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Abstract 

The downregulation of miRNA-22 in triple negative breast cancer (TNBC) is associated with 

upregulation of eukaryotic elongation 2 factor kinase (eEF2K) protein, which regulates tumor 

growth, chemoresistance, and tumor immunosurveillance. Moreover, exogenous administration of 

miRNA-22, loaded in nanoparticles to prevent degradation and improve tumor delivery (termed 

miRNA-22 nanotherapy), to suppress eEF2K production has shown potential as an investigationa l 

therapeutic agent in vivo. To evaluate the translational potential of miRNA-22 nanotherapy, we 

developed a multiscale mechanistic model, calibrated to published in vivo data and extrapolated to 

the human scale, to describe and quantify the pharmacokinetics and pharmacodynamics of 

miRNA-22 in virtual patient populations. Our analysis revealed the dose-response relationship , 

suggested optimal treatment frequency for miRNA-22 nanotherapy, and highlighted key 

determinants of therapy response, from which combination with immune checkpoint inhibitors 

was identified as a candidate strategy for improving treatment outcomes. More importantly, drug 

synergy was identified between miRNA-22 and standard-of-care drugs for TNBC, providing a 

basis for rational therapeutic combinations for improved response.  
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Introduction 

 

Triple negative breast cancer (TNBC) accounts for up to 10-12% of all breast cancer cases, and 

has a 5-year survival that is 8-16% lower than the hormone-receptor positive (HR+) disease 

subtype (1). Mechanisms to overcome the aggressiveness, histopathological heterogeneity, and 

prevalence of TNBC in younger women represent major unmet needs in contemporary cancer 

medicine (2). The severity of TNBC is further aggravated due to the lack of broadly-applicable 

targeted therapies, and by a high-rate of early metastases to the central nervous system and lungs 

(3). PARP inhibitors, such as olaparib and talazoparib, have been approved for TNBC with 

germline BRCA1 or BRCA2 gene mutations, but these are only reported in 15.4% of cases (4). 

Despite recent advances in developing therapeutics for treating TNBC such as immune checkpoint 

inhibitor immuotherapy (5), chemotherapy remains the most common recommended systemic 

regimens for TNBC, even though rapid development of chemoresistance is common (6).  

 

An emerging body of evidence has supported key functional roles of microRNAs (miRNAs) in 

sustaining tumor proliferation, resisting growth inhibitors and cell death, inducing tumor invasion 

and metastasis, and promoting angiogenesis (7), suggesting that miRNAs may function as a 

valuable oncologic therapy target (8-10). Amongst the multitude of miRNAs, miRNA-22 (a chain 

of non-coding RNA consisting of 22 nucleotides) has been found to play a critical role in cancer 

initiation and progression processes (11, 12). Indeed, miRNA-22 has been extensively studied as 

a regulator of tumor suppressor genes like p53 (13) and as a repressor of the oncogene c-Myc (14) 

in many different cancers, including TNBC (12), hormone-dependent breast cancer (15), and colon 
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cancer (16), and for its roles in metastasis suppression in breast and ovarian cancer (17), in the 

sensitization of esophageal carcinoma to 𝛾-ray radiation (18).  

 

miRNA-22 has been shown to be downregulated in TNBC, which reduces its inhibitory control 

over the eukaryotic elongation 2 factor kinase (eEF2K), a tumor growth-promoting and 

chemoresistance-inducing protein (12, 19). Importantly, eEF2K was also found to enhance the 

expression of PD-L1, and is thus implicated for its role in blocking tumor immunosurveillance (20). 

Inhibiting these tumorigenic effects of eEF2K via exogenous administration of miRNA-22 

represents a potential therapeutic approach to improve the response of TNBC to chemotherapy 

and/or immunotherapy with immune checkpoint inhibitors. However, naked miRNA has a short 

half-life due to its vulnerability to plasma ribonucleases, shows limited tumor penetration and 

cellular uptake due to its negative charge, and has off-target effects due to non-specific delivery 

(21). To overcome these shortcomings, nanoparticle (NP)-based drug delivery systems are being 

studied to improve the delivery of miRNAs to tumor cells (21). While the application of 

nanomaterials in cancer has been promising in improving tumor imaging and drug delivery (4, 22-

27), challenges associated with low tumor deliverability due to off-target accumulation and limited 

tumor penetration continue to limit their clinical success (28). To this end, mechanistic 

mathematical modeling can be a valuable in-silico tool to help overcome this challenge, by 

furthering our understanding of NP-mediated miRNA-22 delivery in TNBC in vivo.  

 

Mathematical modeling has been used to investigate the mechanisms relevant to tumor response 

to miRNA-based treatment. For instance, a system of ordinary differential equations (ODEs) with 

a delay term has been used to study feedback loops between the oncogenes Myc, EF2, and miRNA-
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17-92 (29). This model was subsequently expanded by integrating nine different mechanisms to 

evaluate how miRNAs regulate translation (30), and to study how the inactivation of a transcription 

factor is involved in cardiac dysfunction and cancer  (31). In another notable study (32), an energy 

availability pathway involving miRNA-451 was analyzed in order to elucidate the difference 

between invasion and proliferation regimes in cancer cells, which was accomplished by combining 

a pair of ODEs governing the miRNA and glucose concentration with a system of partial 

differential equations (PDEs) employing transport mechanisms, such as diffusion, chemotaxis, and 

haptotaxis. Additionally, a signaling pathway relating miRNA-21, miRNA-155, and miRNA-205 

to the proliferation and apoptosis of non-small-cell lung cancer cells has been examined with a 

series of modeling studies (33, 34). A noteworthy feature of the mathematical approach in (34) is 

the inclusion of a directional migration term, which takes into account the competition for available 

space between cells under the assumption of a logistic growth rate for cancer cells.  

 

While previous modeling works focused on the molecular interactions of miRNAs associated with 

their therapeutic outcome, they lacked the inclusion of a viable drug delivery system and the related 

pharmacokinetics and drug delivery mechanisms required to assess the feasibility of miRNAs as a 

systemically-deliverable therapy for cancer. Therefore, to support the development of miRNA-22 

as a viable therapy for TNBC, here we present a mechanistic mathematical model, formulated as 

a system of ODEs, to describe the tumoral delivery of systemically administered miRNA-22-

loaded NPs and the pharmacodynamics of miRNA-22 in the context of TNBC growth. Our 

multiscale model incorporates processes pertinent to systemic NP pharmacokinetics, intratumoral 

transport of NPs, and the known molecular interactions of miRNA-22 with its associated 

oncogenes to predict TNBC growth dynamics. Following model calibration with in vivo data that 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.19.21265154doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.19.21265154
http://creativecommons.org/licenses/by-nc/4.0/


was then allometrically scaled to humans, we simulated clinically relevant treatment of TNBC 

with miRNA-22 to obtain the dose-response relationship at the individual and population scales, 

thus helping to reveal the optimal dose and frequency of treatment for each individual “virtual” 

patient. Local and global sensitivity analyses of key model parameters revealed the importance of 

molecular interactions, tumor vascularization, miRNA-22 potency, NP characteristics, and 

immune checkpoint effects of anti-PD-L1 in governing the outcome of miRNA-22 therapy, thus 

highlighting some of the key determinants of treatment outome and suggesting the potential benefit 

of combination with immune checkpoint inhibitors. Drug synergy was identified to occur between 

miRNA-22 and standard-of-care therapies (including both chemotherapy and immunotherapy) 

studied in this work. As a result, our mechanistic model may serve as a useful computational means 

to help design and optimize a therapeutic framework for future clinical trials of miRNA-22.  

 

 

Methods 

 

Mathematical model development 

We present a multiscale mechanistic model to simulate the in vivo and translational 

pharmacokinetics (PK) and pharmacodynamics (PD) of NP-mediated miRNA-22 therapy in TNBC, 

alone or in combination with chemotherapy or immunotherapy (here collectively referred to as 

agents), and thus investigate the factors governing the delivery of agents and their therapeutic 

efficacy. The model consists of two main compartments (Figure 1), represented by the plasma and 

tumor, where the latter is sub-compartmentalized into vascular, interstitial, cellular membrane, and 

cytosolic space. After injection into the plasma compartment, agents are cleared through various 
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physiological processes, which (along with the volume of distribution of agents) governs their 

systemic (i.e., plasma) pharmacokinetics. From the plasma compartment, bi-directional, perfusion-

mediated delivery characterizes the transport of agents into the tumor vasculature, from where the 

extravasation of agents across the permeable tumor vasculature introduces them into the tumor 

interstitium. Once in the interstitium, given the absence of advection due to high interstitial fluid 

pressure (35, 36), the agents undergo diffusion to reach the interstitium-cell membrane interface, 

from where based on the type of agent, specific biophysical processes occur to ensure delivery to 

the target site to invoke the pharmacodynamic effects of the agents. For instance, NPs undergo 

endocytosis into cancer cells where they release miRNA-22 in cancer cell cytosol, whereas free 

drugs simply diffuse into the cytosol and antibodies bind to their corresponding cell surface 

receptors (e.g. PD-L1 in the current context).  

 

Following delivery of agents to the target site, the pharmacodynamic component of the model is 

then engaged such that miRNA-22 acts by inhibiting the production of eEF2K protein, leading to 

inhibition of tumor growth. Also, because there is growing evidence in the literature that eEF2K 

induces the production of PD-L1 (20), this pathway was incorporated in the model to explore the 

engagement of immune checkpoints by eEF2K for tumor survival. The reference chemotherapeutic 

(i.e., doxorubicin) acts by inducing apoptotic cell death, whereas anti-PD-L1 antibodies act by 

inhibiting the tumor protective effects of PD-L1. Note that the mechanism of action of anti-PD-L1 

antibodies modeled here includes the degradation of PD-L1 protein. Simulations and analysis of 

the model will help to provide insights into the systemic and tumoral pharmacokinetics of 

therapeutic agents and nanoparticles, along with the effects on tumor progression. We then use the 

model as an in silico tool to simulate virtual clinical trials in order to explore the effects of patient 
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variability and other system parameters on treatment outcomes with mono- or combination 

therapies.  

 

The various transport and pharmacological processes described above and shown in Figure 1 have 

been formulated into a system of ordinary differential equations (ODEs; Eqs. 1–17) to obtain the 

temporal evolution of model behaviors of interest, including tumor growth. Equations pertaining to 

various compartments and biological processes are described below:  

 

Equation for NP mass kinetics in plasma (𝑁P(𝑡)):  

𝑑𝑁P (𝑡)

𝑑𝑡
= (

𝑁V (𝑡)

𝑉B,V
−

𝑁P(𝑡)

𝑉P
) ∙ 𝑄 ⋅ 𝐵(𝑡) − 𝑘Cl ⋅ 𝑁P(𝑡),    𝑁P(𝑡) = {

0, 𝑡 = 0
𝑁0, 𝑡 = 𝑖

 (1) 

where 𝑉B,V  (= 𝑓𝑣 ∗ 𝐵(𝑡)) and 𝑉P  are volumes of tumor vasculature and plasma compartments, 

respectively; 𝑓𝑣  is the vascular volume fraction of the tumor; 𝐵(𝑡) represents tumor volume; 𝑄 

represents plasma flow rate; 𝑘Cl represents systemic clearance of NPs; 𝑁0 is the injected dose of 

NPs; and 𝑖  represents the injection times (in weeks) post inoculation of tumor in mice ( 𝑖 =

2, 3, 4, 5). Note that 𝑄 (units, mL ∙ mL−1 ∙ wk−1) obeys the following empirical relationship with 

tumor volume (𝐵(𝑡)): 𝑄 = 2843 ∙ 𝑒−0.65∙𝐵(𝑡), obtained by fitting a monoexponential function to 

data from literature (37). Note that for human simulations, 𝑄 was assumed to be 1512 mL ∙ mL−1 ∙

wk−1 irrespective of tumor size (38). Given that tissue density is ~1 g ∙ mL−1, tumor blood flow 

rate is provided in the units of mL ∙ mL−1 ∙ wk−1 in our work, which is numerically equivalent to 

mL ∙ g−1 ∙ wk−1 as typically used in the literature. In addition, NP clearance in mice 𝑘Cl (units, 

wk−1) varies empirically with NP diameter (𝜙NP; units, cm) as: 𝑘Cl =
ln(2)

0.11∙𝑒−1.33∙ϕNP−0.001∙𝑒−9.7∙ϕNP
, 
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obtained by fitting the plasma half-life data of quantum dots of varying sizes from the literature (39, 

40). For human simulations, the value of 𝑘Cl was allometrically scaled (see next Section).  

 

Equation for NP mass kinetics in tumor vasculature (𝑁V(𝑡)):  

𝑑𝑁V (𝑡)

𝑑𝑡
= (

𝑁P(𝑡)

𝑉P
−

𝑁V (𝑡)

𝑉B ,V
)∙ 𝑄 ⋅ 𝐵(𝑡) − 𝑃NP ⋅ 𝑆 ⋅ 𝑁V(𝑡),  𝑁V(0) = 0  (2) 

where 𝑃NP indicates NP permeability across tumor vasculature and 𝑆 is the tumor vascular surface 

area per unit tumor volume (units, cm2/cm3 ). In vivo, 𝑆 relates to tumor volume 𝐵(𝑡) as 𝑆 =

0.26 ∙ 𝑒 −4.5∙𝐵(𝑡) + 138 ∙ 𝑒−0.04∙𝐵(𝑡), obtained empirically from the literature (41), and 𝑃NP (units, 

cm ∙ wk−1) is a function of tumor vascular porosity and the ratio of NP size (𝜙NP) to tumor vascular 

pore size (𝜙pore; units, cm) (42). For human simulations, 𝑆 was fixed at 135 cm2 cm3⁄  irrespective 

of tumor size (41).  

 

Equation for NP mass kinetics in tumor interstitium (𝑁I(𝑡)):  

𝑑𝑁I (𝑡)

𝑑𝑡
= 𝑃NP ⋅ 𝑆 ⋅ 𝑁𝑉(𝑡) −

𝐷NP

𝐿2
⋅ 𝑁I(𝑡),    𝑁I(0) = 0  (3) 

where 𝐷NP is the diffusivity of NPs in tumor interstitium, and 𝐿 is the characteristic interstitial 

distance between tumor vessels and cancerous cells, referred to herein as the intercapillary length 

in the tumor.  

 

Equation for NP mass kinetics in cancer cell membrane (𝑁M(𝑡)):  

𝑑𝑁M (𝑡)

𝑑𝑡
=

𝐷NP

𝐿2
⋅ 𝑁I(𝑡) − 𝑘endo ∙ 𝑁M(𝑡),    𝑁M(0) = 0  (4) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.19.21265154doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.19.21265154
http://creativecommons.org/licenses/by-nc/4.0/


where 𝑘endo (units, wk−1) is the rate of endocytosis of NPs into tumor cells, and may be obtained 

by equating work done by the membrane motor proteins against surface tension of cell membrane 

(43).  

 

Equation for NP mass kinetics in cancer cell cytosol (𝑁C(𝑡)):  

𝑑𝑁C (𝑡)

𝑑𝑡
= 𝑘endo ∙ 𝑁M(𝑡) − 𝛿NP ⋅ 𝑁C(𝑡),    𝑁C(0) = 0  (5) 

where 𝛿NP is NP degradation rate.  

 

Equation for miRNA concentration kinetics in cancer cell cytosol (𝐶M(𝑡)):  

𝑑𝐶M(𝑡)

𝑑𝑡
=

𝑔M
0

1+𝜀B∙𝐵(𝑡)
+ 𝑘rel ⋅

𝑁C(𝑡)∙𝑀0∙𝑒−𝑘rel∙(𝑡−𝑖)

𝑉B,C
− 𝛿M ⋅ 𝐶M(𝑡),  𝐶M(0) =

𝑔M
0

𝛿M
  (6) 

where 𝑔M
0  is the intrinsic production rate of miRNA-22 in the tumor cytosol; 𝜀B is the efficiency of 

tumor on inhibiting miRNA-22 production; 𝑀0 is the mass of miRNAs loaded in a single NP; and 

𝑉B,C is the cytosolic volume of tumor (= 𝑓𝑐 ∗ 𝑓cy ∗ 𝐵(𝑡)), where 𝑓𝑐  (= 0.4) is the cancer cell volume 

fraction of a tumor (44) and 𝑓cy (= 0.4) is the cytoplasmic volume fraction of a cancer cell (45). 

𝑘rel is release rate of miRNAs from the endocytosed NP; and 𝛿M is the degradation rate of miRNAs. 

Note that the initial condition 𝐶M(0) is estimated at the trivial steady state of the system when 

𝐵(0) = 0 and no exogenous administration of miRNAs has occured, such that 𝐶M(0) = 𝑔M
0 /𝛿M.  

 

Equation for anti-PD-L1 antibody concentration kinetics in plasma (𝐶Ab,P(𝑡)):  

𝑑𝐶Ab,P(𝑡)

𝑑𝑡
= ∑ 𝑘abs ∙

DoseAb

𝑉pc
∙ 1𝑡≥𝑗(𝑡) ∙ 𝑒−𝑘abs∙(𝑡−𝑗)

𝑗 in 𝑄𝑇 +
(𝐶Ab,V(𝑡)−𝐶Ab,P(𝑡))∙𝑄⋅𝐵(𝑡)−ClAb⋅𝐶Ab,P(𝑡)

𝑉P
,  

𝐶Ab,P(𝑡) = 𝐶0,Ab (7) 
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where DoseAb represents the dose of antibodies; 𝑘abs is the absorption rate constant of antibodies 

from the peritoneum into plasma after intraperitoneal (IP) injection; 𝑉pc is the volume of peritoneal 

fluid in female mice (0.1 mL) (46); ClAb is the systemic clearance of antibodies; and 𝑗 represents 

the injection times (in weeks) post inoculation of tumor in mice defined in the set 𝑄𝑇 (= 1, 1.71,

2.43, 3.14, 3.86, 4.57). Note that in mouse experiments, antibodies were given IP; therefore, the 

initial plasma concentration of antibodies 𝐶0,Ab  is zero. However, for human simulations, 

immunotherapy was administered as an intravenous (IV) bolus injection, therefore the initial plasma 

concentration of antibodies 𝐶0,Ab is non-zero and is calculated based on the initial dose (DoseAb) 

and systemic volume of distribution (𝑉D,Ab) of the given antibody. As a result, the first term of Eq. 

7 that accounts for systemic absorption of the drug from the peritoneum is removed during human 

simulations.  

 

Equation for anti-PD-L1 antibody concentration kinetics in tumor vasculature (𝐶Ab,V(𝑡)):  

𝑑𝐶Ab,V(𝑡)

𝑑𝑡
= (

𝐶Ab,P(𝑡)−𝐶Ab,V(𝑡)

𝑉B ,V
)∙ 𝑄 ⋅ 𝐵(𝑡) − 𝑃Ab ⋅ 𝑆 ⋅ 𝐶Ab,V(𝑡),  𝐶Ab,V(0) = 0  (8) 

where 𝑃Ab indicates antibody permeability across tumor vasculature.  

 

Equation for anti-PD-L1 antibody concentration kinetics in tumor interstitium  (𝐶Ab,I(𝑡)):  

𝑑𝐶Ab,I(𝑡)

𝑑𝑡
= 𝑃Ab ⋅ 𝑆 ⋅ 𝐶Ab,V(𝑡) −

𝐷Ab

𝐿2
⋅ 𝐶Ab,I(𝑡),    𝐶Ab,I(0) = 0  (9) 

where 𝐷Ab is the diffusivity of antibodies in tumor interstitum.  

 

Equation for anti-PD-L1 antibody concentration kinetics in cancer cell membrane (𝐶Ab,M(𝑡)):  

𝑑𝐶Ab,M(𝑡)

𝑑𝑡
=

𝐷Ab

𝐿2
⋅ 𝐶Ab,I(𝑡) − 𝛿Ab ⋅ 𝐶Ab,M(𝑡),    𝐶Ab,M(0) = 0  (10) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.19.21265154doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.19.21265154
http://creativecommons.org/licenses/by-nc/4.0/


where, 𝛿Ab is the degradation rate of antibodies.  

 

Equation for doxorubicin concentration in plasma (𝐶D,P(𝑡)):  

𝑑𝐶D,P(𝑡)

𝑑𝑡
=

(𝐶D,V(𝑡)−𝐶D,P(𝑡))∙𝑄⋅𝐵(𝑡)−Cldox⋅𝐶D,P(𝑡)

𝑉P
,    𝐶D,P(𝑡) = {

0,         𝑡 = 0
𝐶0,D ,   𝑡 = 𝑖  (11) 

where Cldox is the plasma clearance of doxorubicin; 𝐶0,D is the initial concentration of doxorubicin 

calculated based on the injected dose of 4mg/kg and the given volume of distribution (Table 2); 𝑖 

represents the injection times (in weeks) post inoculation of tumor in mice (𝑖 = 1, 2, 3).  

 

Equation for doxorubicin concentration in tumor vasculature (𝐶D,V(𝑡)):  

𝑑𝐶D,V(𝑡)

𝑑𝑡
=

(𝐶D,P(𝑡)−𝐶D,V(𝑡))∙𝑄⋅𝐵(𝑡)+𝐽⋅𝑆

𝑉T,V
,     𝐶D,V(0) = 0  (12) 

where 𝐽 is the diffusive flux of doxorubicin across the tumor vasculature into tumor interstitium, 

and is given by 𝐽 = −𝐷dox ⋅
(𝐶D,V(𝑡)−𝐶D,I(𝑡))

Δ𝑥
. Here, 𝐷dox is the diffusivity of doxorubicin in tumor 

interstitium and Δ𝑥 is the thickness of blood capillary wall (5 µm) (47).  

 

Equation for doxorubicin concentration in tumor interstitium (𝐶D,I(𝑡)):  

𝑑𝐶D,I(𝑡)

𝑑𝑡
= −

𝐽⋅𝑆

𝑉T,I
−

𝐷dox

𝐿2
⋅ 𝐶D,I(𝑡),     𝐶D,I(0) = 0  (13) 

 

Equation for doxorubicin concentration in tumor cytosolic space (𝐶D,C(𝑡)):  

𝑑𝐶D,C(𝑡)

𝑑𝑡
=

𝐷Ab

𝐿2
⋅ 𝐶D,I(𝑡) − 𝛿𝐷 ⋅ 𝐶D,C(𝑡),     𝐶D,C(0) = 0  (14) 

where 𝛿D is the degradation rate of doxorubicin in the cytosolic space.  
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Equation for eEF2K concentration kinetics in cancer cell cytosol (𝐶E(𝑡)):  

𝑑𝐶E(𝑡)

𝑑𝑡
= 𝑔E

0 ⋅ (1 +
𝐴B,E∙𝐵(𝑡)

𝐾B,E+𝐵(𝑡)
) − 𝛿𝐸 ⋅ (1 +

𝐴M,E∙𝐶M

EC50
M +𝐶M

) ∙ 𝐶E(𝑡),  𝐶E(0) = 𝐶E
0  (15) 

where 𝑔E
0 is the basal production rate of eEF2K protein in tumor cytosol; 𝐴B,E is the stimulation 

factor of tumor effects on eEF2K production; 𝐾B,E is the Michaelis-Menten constant for tumor 

effects on eEF2K production; 𝛿E is the degradation rate of eEF2K protein; 𝐴M,E is the stimulation 

factor of miRNA-22 effects on eEF2K protein degradation; EC50
M  is the half-maximal effective 

concentration of miRNA-22 for its effect on eEF2K protein degradation; and 𝐶E
0  is the intial 

concentration of eEF2K protein.  

 

Equation for PD-L1 concentration kinetics in cancer cell membrane (𝐶P(𝑡)):  

𝑑𝐶P(𝑡)

𝑑𝑡
= 𝑔P

0 ⋅ (1 +
𝐴E,P∙𝐶E(𝑡)

𝐾E,P+𝐶E(𝑡)
) − 𝛿P ⋅ (1 +

𝐴Ab,P∙𝐶Ab,M(𝑡)

EC50
Ab+𝐶Ab,M(𝑡)

)∙ 𝐶P(𝑡), 𝐶P(0) = 𝐶P
0  (16) 

where 𝑔P
0 is the basal production rate of PD-L1 protein in tumor cytosol; 𝐴E,P is the stimulation 

factor of eEF2K effects on PD-L1 production; 𝐾E,P is the Michaelis-Menten constant for eEF2K 

effects on PD-L1 production; 𝛿P is the degradation rate of PD-L1 protein; 𝐴Ab,P is the stimulation 

factor of anti-PD-L1 antibody effects on PD-L1 degradation; EC50
Ab is the half-maximal effective 

concentration of anti-PD-L1 antibody for its effect on PD-L1 protein degradation; and 𝐶P
0 is the 

intial concentration of PD-L1 protein.  

 

Equation for tumor volume kinetics (𝐵(𝑡)):  

𝑑𝐵(𝑡)

𝑑𝑡
= 𝜎 ∙ (1 +

𝐴E,B∙𝐶E(𝑡)

𝐾E,B+𝐶E(𝑡)
) ∙ (1 −

𝐵(𝑡)

𝐵∗
) ⋅ 𝐵(𝑡) −

𝛿B,I

1+𝜀P⋅𝐶P(𝑡)
⋅ 𝐵(𝑡) − 𝛿B,C ∙

(
𝐶D,C(𝑡)

EC50
𝐷 ∙(1+

𝐴E,D∙𝐶E(𝑡)

𝐾E,D+𝐶E(𝑡)
)+𝐶D,C(𝑡)

) ∙ 𝐵(𝑡),     𝐵(0) = 𝐵0  (17) 
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where 𝜎 is the tumor growth rate constant; 𝐴E,B is the stimulation factor representing eEF2K effects 

on tumor growth; 𝐾E,B is the Michaelis-Menten constant for eEF2K effects on tumor growth; 𝐵∗ is 

the tumor carrying capacity; 𝛿B,I is the death rate of tumors induced by normal immune system 

functionality (without drug intervention); 𝜀P  is the efficiency of PD-L1 protein in inhibit ing 

immune-induced tumor death; 𝛿B,C is the death rate of tumors induced by doxorubicin; EC50
𝐷  is the 

half-maximal effective concentration of doxorubicin for its effect on tumor death; 𝐴E,D is the 

stimulation factor for eEF2K effects in inducing chemoresistance; 𝐾E,D is the Michaelis-Menten 

constant for eEF2K effects in inducing chemoresistance; and 𝐵0 is the size of inoculated tumor, i.e., 

initial condition (equal to a single cell volume for human simulations).  

 

The model was solved numerically as an initial value problem in MATLAB R2018a using the built -

in function ode15s, and fit to the in vivo data from literature (12, 48-50) using the built-in function 

lsqcurvefit. Correlation analysis was then performed between model fits and experimental data to 

assess the goodness of fit.  

 

Allometric scaling 

For human simulations, the rate constants 𝑘Cl, 𝜎, 𝛿B,I, and 𝛿B,C were allometrically scaled from 

values determined for mice, based on body weights and the standard allometric exponent for rate 

constants, i.e., –0.25 (51), such that the value of parameter 𝑖 for humans (𝑃𝑖
ℎ) was: 𝑃𝑖

ℎ = 𝑃𝑖
𝑚 ∙

(
BWℎ

BW𝑚
)

−0.25

, where 𝑃𝑖
𝑚 is the value of parameter 𝑖  for mice, and BWℎ  and BW𝑚 are the body 

weights assumed for humans (70 kg) and mice (0.02 kg), respectively. We note that a different 

scaling exponent was used in the above formula for a subset of parameters, as based on published 
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reports, these were: dose and clearance calculations (exponent = 0.75) and volume of distribution 

calculations (exponent = 1.0) (52, 53).  

 

Treatment response evaluation 

The model was used to study the effect of miRNA-22 nanotherapy, alone or in combination with 

doxorubicin and/or Atezolizumab, in virtual patients. The effect of therapy on tumor shrinkage 

was quantified by a metric defined as percent tumor growth inhibition (%TGI), such that %TGI =

(1 − 𝐵treated/𝐵control) ∙ 100, where 𝐵treated and 𝐵control represent treatment and control tumor 

volumes  at the end of 104 weeks post tumor inception with a single cell. Note that, in the treatment 

scenario, therapy was initiated 80 weeks post tumor inception, such that treatment was given over 

24 weeks (~6 months). To evaluate tumor response at a population level, we employed a scale 

analogous to RECIST 1.1 (50), such that treatment response was classified as progressive disease 

(TGI ≤ 0%), stable disease (0% < TGI ≤ 10%), intermediate response (10% < TGI ≤ 30%), 

partial response (30% < TGI ≤ 50%), and major response (TGI > 50%).  

 

Parameter sensitivity analysis 

To investigate the importance of various model parameters in causing tumor shrinkage in patients 

undergoing treatment with a weekly dose of 0.026 mg/kg miRNA-22 (loaded in NPs), we 

performed local (LSA) and global (GSA) sensitivity analyses (42, 54-57) by perturbing the 

parameters of interest (highlighted by a dagger in Tables 1, 2) over a range of 0.2× to 5× of their 

corresponding baseline values.  
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LSA involved perturbation of one model parameter at a time at 500 levels between the range of 

0.2× to 5× of the baseline value while the other parameters were held constant at baseline. Each 

parameter was perturbed individually and %TGI was calculated to obtain the qualitative 

relationship between parameter factor change and %TGI. Alternatively, in GSA, all model 

parameters of interest were simultaneously perturbed and %TGI calculated for each simulation 

(i.e., for a given combination of parameter values). Note that, to comprehensively investigate the 

vast multiparameter space (21 parameters), yet to minimize the number of simulations, Latin 

hypercube sampling (LHS) (42, 54, 55) was used to obtain 10,000 combinations of parameter 

values, and 10 such replicates were obtained. Multivariate linear regression analysis was then 

performed on every replicate, and regression coefficients were determined as a quantitative 

measure of parameter sensitivity index (SI). A distribution of regression coefficients (or SI) was 

obtained for each parameter, and one-way ANOVA with Tukey’s test was used to rank the 

parameters in terms of their sensitivity, such that a higher SI represents a greater influence on 

model output (i.e., %TGI).  

 

Determination of drug synergy  

The Chou-Talalay method (58) was used to identify drug synergy between miRNA-22 and its 

combination with standard-of-care drugs for TNBC (doxorubicin and/or Atezolizumab). 

Occurence of drug synergy allows the possibility of using a lower dose of the constituent drugs, 

which can reduce their adverse effects.  The method involves determination of combination index 

(CI), such that CI < 1 is an indicator of existence of drug synergism. To calculate CI, the open 

source software COMPUSYN (available at https://www.combosyn.com/) was used to generate the 

analysis report, which has been provided in the Supplementary Information.  
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Results and Discussion 

 

Model development, calibration, and baseline solution  

The multiscale mechanistic model developed to study the PK-PD of NP-mediated miRNA-22 

therapy in TNBC, along with other clinically approved treatment modalities, was formulated as a 

system of ODEs (Eqs. 1-17) and solved numerically as an initial value problem. Some model 

parameters were known a priori (Tables 1, 2), while the rest were estimated through non-linear 

least squares fitting of the model to published in vivo datasets. The selected datasets include 

longitudinal measurements of tumor volume in mice bearing MDA-MB-231 xenografts under 

control conditions, or under treatment with one of the following therapies: 0.15 mg/kg (equivalent 

4 g/mouse) IV miRNA-22-loaded NPs once a week (12), 4 mg/kg IV doxorubicin once a week 

(48), and 5 mg/kg IP anti-PD-L1 immunotherapy (Atezolizumab) once every 5 days (50).  

 

We used the model to simulate the treatment protocols shown in Figure 2, and the numerical 

solutions of tumor volume kinetics were then fit simultaneously to the four datasets to estimate the 

unknown model parameters (given in Tables 1, 2). Additionally, the model solution for eEF2K 

protein kinetics from the miRNA-22 simulation was fit to the available data (Figure 2a). Model 

fits were in good agreement with the experimental data, as indicated by a strong Pearson 

correlation (Figure S1; R > 0.96, P < 0.0001). While the various experimental studies used above 

demonstrated the effects of individual therapies on TNBC progression, the model revealed 
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additional insights into drug (and also NP) pharmacokinetics and molecular interaction dynamics 

leading to tumor response to the three therapies.  

 

As shown in Figure 2a, simulated NP-mediated miRNA-22 therapy involved periodic IV 

administration of miRNA-22-loaded NPs into the plasma compartment, from where the NPs were 

cleared in a size-dependent fashion characterized by 𝑘Cl, and also transported to the tumor vascular 

sub-compartment in a perfusion-dependent manner governed by the plasma flow rate Q. 

Extravasation of NPs across the leaky tumor vasculature into the tumor interstitium, determined 

by the vascular permeability-surface area product (𝑃NP ⋅ 𝑆), was followed by NP size-dependent 

diffusion through the tumor interstitium. Remaining NPs were ultimitely endocytosed into the 

tumor cytosolic sub-compartment (i.e., cancer cell cytosol), followed by NP degradation and 

release of miRNA-22 into the cancer cell Interior. As a result, miRNA-22-induced inhibition of 

eEF2K production was observed relative to the control case, which reduced the downstream 

production of cancer cell transmembrane protein PD-L1. The overall effect of miRNA-22 therapy 

on alterations in protein expression manisfested as tumor growth inhibition mediated by 

suppressed induction of tumor growth by eEF2K and increased vulnerability to tumor 

immunogenicity due to depletion of the immune checkpoint PD-L1.  

 

To explore the therapeutic combinations of miRNA-22 with FDA approved chemotherapies and 

immunotherapies, we calibrated the model with in vivo treatment of TNBC with doxorubicin 

(Figure 2b) and Atezolizumab (Figure 2c). In response to doxorubicin therapy (Figure 2b), the 

model showed reduction in tumor growth relative to the control case due to drug concentration-

dependent increase in tumor death rate 𝛿B,C. This is accompanied by reduced expression levels of 
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eEF2K and PD-L1, but increased basal miRNA-22 expression level. Note that tumor growth has 

an inhibitory effect on miRNA-22 production (12), but stimulates eEF2K production, which tends 

to stimulate tumor growth in a complimentary feedback process (12, 19). We next modeled the 

effect of anti-PD-L1 immunotherapy (Atezolizumab) in a simplistic fashion by targeting PD-L1 

degradation rate 𝛿P , such that Atezolizumab enhances the degradation of PD-L1 in a drug 

concentration-dependent manner. As a result, as shown in Figure 2c, due to depletion of PD-L1, 

there is inhibition of tumor growth compared to the control. The parameters estimated as a result 

of the above model calibrations are given in Tables 1, 2.  

 

Model extrapolation to human scale  

To study the translational value of miRNA-22 and associated potential combination therapies, we 

extrapolated the in vivo mechanistic model to human scale, either by substituting known 

physiological parameters with human values, or by allometric scaling of unknown parameters from 

mice to humans (see Allometric Scaling in Methods). In Figure 3a, a representative simulation of 

NP-mediated miRNA-22 therapy in a virtual adult patient (body weight 70 kg) is shown following 

once a week (QW) IV administration of 0.026 mg/kg miRNA-22 (allometrically scaled dose) for 

six months, starting 80 weeks after the inception of tumor with a single cell. As shown, eEF2K 

and PD-L1 levels are suppressed throughout the duration of treatment, thereby leading to ~29% 

TGI compared to the control case. The prameters used for the representative simulation are the 

baseline values shown in Tables 1, 2.  

 

Dose-response relationship and population variability 
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To investigate the effect of changes in miRNA-22 doseage and treatment frequency on %TGI, 

dose-response curves (DRCs) was generated for a representative individual by simulating 

treatment with miRNA-22 nanotherapy at different doses (0-0.2 mg/kg), either once weekly (QW) 

or once every two weeks (Q2W) (Figure 3b). DRCs were also generated for slow, medium, and 

fast growing tumors at the two treatment frequencies. Note that  the ratio of tumor 

immunogenicity-induced death rate (e.g., tumor death rate due to normal immune effects without 

drug intervention) to tumor growth rate (𝛿B,I/𝜎) indiciates how fast a tumor grows; e.g., within the 

scope of this work, the ratios of 0.99, 0.9, and 0.75 indicate slow, medium, and fast growing 

tumors, respectively (Figure S3). As shown in Figure 3b, theraputic response tends to saturate 

around a dosage of 0.05 mg/kg in these six scenarios, and even beyond 0.026 mg/kg (dose obtained 

through allometric scaling; see Allometric Scaling in Methods), tumors do not exhibit significant 

increase in %TGI, hence 0.026 mg/kg was chosen as the reference dose in humans for further 

investigation. As for the slow growing tumors, they show a much higher response to therapy 

(~two-fold) than their rapidly proliferating counterparts. Additionally, irrespective of the rate of 

tumor growth, the QW protocol causes greater %TGI than Q2W.  

 

Further, by creating a virtual population of 2,000 patients through LHS of patient-specific 

parameters between ±50% of their baseline values, the effects of inter-individual variability on 

%TGI for different doses of QW miRNA-22 were investigated and presented in a manner 

analogous to the RECIST 1.1 classification (51, 59). As shown in Figures 3c and S2, the patient 

population showed significant improvement in response with increasing dose up to ~0.02 mg/kg, 

such that stable disease (0% < TGI ≤ 10%) cases dropped exponentially, and the population of 

intermediate responders (10% < TGI ≤ 30%) and major responders (> 50% TGI) grew rapidly. 
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Also, a steady increase was observed in the population of partial responders (30% < TGI ≤ 50%). 

However, beyond ~0.02 mg/kg dosage, the population of major responders quickly saturated at a 

value of ~20%, while the population of partial responders increased with increasing drug dosage 

up to ~0.1 mg/kg, eventually settling at ~25%; the remaining population (~55%) primarily 

consisted of intermediate responsers. Thus, these observations support our use of the allometrically 

calculated dose of 0.026 mg/kg; this was used as the reference value for further analysis. Note that 

progressive disease (≤ 0% TGI) was only seen in the no treatment scenario; this indicates that 

treated tumors do not grow beyond the size of the corresponding control tumors, and hence as per 

our definition of %TGI, ≤ 0% values are not observed under treatment. These simulations provide 

quantification of the variation in treatment response that can be expected from physiological 

variability and tumor heterogeneity on a population scale, and can thus support treatment 

personalization to maximize patient benefit. Note that the parameters used for virtual population 

generation are marked by a dagger in Tables 1,2.  

 

Parameter sensitivity analysis 

For a more complete understanding of the effects of both patient-specific and treatment-related 

parameters on %TGI following 0.026 mg/kg QW dose of miRNA-22 nanotherapy for six months, 

starting 80 weeks post initiation of tumor, we performed local (LSA) and global (GSA) sensitivity 

analyses by perturbing parameters over a range of 0.2× to 5× of the baseline values (42). As shown 

in Figure 4a, GSA ranked the 21 model parameters into eight categories based on their sensitivity 

indices (using one-way ANOVA and Tukey’s test), out of which we discuss the top five ranking 

parameter brackets below.  
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First, as shown in Figure 4a, miRNA-22 degradation rate (𝛿M) stands out for its influence on 

%TGI, indicating that the stability of the miRNA is critical to ensure therapeutic efficacy, and an 

increase in degradation rate of miRNA-22 causes reduction in %TGI (as revealed by LSA, Figure 

4b), thereby reinforcing the need for NP-mediated delivery to protect the cargo until delivered to 

the cytosol. In the second bracker, tumor-specific parameters controlling PD-L1 and eEF2K 

protein production (𝑔P
0  and 𝑔E

0 , respectively), and the efficiency of PD-L1 (𝜀P) at inhibit ing 

immune cell-induced tumor death rank second in GSA, suggesting that PD-L1-mediated tumor 

immunosurveillance blockade and eEF2K-induced tumor proliferation and PD-L1 production that 

affect the intrinsic tumor growth and death, are important determinants of miRNA-22 efficacy. 

This suggests that delivering anti-PD-L1 therapies to target high PD-L1 activity can improve 

treatment outcomes when used in combination combination with miRNA-22.  

 

These parameters are followed by NP size (𝜙NP) and NP degradability (𝛿NP). NP characteristics 

strongly influence the systemic pharmacokinetics of NPs (driven by hepatic and renal clearance 

(42, 60-62)) and also NP transport to and accumulation within the tumor (driven by extravasation 

across tumor vasculature, diffusion through tumor interstitium, endocytosis into cancer cells, and 

metabolism-dependent degradation in the cancer cell cytosol (4, 22)). These NP-specific 

parameters rank highly for their influence on %TGI due to their role in miRNA-22 delivery to the 

tumor. Of note, as for the individual effects of NP size (𝜙NP), we observed an inverse monotonic 

trend between %TGI and the investigated parameter values, suggesting that an increase in NP size 

leads to reduced %TGI (Figure 4b). This suggests that while smaller NPs have smaller drug 

loading capacity, this may be compensated by using larger quantities to deliver the same dose of 

drug, which can then outperform larger NPs primarily due to better pharmacokinetics and greater 
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tumor penetration. Note that the corresponding number of NPs injected to deliver 0.026 mg/kg 

miRNA-22 via NPs of different sizes in our study ranged from ~90 billion (for size 350 nm) to 

~1.5 quadrillion (for size 14 nm), which lies well within the range of values used in preclinical 

studies and clinical trials (63). While we did not investigate renally clearable NPs (<10 nm) due 

to lack of reported clinical application for drug delivery, we anticipate poorer performance from 

such particles, primarily due to their short circulation half-life driven by rapid renal clearance (42, 

64). Further, within the same ranking bracket is the parameter governing the induction of eEF2K 

degradation by miRNA-22 (𝐴M,E), suggesting the expected significance of miRNA-22 for eEF2K 

degradation to inhibit tumor growth.  

 

Parameters in the 4th and 5th ranking brackets include those that control the positive feedback 

between eEF2K protein and tumor growth (𝐴E,B, 𝐴B,E), the half-maximal effective concentration 

of miRNA-22 in suppressing eEF2K (EC50
M ), the potency of eEF2K in inducing tumor growth 

(𝐾E,B), and importantly, the tumor microvascular surface area (𝑆). This suggests that the positive 

feedback role of eEF2K with tumor growth is secondary relative to its role in immune suppression 

(these effects are found in the second bracket), and the primairy effective mechanism of action of 

miRNA-22 is immume suppression, and associate reduction of tumor growth represents a 

beneficial – but secondary – therapeutic mechanism. The importance of tumor microvascular 

surface area is attributed to its role in determining rate of extravasation of NPs across tumor 

vasculature for drug delivery to the cells. However, tumor blood flow rate (𝑄) does not appear to 

have a significant impact on therapy efficacy.  
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Together, our simulations find that tumor response is most sensitive to the immune checkpoint 

effects of PD-L1, miRNA-22-eEF2K interaction, miRNA-22 potency and stability, and NP 

characteristics. This finding may provide opportunities for patient-specific optimization of NP-

mediated miRNA-22 therapy. It also warrants the use of combination therapies, particularly 

immune checkpoint inhibitors in combination with with chemotherapeutics due to the 

chemoresistive influence of eEF2K, in order to achieve a better treatment outcome. In light of the 

ranking obtained through GSA, we understand that LSA may not be required to obtain a ranked 

order of parameters for their influence on %TGI, because unlike GSA, LSA does not incorporate 

the interactions between parameters that may influence the outcome, and thus only provides a 

limited assessment into the sensitivity of parameters. However, LSA can still be used to obtain the 

empirical relationships between individual parameters and model output, as shown in Figure 4b.  

 

Combination therapies, population variability, and synergy  

We then sought to test the effects of combining miRNA-22 with standard-of-care drugs for TNBC, 

i.e., chemotherapeutics (doxorubicin) and immune checkpoint inhibitors (Atezolizumab) for 

improvement in %TGI outcome. For these numerical experiments, clinically relevant doses of 2.4 

mg/kg Q3W (once every three weeks) doxorubicin and 2 mg/kg Q3W Atezolizumab were 

simulated for the representative virtual patient (shown in Figure 3a) in various combinations with 

0.026 mg/kg QW miRNA-22 given for six months, starting 80 weeks after tumor initation. As 

shown in Figure 5a, combining miRNA-22 nanotherapy with the immune checkpoint inhibitor 

improves the outcome from intermediate response to partial response (30% < TGI ≤ 50%), and 

combined with doxorubicin it leads to major response (TGI > 50%), which almost reaches 

complete response when the three modalities are given together. Further, to assess the effects of 
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patient variability and tumor heterogeneity on drug combination outcomes, 2,000 virtual patients 

were generated as before, and as shown in Figure 5b, the three drug combination therapy produced 

major response in ~60% of patients, which is three times the patients that showed major response 

with QW miRNA-22 monotherapy (Figure 3c). However, the response worsened when miRNA-

22 was given Q2W, either alone or in combination (Figure 5c).  

 

Finally, our observation that monotherapies without miRNA-22 show stable disease under the 

given treatment protocols (Figure 5a), while two or three drug combinations with miRNA-22 

produce significant improvements in treatment outcome, warrants testing for the occurrence of 

drug synergy between miRNA-22 and other drugs. For this, as shown in Figure 6a, %TGI was 

calculated through model simulations for various doses of three monotherapies (miRNA-22 QW, 

doxorubicin Q3W, Atezolizumab Q3W) and three combination therapies (miRNA-22 QW + 

doxorubicin Q3W, miRNA-22 QW + Atezolizumab Q3W, miRNA-22 QW + doxorubicin Q3W 

+ Atezolizumab Q3W), and was used as an input for Chou-Talalay method (58) to calculate the 

combination indices (CI) of drug combinations. As shown in Figure 6b, CI values <1 for the three 

combinations of miRNA-22 indicate drug synergy with doxorubicin, Atezolizumab, and 

doxorubicin+Atezolizumab.  

 

 

Conclusion 

 

Using a multiscale mechanistic modeling approach, we studied the translational PK-PD of NP-

loaded miRNA-22 as a therapeutic for TNBC, alone or in combination with other FDA approved 
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therapeutics. For this, the model was first calibrated with published in vivo data involving 

treatment of MDA-MB-231 tumor-bearing mice with miRNA-22, doxorubicinin, or an 

immunecheckpoint inhibitor. The calibrated model was extrapolated to the human scale by 

substituting the physiological parameter values of mice with humans, or by scaling of the 

parameters with standard allometric techniques. Using the extrapolated model, the dose-response 

curves and effects of inter-individual variability on treatment outcome were assessed and 

quantified through a scale analogous to RECIST 1.1. Percent tumor growth inhibition (%TGI) 

saturated at a dose of 0.05 mg/kg, irrespective of the treatment frequency and doubling time of the 

tumor. For our translational analysis, a dose of 0.026 mg/kg was used, obtained through allometric 

scaling of dose for mice. By creating a virtual patient population through perturbation of patient-

specific parameters, patient response to variable miRNA doses was quantified, and it was observed 

that at 0.02 mg/kg, the fraction of patient population showing major response (≥ 50% TGI) to 

therapy saturated at ~40%. Within the scope of our computational investigation, further increment 

in the dose only increased the fraction of partial responders (i.e., patients exhibiting ≥ 30% and < 

50% TGI), and appeared to saturate at 0.14 mg/kg with ~35% patients exhibiting < 30% TGI above 

that dose.  

 

Parameter sensitivity analysis was conducted to identify the key determinants of %TGI in miRNA-

22 nanotherapy. This analysis revealed the significance of miRNA-22-eEF2K interaction, eEF2K-

tumor growth feedback loop, tumor vascularization, miRNA-22 potency and stability, NP 

characteristics, and also the immunecheckpoint effects of PD-L1, which highlights the potential of 

combination with anti-PD-L1 therapy to improve %TGI. This was supported by numerical 

experiments involving the combination of NP-loaded miRNA-22 with a clinically used immune 
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checkpoint inhibitor (Atezolizumab) and/or doxorubicin. The triple combination of miRNA-22 

with doxorubicin and this immune checkpoint inhibitor lead to almost three-fold increase in 

population fraction exhibiting major response in comparison to miRNA-22 alone. Importantly, the 

suspected drug synergy between miRNA-22 and doxorubicin and immunecheckpoint inhibitors 

was confirmed through the Chou-Talalay combination, whereindices were found to be < 1.  

 

Our analysis, based on a well-calibrated mathematical model extrapolated to the human scale, 

provides valuable pre-translational, quantitative insights into the limitations, challenges, and 

opportunities associated with the translation of miRNA-22 nanotherapy for TNBC patients. The 

ability of the model to explore the effects of patient variability and tumor heterogeneity through 

parameter perturbation and sampling demonstrates the utility of our in-silico tool to conduct virtual 

clinical trials to assess the effects of anticancer therapeutic agents, which can provide immediate 

feedback to biologists and clinicians regarding potential problems and their solutions to support 

the preclinical development and clinical translation of novel therapeutics. The model presented 

here captures the key processes involved in systemic pharmacokinetics of nanoparticles; however, 

for a more detailed characterization, we will integrate the tumor compartment with a whole-body 

physiologically-based pharmacokinetic model in future. Also, spatial tumor heterogeneity, genetic 

variability, and a more complete tumor microenvironment (with emphasis on immune cells) will 

be introduced in the tumor compartment of the model to further explore the effects of heterogeneity 

in drug diffusion barriers, drug resistant cell populations, and tumor immunosurveillance.  
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Figures 

 

 

 

Figure 1. Multiscale mechanistic model. Model schematic shows key system interactions and 

variables. The plasma compartment is connected to the tumor compartment, with the latter sub-

compartmentalized into vascular, interstitial, and cytosolic compartments. Key transport processes 

responsible for drug delivery to the tumor cytosol include perfusion, extravasation across tumor 

vasculature, diffusion across tumor interstitium, and endocytosis. While target receptors of  

immune checkpoint inhibitors are on the cell surface, the other agents including miRNA-22 and 

chemotherapeutics act intracellularly. Key signaling pathways relevant to miRNA-22 included in 

the model are shown in the cytosolic sub-compartment, including eEF2K induced tumor growth 

and PD-L1 production, miRNA-22 induced inhibition of eEF2K production, suppression of tumor 

antigenicity by checkpoint PD-L1, eEF2K induced chemoresistance, and induction of tumor death 

by chemotherapeutic agents.  
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Figure 2. Model calibration. Numerical solution of model fit to published in vivo data for 

treatment of MDA-MB-231 tumor-bearing mice with a) NP-delivered miRNA-22, b) doxorubicin, 

and c) Atezolizumab. Markers represent experimental data. Pearson correlation analysis results 

goodness of fit of the model are reported in Figure S1.  
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Figure 3. Translational PK-PD of miRNA-22. a) Human extrapolation of in vivo mechanistic 

model simulating treatment with once weekly dose of miRNA-22 for six months. TGI indicates 

percent tumor growth inhibition. b) Dose response curves of a virtual patient under scenarios of 

once weekly (QW) or once every two weeks (Q2W) dose of miRNA-22 for slow and fast growing 

tumors. c) Effects of inter-individual variability on miRNA-22 therapy outcome for different QW 

doses,  presented on a scale analogous to RECIST 1.1. Black arrow on x-axis indicates the dose of 

0.026 mg/kg used for further analysis.  
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Figure 4. Parameter sensitivity analysis. a) Violin plot showing results of global sensitivity 

analysis such that parameters are plotted in a descending order of sensitivity from left to right. SI 

denotes sensitivity index. Parameters are bracketed based on their ranking obtained from Tukey’s 

test. b) Efects of individual parameters on %TGI is shown via local sensitivity analysis. Note that 

for both analyses, parameters were perturbed over a range of 0.2x to 5x of the baseline value. Red 

dot in each curve indicates the %TGI value corresponding to the baseline parameter values.  
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Figure 5. Combination therapies. a) Effects of QW dose of miRNA-22 (M) alone or in 

combination with doxorubicin (Dox or D), or Atezolizumab (Atezo or A) on %TGI are show. b,c) 

Effects of inter-individual variability on %TGI following treatment with combination therapies is 

shown when miRNA-22 is given b) QW or c) Q2W. Note that the other three drugs were 

administered once every three weeks (Q3W) in all cases.  
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Figure 6. Drug synergism. a) Dose-response data generated from model simulations for various 

monotherapies and combination therapies. Note: Dox indicates doxorubicin and Ate represents 

Atezolizumab.  b) Combination indices calculated with the Chou-Talalay method identify drug 

synergy for various combinations of miRNA-22. CI<1 indicates drug synergism.  
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Table 1. List of biological parameters and initial conditions.  
Parameter Description Units Value  Ref. 

eEF2K-related parameters 

𝐴B,E
† Stimulation factor for tumor effects on eEF2K 

production 
− 11.9 Est 

𝐴M,E
† Stimulation factor for miRNA-22 effects on 

eEF2K degradation 

− 10.52 Est 

𝐾B,E
† Michaelis-Menten constant for tumor effects on 

eEF2K production 
cm3 16.03 

 
Est 

𝛿E Decay rate of eEF2K  wk −1 60.48 (34) 

𝑔E
0† Basal production rate of eEF2K protein wk −1 36.3 Est 

𝐶E
0 eEF2K initial condition − 0.58 Est 

PD-L1-related parameters 

𝐴E,P
† Stimulation factor for eEF2K effects on PD-L1 

production 

− 3.32 Est 

𝐴Ab,P Stimulation factor for anti-PD-L1 antibody 
effects on PD-L1 degradation 

− 1.79 Est 

𝐾E,P
† Michaelis-Menten constant for eEF2K effects on 

PD-L1 production 
− 8.1 Est 

𝛿P Decay rate of PD-L1  wk −1 60.48 (34) 

𝑔P
0† Basal production rate of PD-L1 protein wk −1 10.44 Est 

𝐶P
0 PD-L1 initial condition − 0.21 Est 

Tumor-related parameters 

𝐴E,B
† Stimulation factor for eEF2K effects on tumor 

growth  

− 4.5 Est 

𝐾E,B
† Michaelis-Menten constant for eEF2K effects on 

tumor growth 
− 8.78 Est 

𝐴E,D Stimulation factor for eEF2K effects on inducing 
chemoresistance 

− 0.1 Est 

𝐾E,D Michaelis-Menten constant for eEF2K effects on 

inducing chemoresistance 

− 10.0 Est 

𝜎† Tumor growth rate constant wk −1 3.1 (miRNA-22, M) 
3.75 (Dox, M) 

3.13 (Atezo, M) 

0.43 (H) 

Est, 
Allo 

𝐵∗ Tumor carrying capacity cm3 2.21 (miRNA-22, M) 
2.5 (Dox, M) 

2.99 (Atezo, M 
100 (H) 

Est 

𝛿B,I
† Tumor death rate (immune-induced) wk −1 3.0 (M), 0.39 (H) Est, 

Allo 

𝜀P
† Efficiency of PD-L1 to inhibit immune-induced 

tumor death 

− 1.9 Est 

𝛿B,C Tumor death rate (chemo-induced) wk −1 2.46 (M), 0.3198 (H) Est, 
Allo 

𝜙pore Diameter of tumor vessel wall pores nm 1700 (65) 

𝐿 Intercapillary length  cm 0.01 (66) 

𝜂B,B Dynamic viscosity of tumor blood cP 7.42 (41) 

𝜂B,I Dynamic viscosity of tumor interstitium cP 3.5 (67) 

𝐵0 Tumor initial condition cm3 0.001 (12) 

𝑓𝑣 Tumor vascular volume fraction − 0.17 (41) 
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𝑄† Tumor blood flow rate mL
∙ mL−1

∙ wk−1 

𝑄 = 2843 ∙ 𝑒−0.65∙𝐵(𝑡) 
(M), 1512 (H) 

(37, 
38)   

𝑆† Tumor microvascular surface area cm2 cm3⁄  𝑆 = 0.26 ∙ 𝑒−4.5∙𝐵(𝑡) +
138 ∙ 𝑒−0.04∙𝐵(𝑡) (M), 

135 (H) 

(41) 

Systemic circulation-related parameters 

𝑉P Volume of plasma compartment mL 1 (M), 3000 (H)  (61) 

𝑉pc Volume of peritoneal fluid mL 0.1 (M) (46) 

Note: Mice and human specific parameters are specified by M and H in parantheses, respectively. Not specified in 
case of common values. †Dagger indicates patient-specific parameters perturbed for virtual clinical trial simulations. 
Abbreviations: Est- estimated via regression, Allo- allometrically scaled, Dox- doxorubicin, Atezo- Atezolizumab. 

 
 
 

Table 2. List of therapy-related parameters and initial conditions. 
Parameter Description Units Value  Ref. 

NP-related parameters 

𝜙NP NP diameter nm 70 (12) 

𝛿NP NP degradation rate  wk−1 7.7 (68) 

𝑁0 Number of NPs per injection − ~2.5e+10 Calc 

miRNA-22-related parameters 

EC50
𝑀  EC50 of miRNA-22 nM 2.34 Est 

𝑘rel Release rate of miRNA-22 from NPs wk−1 0.99 Est 

𝑔M
0 † Basal production rate of miRNA-22 nM ∙ wk −1 0.033 Est 

𝜀B
† Efficiency of tumor to inhibit miRNA-22 

production  
cm−3 1 Assu 

𝛿M Decay rate of miRNA-22  wk−1 4.851 (69) 

𝑀0 miRNA-22 initial condition nM 0.007 Est 

Chemotherapy-related parameters (Doxorubicin) 

Cldox Plasma clearance of dox mL ∙ wk −1 8.4e+3 (M), 4.25e+6 (H) (70, 71) 

𝑉𝐷,dox Volume of distribution of dox mL 734 (M), 3.65e+5 (H) (70, 71) 

𝛿D Degradation rate of dox wk−1 2.0 Est 

EC50
D  EC50 of dox nM 25 (70) 

Immunotherapy-related parameters (Atezolizumab) 

𝜙Ab Ab diameter nm 10 (72) 

𝛿Ab Degradation rate of Ab wk−1 1.21 Est 

ClAb Plasma clearance of Ab mL ∙ wk −1 3.07 (M), 1400 (H);   Allo, (73) 

𝑉D,Ab Volume of distribution of Ab mL 1.97 (M), 6900 (H);   Allo, (73) 

EC50
Ab EC50 of Ab nM 0.0446 (74) 

𝑘abs Peritoneal absorption rate constant of Ab wk−1 100 Est 

Note: †Dagger indicates patient-specific parameters perturbed for virtual clinical trial simulations. Mice and human 
specific parameters are specified by M and H in parantheses, respectively. Abbreviations: Est- estimated via 
regression, Allo- allometrically scaled., Calc- calculated from formulae, Assu- assumed, Dox- doxorubicin, Ab- 

antibody. 
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