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Abstract

Background There is emerging evidence suggesting a link between ambient heat exposure and Chronic

obstructive pulmonary disease (COPD) hospitalisations. Individual and contextual characteristics can affect

population vulnerabilities to COPD hospitalisation due to heat exposure. This study quantifies the effect of

ambient heat on COPD hospitalisations and examines population vulnerabilities by age, sex and contextual

characteristics.

Methods Individual data on COPD hospitalisation at high geographical resolution (postcodes) during

2007-2018 in England was retrieved from the small area health statistics unit. Maximum temperature at 1

km×1km resolution was available from the UK Met Office. We employed a case-cross over study design and

fitted Bayesian conditional Poisson regression models. We adjusted for PM2.5, O3, relative humidity and

national holidays, and examined effect modification by age, sex, green space, average temperature, deprivation

and urbanicity.

Results After accounting for confounding, we found a 0.52% (95% Credible Interval 0.22% to 0.84%) increase
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in the hospitalisation risk for every 1oC increase in the lag 0-2 temperatures above 23.8oC. We reported

weak evidence of an effect modification by sex and age. We found a strong spatial determinant of the COPD

hospitalisation risk due to heat exposure, that was alleviated when we accounted for contextual characteristics.

Assuming a causal effect, 6 280 (95% CrI 3 441 to 8 993) COPD hospitalisations were attributable to heat

exposure.

Conclusion Our study suggests that resources should be allocated to support the public health systems, for

instance through developing or expanding heat-health alerts, to challenge the increasing future heat-related

COPD hospitalisation burden.

2

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.21265213doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.19.21265213
http://creativecommons.org/licenses/by/4.0/


Introduction

Chronic obstructive pulmonary disease (COPD) is the most prevalent chronic respiratory disease worldwide,

with point prevalence varying from 1.56% in Sub-saharan Africa to 6.09% in Central Europe, eastern Europe,

and central Asia in 2007 [1]. In England, COPD is a significant cause of morbidity and mortality, leading to

115,000 emergency admissions and 24,000 deaths per year [2]. The causes of acute exacerbation of COPD are

established and include factors such as sex, age, COPD severity and comorbidities [3]. Environmental triggers

of COPD hospitalisations such as air-pollution exposure have also been discussed extensively [4]. There is

emerging evidence suggesting a link between heat exposure and COPD hospitalisation, either directly or through

exacerbating the effects of factors such as ozone concentration that are associated with these events [5].

Several previous studies have examined the effect of high temperatures on COPD hospitalisations, reporting

higher rates with heat exposure [6, 7, 8] and heat waves [9, 10]. The majority of these studies are based on

aggregated data (at the city or regional level) [7, 10, 11, 9], whereas only a few considered individual data [6, 8].

Lack of individual data can lead to inadequate adjustment for confounding due to individual factors such as age,

physical activities, comorbidities etc., but also to ecological bias, as group level associations do not necessarily

reflect individual ones [12]. Although previous studies have assessed the vulnerability related to individual factors,

such as age and sex [8, 7], contextual characteristics, such as green space, average temperature, deprivation and

urbanicity, are still poorly characterised. Two of the previous studies have examined the spatial variation of the

temperature effect on COPD hospitalisation, using however very coarse geographical resolution [8, 7].

In this nationwide study in England during 2007-2018, we investigated the effect of heat exposure on COPD

hospital admissions using a semi-ecological framework. We took advantage of the individual data availability of

the outcome and adopted a case-crossover study design that naturally accounts for time-constant variables at the

individual patient level. Thus, we were able to account for factors like age, sex, comorbidities, deprivation as well

as lifestyle characteristics such as physical activity through the study design. We also adjusted for time-varying

confounders, such as air-pollution exposure and relative humidity and examined how the effect of temperature

is modified by age, sex and in space. Last, we assessed the extent to which contextual characteristics, such as

green space, deprivation, urbanicity and average temperature, contribute to the observed spatial variation of the

effect of temperature.
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Methods

Study population

We included inpatient hospital admissions from COPD in England during 2007-2018 as retrieved from Hospital

Episode Statistics (HES) data held by the UK Small Area Health Statistics Unit, provided by the Health

and Social Care Information Centre. Age, postcode of residence at time of the hospitalisation, and date of

hospitalisation were available for each record. We focused only on admissions with acute exacerbation of COPD

as primary diagnosis. We investigated the following diagnostic groups: J40–44 according to the International

Classification of Disease version 10 (ICD10) [13]. The analysis is restricted to June, July and August.

Exposure

Daily temperatures at 1 km×1 km resolution were available from the UK Met Office with methods described

elsewhere [14]. In brief, the daily temperature in each grid is estimated based on inverse-distance-weighted

interpolation of monitoring data, also accounting for latitude and longitude, elevation, coastal influence, and

proportion of urban land use. To assign daily temperature to health records, the postcode centroids of each patient

were spatially linked to the 1km× 1km grid cell, applying a 100m fuzziness to the postcode location to fulfil

governance requirements. We focused on daily maximum temperature averaged over the day of hospitalisation

and the preceding two days (lag0-2) to account for the cumulative health effects [15, 16, 17].

Confounders

To adjust for air-pollution we used hourly concentration of Ozone (O3) and atmospheric particulate matter that

has a diameter of less than 2.5 µm (PM2.5), as retrieved from the unified model produced by the Met Office

measured in µg/m3 [18]. The model outcome is then post-processed to correct for bias using observational

data [18]. For O3 we calculated the daily mean of the 8 hours of maximum O3, whereas for PM2.5 the daily

mean concentration. The geographical resolution of the air-pollutants is 12 km×12 km for the years 2007-2011

and 2km×2km during 2012-2019. We adjusted for relative humidity (daily and at 10 km×10 km grid) through

a model that integrates MetOffice data on daily observations from the meteorological stations and monthly

nationwide data as retrieved from HadUK [14], see Online Supplement Text S1.1. All confounders were included

at lag0-2. We also accounted for the effect of national holidays.
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Spatial effect modifiers

As a measure of green space we used the proportion of a region that is covered by green land such as woodland,

agricultural land, grassland and other natural vegetated land as classified in the Land Cover Map 2015 (LCM15)

[19]. Deprivation is measured using the Index of Multiple Deprivation (IMD) 2015, as retrieved from the Ministry

of Housing, Communities and Local Government [20]. IMD is calculated based on the following domains: a.

income, b. employment, c. education, skills and training, d. health and disability, e. crime, f. barriers to housing

and services and g. living environment deprivation [20]. Urbanicity (predominantly rural, urban with significant

rural and predominantly urban) is based on the Office for National Statistics (ONS) classification in 2011 [21].

We also incorporated the average temperature during 2007-2018 per lower tier local authority (LTLA; Online

Supplement Figure S1), as a measure of adaptation on higher temperatures [22].

Statistical methods

We used a time-stratified case-crossover design, commonly used for analysing the effect of transient exposures

[23, 24]. The temperature on the day of COPD hospitalisation (event day), is compared with the temperature

on non-event days. This design automatically controls for individual level factors, such as age, sex and ethnicity,

but also for confounding that do not vary or vary slowly over time, such as deprivation. We selected non-event

days on the same day of week and calendar month as the event day to avoid the overlap bias [25]. Thus we

could have maximum 4 non-event days per event day.

We modelled the effect of temperature on event compared to non-event days by specifying Bayesian hierarchical

conditional Poisson models, with a fixed effect on the event/non-event day grouping [26, 27]. As the effect of

temperature on health is typically non-linear [27], we used piecewise linear threshold models, to allow more

flexible fits, but retain ease of interpretation. We considered nationwide thresholds, specified as the 50th, 55th,

. . . , 95th percentile of the temperature. We selected the threshold based on the model that minimises the WAIC

[28, 29]. We then ran additional models allowing the effect of heat exposure (temperatures above the threshold)

to vary by sex (male and female), age (0−64, 65−74, 75+) and space (LTLA). For the spatial effect modification,

we used a modelling framework that borrows strength from the geographically adjacent LTLAs [30]. We fitted

the latter with and without including the spatial effect modifiers, while adjusting for confounders. The model is

described in details in the Online Supplement Text S1.2. Results are reported as medians and 95% Credible

Intervals (CrI; 95% probability that the true values lies within this interval) of % increase in the hospitalisation

risk [31] and posterior probabilities of a positive % increase. For the spatial varying risk we reported posterior
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probabilities that the % hospitalisation risk is larger than the average % hospitalisation risk.

Population attributable fraction

To calculate the population attributable fraction we extended [32] to incorporate the spatial dimension of the

effect of heat exposure. We first calculated the cumulative heat exposure – COPD hospitalisation relative

risk (RRs) for the s-th LTLA. We could then calculate the attributable fraction: AFs = (RRs − 1)/RRs. Let

ns be the number of hospitalisations at days above 23.8oC and Ns the total number of hospitalisation, then

AFs(ns/Ns) is the population attributable fraction, i.e. the number of COPD hospitalisations attributable to

summer heat exposure. The Bayesian framework adapted allows us to propagate all the random variable-specific

uncertainty in our estimates.

Sensitivity analyses

In a sensitivity analysis, we examined the robustness of the main results focusing on the period 2013-2018, when

the confounders are available at the highest resolution. We also repeated the main analysis for the lags 0, 1

and 2 independently. Both sensitivity analyses are conducted using the temperature threshold suggested in the

WAIC analysis while fully adjusting for confounders.

All analyses are run in R-NIMBLE (Numerical Inference for Hierarchical Models Using Bayesian and Likelihood Es-

timation) [33]. The code for running the analysis is online available at https://github.com/gkonstantinoudis/

COPDTempSVC.

Results

Population

We retrieved 1 570 288 COPD hospital records during 2007-2018 in England. After keeping the first record of

the same person with multiple records within 1 week and excluded 37 records with place of residence in Wales,

we had 279 579 records available for the analysis Fig 1.

Exposure, Confounders and Effect modifiers

The median maximum temperature across England has increased from 19.4oC in 2007 to 22.42oC in 2018, Online

Supplement Table S1. The median maximum temperature exposure is 20.44 at lag 0 for both event and non-event
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days, 20.78 for event and 20.45 for non-event days at lag 1, 20.49 for event and 20.47 for non-event days at lag 2

and 20.51 for event and 20.49 for non-event days at lag 0-2, Online Supplement Table S2. The distribution of

confounders across event and non-event days and the spatial distribution of the effect modifiers at the LTLA

level can be found on the Online Supplement, Table S2-4 and Fig. S2-4.

WAIC analysis

In the unadjusted models, the threshold minimising the WAIC was the 75th percentile of the temperature

(22.6oC), whereas the 85th percentile (23.8oC) in the fully adjusted models, Online Supplement Table S5. In

the unadjusted model, we found 1.3% (95% CrI 1.0% to 1.5%) increase in the COPD hospitalisation risk for

every 1oC increase in temperatures above 22.6oC. In the fully adjusted model, the effect was lower in magnitude

(0.52%, 95% CrI 0.22% to 0.84%) for temperatures above 23.8oC, Online Supplement Table S5. All subsequent

analyses were conducted using the 85-th percentile of the temperature as the threshold.

Age and sex effect modification

In the unadjusted models, the percentage of risk increase in hospitalisations for every 1oC increase in the heat

exposure vary from 0.81% (95% CrI 0.12% to 1.49%) in males 64 years old or younger to 1.47% (95% CrI 0.78%

to 2.12%) in females aged 65-74, Figure 2 and Online Supplement Table S6. After adjusting for the selected

confounders, the effects are smaller and the evidence weaker, Figure 2. In the fully adjusted models, the effects

vary from 0.27% (95% CrI -0.65% to 1.14%) in females 64 years old or younger to 0.75% (95% CrI -0.03% to

1.53%) in males 65-74 years old, Figure 2 and Online Supplement Table S6.

Spatial effect modification

The spatial variation of the effect of heat exposure on COPD hospitalisations is shown on Fig. 3. The risk of

COPD hospitalisation is less than 0.49% for every 1oC increase in heat exposure in South West, top left panel

Figure 3. In contrast, populations in the North East and West and in the South East are more vulnerable,

with the probability that the effect of heat exposure being larger than the overall effect of heat exposure being

between 0.6 and 1, top right panel Figure 3. After incorporating green space, deprivation, urbanicity, and average

temperature, the observed variation of the effect of temperature is alleviated, bottom panels Fig. 3.

We found weak evidence that populations in areas with higher proportions of green space, larger average

temperature and higher level of urbanicity are more resilient to COPD hospitalisations due to heat exposure,

Table 1. If we increase an LTLA’s proportion of green space by 1%, the spatial effect of the heat exposure
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changes by -1.54% (95% CrI -7.03% to 4.17%), Table 1. For every 1oC increase in the average temperature per

LTLA, the spatial effect of the heat exposure changes by -0.42% (95% CrI -1.47% to 0.56%), Table 1. The spatial

effect of heat exposure in urban LTLAs with significant rural and predominantly urban LTLAs changes by -1.67%

(95% CrI -4.39% to 0.82%) and -0.45% (95% CrI -2.82% to 1.88%) respectively compared with predominantly

rural LTLAs, Table 1.

Population attributable burden

Assuming a causal relationship, there were 6 280 (95% CrI 3 441 to 8 993) COPD hospitalisations attributable

to heat exposure during 2007-2018 in England. This accounts for 2.2% (95% CrI 1.2% to 3.2%) of the total

COPD hospitalisations during summer months. The proportion of COPD hospitalisations attributable to heat

exposure has a clear spatial structure and is more than 3% in East Midlands, East of England, London and

South East, while it is below 1% in the South West (Fig. 4).

Sensitivity analysis

Focusing on the years 2013-2018, when the confounders are available at higher geographical resolution, the effect

of heat exposure in the fully adjusted model remained consistent with the main analysis (0.52%, 95% CrI 0.14%

to 0.87%). The lag with the highest influence was lag 1 with the risk of COPD hospitalisation being 0.73%

(95% CrI 0.48% to 0.98%) for every 1oC increase in heat exposure. For lag0 and lag2 the point estimate was

positive, but the interval included zero, 0.03% (95% CrI -0.20% to 0.29%) and 0.23% (95% CrI -0.01% to 0.50%)

respectively.

Discussion

This is the first nationwide case-crossover study in England investigating the short-term effects of heat exposure

on COPD hospitalisation. After accounting for confounding, the results indicate that for every 1oC increase in

heat exposure the COPD hospitalisation risk increases by 0.53% (95% CrI 0.22% to 0.84%). We found weak

evidence of an effect modification by sex and age. The attributable burden of heat exposure has a clear spatial

structure, with areas in East Midlands, East of England, London and South East affected the most. Assuming a

causal relationship, 2.2% (95% CrI 1.2% to 3.2%) of COPD hospitalisations could be attributed to heat exposure

during the summer months between 2007 and 2018.

The main strength of our study is the availability of postal codes, exploiting the highest spatial resolution
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available for linkage with the exposure and confounding factors. Such geographical resolution is expected to

minimise misclassification resulting from any spatial misalignment between the outcome and exposure/confounder.

The availability of individual data for the outcome also minimises ecological bias [12], while guaranteeing high

statistical power due to the population-based nature of the study. We ascertained hospital records from NHS

digital covering almost all hospitalisation occurred in the public sector in England during 2007-2018.

Our study has some limitations. First, residential temperature does not reflect the actual temperature

exposure of an individual, as individuals are exposed to different temperatures in the course of the day. In

addition to this, the outdoor temperature, as provided by Met Office does not reflect the actual temperature

exposure inside the house. Nevertheless, in line with most of the studies in this field and given the lack of

more precise individual exposure data, we used residential temperature outdoors as a proxy for the individual

exposure. The resulting misclassification is expected to be non-differential and bias the effect estimates towards

the null. To allow for flexible fits, we used a linear threshold model. More complex relationships may need

multiple thresholds, however the WAIC analysis suggested that the linearity assumption suffices. Although we

adjusted for the main COPD hospitalisation environmental contributors, we could not evaluate other potential

confounders (eg, seasonal allergies and pollen counts) due to the lack of available data. Additionally, exposure to

other air-pollutants, such as NO2, SO2, might also confound the observed relationship; we decided to adjust for

PM2.5 and O3 as they seem to have a larger impact on COPD hospitalisation and to avoid potential collinearity

with other pollutants.

Our results can be compared with studies examining COPD hospital admissions and ambient temperatures

during the hottest months [7, 11, 34, 35]. Our study is in line with a US study including 12.5 million participants

that found a 4.7% (95% CrI 3.9 to 5.5%) increase in the COPD hospitalisation rate at lag 0 for every 5.6

oC increase in the average daily temperature during May-September [7]. Our study is also in line with a

case-crossover study in Brazil that reported a 5% (95% CrI 4% to 6%) increase in the hospitalisation odds for

every 5 oC increase in the average temperature (0-3 lags) during the 4 hottest months [11]. In contrast, a study

in New York reported a 7.64% increase in the risk of COPD admissions for each 1 oC increase in daily mean

apparent temperature above 32 oC [34]. A study in 12 European cities, reported a 4.5% (95% CrI 1.9 to 7.3) and

3.1% (95% CrI 0.8 to 5.5) increase in total respiratory admissions (the majority being COPD) in Mediterranean

and North-Continental cities, respectively, for every for each 1 oC increase in the maximum apparent temperature

(lag 0–3 days) above the 90th percentile [36]. A study in Taiwan reported negative correlation between the

average daily temperature and emergency admissions with COPD, but a 14% increase in the emergency COPD

admissions when the diurnal temperature range is larger than 9.6 oC [35].
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We found weak evidence of an effect modification by age and sex, but discrepancies in vulnerability in space.

A previous study in Brazil, reported higher COPD hospitalization odds for women and the elderly [11]. In our

study, we observed some evidence that women and elderly are more vulnerable, but only in the unadjusted

models. In the fully adjusted models, in line with a previous study in the US [7], the age group 65-74 was the

most vulnerable. Some spatial variability by regions or counties was also observed in previous studies in Brazil

and the US, potentially due to socioeconomic characteristics or exposure to higher average summer temperatures

[11, 7]. In our study, green space, average temperature, deprivation and urbanicity explained some of the

observed variation in the observed spatial vulnerabilities, the evidence of an effect was however inconclusive.

Our results are lower in magnitude compared to all previous studies [11, 7, 34, 36, 35]. Differences in the

adjustment either for individual (through the study design; only [11] is a case-crossover study) or environmental

confounding might explain the observed discrepancy. While [36, 34] and [7] have adjusted for air-pollution,

the study in Brazil has not [11]. All previous studies had available coarser geographical resolution (city or

county level), leading to inadequate adjustment for confounding, as confounders, such as air-pollution, vary in

high geographical resolution [37]. Differences in the definition of the outcome can also lead to the observed

discrepancy as previous studies have used the apparent temperature (a metric that combines air temperature,

relative humidity and wind speed) [34, 36] or diurnal temperature range [35], while others, more in line with

our approach, the daily mean [11, 7]. Last, decisions regarding the selection of the temperature threshold, the

warm-season months and the lags to be considered can also partly explain the observed difference in the effect

estimates.

Acute COPD episodes are associated with airways and systemic inflammation but also with cardiovascular

comorbidity and may be triggered by exposures to heat [36]. Exposure to ambient heat can lead to heat

dissipation through hyperventilation and may trigger dynamic hyperinflation and dyspnoea in patients with

pre-existing COPD [11, 7]. The higher risk of COPD hospitalisation in the 65-74 age group observed in our study

could be explained by the inability of this frail population to dissipate excess heat through circulatory adjustment,

and exposure to extreme temperatures increases their risk of developing pulmonary vascular resistance secondary

to peripheral pooling of blood or hypovolemia [36]. In addition, elderly populations are of higher risk to have

cardiovascular comorbidities, which are hypothesised to increase the risk of COPD hospitalisations associated

with heat exposure. Nevertheless, such evidence is inconclusive [36]. We also reported a weak protective effect

of higher average temperatures, arguing towards protective adaptation to heat, possibly related to differences

in housing stock or behavior during hot weather [11]. We observed weak evidence of increased resilience in

populations in more deprived areas and in areas with higher degrees of urbanicity. Although this evidence is
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inconclusive, potential factors that could confound the observed effect include differences in demographics, for

instance ethnicity.

Previous studies examining future trends in COPD, population demographics and temperature changes

have predicted a higher COPD prevalence, a raise in the average age of the population and increased global

temperatures [38, 39, 40]. Resources should be allocated to support the preparedness and resilience of public

health systems, for instance through developing or expanding heat-health alerts, to challenge the increasing heat

exposure related COPD hospitalisation burden.
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1 Tables

Table 1. Median, 95% credible intervals of the percentage change of the heat exposure related spatial

hospitalization risk due to green space, average temperature, index of multiple deprivation and urbanicity and

probability that this percentage change is higher than 0.
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Table 1

Effect modifier Percentage risk change Pr(% risk>0)

Green space2 -1.54 (-7.03 to 4.17) 0.29

Average temperature3 -0.42 (-1.47 to 0.56) 0.21

IMD4

Q1 1

Q2 0.77 (-1.30 to 2.98) 0.78

Q3 1.31 (-1.05 to 3.79) 0.86

Q4 0.44 (-2.09 to 2.90) 0.63

Q5 0.96 (-1.88 to 4.05) 0.77

Predominantly Rural 1

Urban with significant rural -1.67 (-4.39 to 0.82) 0.10

Predominantly urban -0.45 (-2.82 to 1.88) 0.34

1 Posterior probability that the percentage change is larger than zero.

2 Green space is the proportion of a region covered by green land such as woodland, agricultural land, grassland

and other natural vegetated land.

3 The average temperature is the mean summer temperature per LTLA during 2007-2018 oC.

4 Index of multiple deprivation. Q1 denotes the most deprived areas, whereas Q5 the least deprived.
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2 Figures

Fig. 1 Flowchart of COPD hospitalisations.

Fig. 2 Percentage risk of COPD hospitalisation for every 1oC increase in the temperatures above 23.8oC during

the summer months between 2007 and 2018, for the unadjusted (left panel) and fully adjusted models. Results

are stratified by age (0-64, 65-74, 75+, total) and sex (male, female, total).

Fig. 3 Median spatial COPD hospitalisation risk for every 1oC increase in the temperatures above 23.8oC and

posterior probability that the risk is larger than the overall risk in England during the summer months between

2007 and 2018. The top panels refer to the model without incorporating contextual characteristics, whereas the

panels below otherwise. All models were fully adjusted.

Fig. 4 The percentage of COPD hospitalisations by lower tier local authorities attributed to exposure to summer

temperatures above 23.8oC during 2007-2018 in England. This effect assumes a causal relationship between heat

exposure and COPD hospitalisation risk.
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Fig. 1

1 570 288 COPD
records dur-
ing 2007-2018

Exclude 48 552 same
person records
within 1 week

Remove 37 records
outside England

Remove 1 242 120
records that did
not occurred in
summer months

279 579 records
available for analysis
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Fig. 2
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Fig. 3
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Fig. 4

23

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.21265213doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.19.21265213
http://creativecommons.org/licenses/by/4.0/

	Tables
	Figures

