(t)[1− VES ] + cu→hSh(t)[1− HES ]

)
. . .

+ [1− XEI ]
Ix(t)

Nx

(
cx→vSv(t)[1− VES ] + cx→hSh(t)[1− HES ]

)]
dt
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Effective Reproductive number

This model’s reproductive number is given by

Reff = R0 [fu(1− θ) + fxrx(1− θ) + fvrv + fhrh] , (3)

where fu = (1 − ψ)(1 − φ), fx = ψ(1 − φ), fv = (1 − ψ)φ, and fh = φψ represent the fractions of
the population in the unvaccinated, experienced, vaccinated, and hybrid immunity groups, respectively, and
rx = (1−XEI)(1−XES), rv = (1−VEI)(1−VES), and rh = (1−HEI)(1−HES) are the cumulative
impacts of immunity on each group. Setting the above equation equal to a constant produces isoclines shown
in plots throughout the paper. The reduction in Reff due to testing is given by

Rno testing −Rtesting = R0θ(1− φ) [1− ψ(1− rx)] , (4)

a function linear in each of its variables which goes to zero as the vaccination rate φ approaches 1. For a
complete derivation of these equations, see Supplementary Materials.
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Parameter Description Value Reference
Population parameters

N Population size 20,000 —

φ Proportion of population vaccinated
[0, 1]

US: 0.58
[17]

ψ
Proportion of population with
infection-acquired immunity

[0, 1]
US: 0.35

[40]

Infection parameters
σ−1 Latent period 3 days [41]
γ−1 Infectious period 6 days [42]
R0 Basic reproductive number {4, 6} —

α
Probability of transmission given contact

(tuned to achieve the desired R0)
R0γ/N —

Immunity parameters

VES
Vaccine effectiveness to decrease susceptibility

to infection

waning = 50%
baseline = 65%
boosted = 80%

[12]
[11, 16]

[15]

VEI Vaccine effectiveness to decrease infectiousness
waning = 10%
baseline = 35%
boosted = 60%

[16]
[11, 16]

[15]

XES
Infection-acquired immunity effectiveness to

decrease susceptibility to infection
63% [15]

XEI
Infection-acquired immunity effectiveness to

decrease infectiousness
13% [15]

HES

Hybrid immunity effectiveness to decrease
susceptibility to infection

(vaccine- and infection-acquired immunity)

waning = 81.5%
baseline = 87.1%
boosted = 92.6%

see Methods

HEI
Hybrid immunity effectiveness to decrease

infectiousness

waning = 21.7%
baseline = 43.5%
boosted = 65.2%

see Methods

Testing parameters
Fraction by which testing & isolation reduces typical unvaccinated infectious period∗

no testing 0 —
weekly testing, 50% compliance 0.242 [5]

θ

weekly testing, 99% compliance 0.473 [5]
Table S1: Summary of parameters used in modeling and simulation.
∗Assuming PCR testing with a one day turnaround time for test results.
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Figure S1: Vaccination and past infection affect epidemic potential, vaccine breakthroughs, and drivers of
transmission. (a) Curves denote the effective reproductive number Reff at t = 0 as annotated, as past infection and
vaccination rates vary. Heatmaps show (a) the total number of infections, (b) the percentage of total infections occur-
ring in the unvaccinated population and (c) the percentage of total infections caused by the unvaccinated population.
White annotation curves in (b) and (c) indicate the 50% point. See text or Supplementary Table S1 for values for
infection-acquired, vaccine-acquired, and hybrid immunity parameters. N = 20, 000 and R0 = 6 in all panels; see
Figure 2 for R0 = 4.
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Figure S2: Vaccination’s impact on the total number of infections depends on vaccine effectiveness and R0. For
(top row) R0 = 4 and (bottom row) R0 = 6, heatmaps show the total number of infections as past infection and
vaccination rates vary for vaccines with (a) waning, (b) baseline, and (c) boosted effectiveness. See Supplementary
Table S1 for scenario parameter values. Curves denote the effective reproductive number Reff at t = 0 as annotated.
N = 20, 000.
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Figure S3: The impacts of unvaccinated-only testing depend on population immunity, testing compliance, and
vaccine effectiveness. Percent reduction in infections due to testing over various population vaccination rates assum-
ing low (a,d), baseline (b,e), and high (c,f) vaccine effectiveness with once-weekly testing at 50% (top row) and 99%
(bottom row) compliance. White lines indicate the population immunity rate at which Reff = 1 with testing (solid)
and without testing (dashed), which divide the space into three regions, labeled I, II and III. See text or Supplementary
Table S1 for immunity parameter values. R0 = 6 in all panels; see Figure 5 for R0 = 4.
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Figure S4: SEIR Model Flow Diagram. SEIR model schematic depicting unvaccinated (u subscript), SARS-CoV-
2 experienced (x subscript), vaccinated (v subscript), and both experienced and vaccinated (“hybrid”; h subscript)
populations. Solid lines denote movement of individuals between classes at the given rate. The time spent infectious,
1/γ, may be shortened by a factor of 1 − θ due to testing. Dashed lines denote infectious interactions, scaled by
protection against infection (VES ,HES ,XES) and transmission (VEI ,HEI ,XEI ).
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Figure S5: Vaccine effectiveness impacts vaccine breakthroughs and drivers of transmission. The vaccination
rates at which the vaccinated population makes up the majority of (a) infections and (b) transmission for low, moderate,
and high vaccine effectiveness scenarios. Minimum (filled circle) and maximum (open circle) endpoints show the
variation in transition points for no testing (black), 50% compliance (purple), and 99% compliance (pink) over all
possible values for past infection rates. R0 = 6 for all plots; see Figure 6 for R0 = 4.
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Reproductive number
This model’s next generation matrix M , used to calculate the effective reproductive number Reff, is given
by

M =
α

γ


1 0 0 0
0 1− XES 0 0
0 0 1− VES 0
0 0 0 1− HES

C


1− θ 0 0 0
0 (1− XEI)(1− θ) 0 0
0 0 1− VEI 0
0 0 0 1− HEI

 (S1)

where C is the contact matrix

C =


cu→u cx→u cv→u ch→u

cu→x cx→x cv→x ch→x

cu→v cx→v cv→v ch→v
cu→h cx→h cv→h ch→h

 (S2)

with units of number of contacts per person per day. In a well-mixed population of size N with proportions
φ vaccinated and SARS-CoV-2 prior infection ψ,

Cwell mixed = N


φ(1− ψ) φψ (1− φ)ψ (1− φ)(1− ψ)
φ(1− ψ) φψ (1− φ)ψ (1− φ)(1− ψ)
φ(1− ψ) φψ (1− φ)ψ (1− φ)(1− ψ)
φ(1− ψ) φψ (1− φ)ψ (1− φ)(1− ψ)

 . (S3)

The effective reproductive number is the absolute value of the dominant eigenvalue ofM . It depends onR0,
φ, and ψ, as well as values of VE, HE, XE, and θ,

Reff = R0

[
φ(1− ψ)(1− VES)(1− VEI) + φψ(1− HES)(1− HEI)

+ (1− φ)ψ(1− XES)(1− XEI)(1− θ) + (1− φ)(1− ψ)(1− θ)
]
. (S4)

Setting Reff = 1 leads to the following required vaccination fraction φ to achieve a reproductive number
below one,

φR=1 =
(1− θ) [ψ(1− XES)(1− XEI) + (1− ψ)]− 1

R0

(1− θ) [ψ(1− XES)(1− XEI) + (1− ψ)]− (1− ψ)(1− VES)(1− VEI)− ψ(1− HES)(1− HEI)
.

(S5)

In the absence of testing, this equation simplifies to

φR=1 =
ψ(1− XES)(1− XEI) + (1− ψ)− 1

R0

ψ(1− XES)(1− XEI) + (1− ψ)− (1− ψ)(1− VES)(1− VEI)− ψ(1− HES)(1− HEI)
.

(S6)
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