1	Shared Genomic Architectures of COVID-19 and Antisocial Behavior
2	Running title: COVID-19 and Antisocial Behavior
3	
4	Authors
5	Charleen D. Adams, PhD MPH ^{1*} , Jorim J. Tielbeek, PhD ² , Brian B. Boutwell, PhD ^{3,4}
6	¹ Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences,
7	Harvard T.H. Chan School of Public Health; ² Department of Complex Trait Genetics, Center for
8	Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam,
9	Amsterdam, Netherlands; ³ School of Applied Sciences, The University of Mississippi; ⁴ John D. Bower
10	School of Population Health, University of Mississippi Medical Center
11	Correspondence to:
12	*Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences,
13	Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; Tel.: 626-841-3937;
14	Email: <u>cdadams@hsph.harvard.edu</u> .
15	Word count, manuscript: 1998; word count Abstract: 228
16	
17	
 18 19 20 21 22 23 24 25 26 27 	
28	

29 Abstract

30 31	Little is known about the genetics of norm violation and aggression (ASB) in relation to coronavirus
32	disease 2019 (COVID-19). To investigate this, we used summary statistics from genome-wide
33	association studies and linkage disequilibrium score regression to calculate a matrix of genetic
34	correlations (r_{gs}) for ASB, COVID-19, and various health and behavioral traits. After false-discovery
35	rate correction, ASB was genetically correlated with COVID-19 ($r_g = 0.51$; $P = 1.54$ E-02) and 19 other
36	traits. ASB and COVID-19 were both positively genetically correlated with having a noisy workplace,
37	doing heavy manual labor, chronic obstructive pulmonary disease, and genitourinary diseases. ASB
38	and COVID-19 were both inversely genetically correlated with average income, education years,
39	healthspan, verbal reasoning, lifespan, cheese intake, and being breastfed as a baby. But keep in mind
40	that r_{gs} are not necessarily causal. And, if causal, their prevailing directions of effect (which causes
41	which) are indiscernible from r_{gs} alone. Moreover, the SNP-heritability (h_g^2) estimates for both
42	measures of COVID-19 were very low, restricting the overlap of genetic variance in absolute terms
43	between the two traits. Nonetheless, our findings suggest that those with antisocial tendencies possibly
44	have a higher risk of exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) than
45	those without antisocial tendencies. This may have been especially true early in the pandemic before
46	vaccines against SARS-CoV-2 were available and before the emergence of the highly transmissible
47	Omicron variant.

52 Introduction

53 Antisocial behavior (ASB)— including aggression, rule-breaking, delinquency, and violence— 54 are harmful to society. ASB creates a long wake of monetary, social, and emotional disturbances for countries, communities, and individuals^{1,2}. Especially troublesome are the possible effects during 55 56 pandemics. For instance, ASB may abet pandemic spread. Those engaged in overt ASB seem to adhere less to coronavirus disease 2019 (COVID-19) containment measures^{3–5}. Similarly, individuals scoring 57 58 higher on less obvious indicators of antisociality (i.e., low acceptance of moral rules, higher levels of 59 psychopathy, "pre-pandemic legal cynicism, low shame/guilt, low self-control, engagement in 60 delinquent behaviors, and association with delinquent peers") have shown evidence of disregarding public-health guidelines^{3,4,6}. This warrants further investigation into the possible connections between 61 ASB and exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that 62 63 causes COVID-19.

64 Complicating causal inference concerning the links between of ASB and pandemic-relevant 65 outcomes is that about half of the variance in ASB and, to varying degrees, associated traits, is heritable^{7–9}. This matters because the extent to which ASB and other traits share genetic architecture 66 67 could influence the likelihood of genetic confounding in observational studies. Broadly addressing this 68 problem is a nascent area of research that uses genome-wide association (GWA) studies of ASB and various health and behavioral traits to calculate genetic correlations $(r_{as})^{10}$. These studies have revealed 69 r_{gs} between ASB and most psychiatric, psychological, reproductive, cognitive, and addictive traits^{11,12}. 70 71 In addition, those prone to antisocial, violent, and criminal behaviors are disproportionately and profoundly unhealthy^{13,14}. A strongly negative genetic correlation ($r_g = -0.55$) between ASB and self-72 reported health has been reported¹¹. In contrast, a comprehensive study found no significant r_{qs} 73 74 between ASB and 669 health, physiological, and well-being measures after accounting for multiple

testing¹⁵. Thus, much remains to be discovered regarding shared etiology between ASB and various
aspects of health, including COVID-19.

77 Methods and materials

78 We characterized the shared polygenic nature of ASB, COVID-19, and various health and 79 behavioral traits using summary statistics from GWA studies and linkage disequilibrium score regression (LDSC; software available at http://www.github.com/bulik/ldsc)¹⁶. We calculated a matrix 80 of r_{as} . Of note is that correlation, even when genetic, is not necessarily causation. While our study can 81 82 point to shared genetic architecture between traits, the reader should be cautious about assuming that the r_{gs} are causal. Table 1 contains details about the GWA studies we used and where interested 83 84 researchers can access them. Nineteen traits were chosen for novelty (having not been previously 85 reported as either null or significantly correlated with ASB). The novel traits include: average income 86 (before taxes); healthspan (i.e., living free from congestive heart failure, myocardial infarction, chronic 87 obstructive pulmonary disease [COPD], stroke, dementia, diabetes, cancer, and death; coded as a 88 protective ratio); parental lifespan (hereafter "lifespan"; coded as a protective ratio); word interpolation 89 (hereafter "verbal reasoning"); having been breastfed as baby; cheese intake; self-reported happiness; 90 having had COVID-19 (data from two GWA studies); doing heavy manual labor; having a noisy 91 workplace; Townsend Deprivation Index (an area- and census-based measure of deprivation, where a 92 higher score indicates more deprivation); having gastrointestinal diseases; having COPD; having 93 genitourinary diseases; playing computer games; having been a violent-crime victim; risk tolerance, 94 and witnessing a sudden violent death. Four traits (education years; seen doctor for nerves, anxiety, 95 tension, or depression; neuroticism; and Parkinson's disease) were chosen as replicates of previously 96 reported findings.

97 **Results**

99	After false-discovery rate (FDR)-correction ($P < 0.05$), ASB was positively genetically
100	correlated with COVID-19 (release 4): $r_g = 0.51$; $P = 1.54$ E-02. The r_g was also positive between ASB
101	and COVID-19 (release 6) with marginal significance <i>prior</i> to FDR-correction but not after: $r_{gs} = 0.35$;
102	$P = 3.83\text{E}-02$ (FDR-corrected $P = 5.21\text{E}-02$). The remaining (FDR-significant) r_{gs} between ASB and
103	health and behavioral traits that were positive are as follows:
104	1. Townsend Deprivation Index ($r_g = 0.70$)
105	2. Noisy workplace ($r_g = 0.63$)
106	3. Heavy manual labor ($r_g = 0.58$)
107	4. COPD ($r_g = 0.51$)
108	5. Risk tolerance ($r_g = 0.50$)
109	6. Gastrointestinal diseases ($r_g = 0.46$)
110	7. Seen a doctor for nerves, anxiety, tension, or depression ($r_g = 0.42$)
111	8. Seen a sudden violent death ($r_g = 0.42$)
112	9. Genitourinary diseases ($r_g = 0.38$)
113	10. Being a violent-crime victim ($r_g = 0.36$)
114	11. Neuroticism ($r_g = 0.29$)
115	12. Playing computer games ($r_g = 0.15$)
116	ASB was negatively genetically correlated with seven traits (after FDR-correction):
117	1. Average income ($r_g = -0.54$)
118	2. Education years ($r_g = -0.48$)
119	3. Healthspan ($r_g = -0.47$)

- 120 4. Verbal reasoning ($r_g = -0.44$)
- 121 5. Lifespan ($r_g = -0.33$)
- 122 6. Cheese intake ($r_g = -0.28$)
- 123 7. Breastfed as baby ($r_g = -0.24$)
- 124 The r_{qs} for ASB and the health and behavioral traits are displayed in a forest plot in **Figure 1** and
- presented in **Table 2** along with confidence intervals and SNP-heritability (h_g^2) estimates. See the
- 126 Supplement for the results for all the r_{gs} in the matrix (Supplementary Table 1), including the *p*-values
- 127 before and after FDR-correction (Supplementary Table 2).

128 **COVID-19**

- 129 Due to the positive r_g between COVID-19 and ASB, we highlight the FDR-significant r_{gs}
- 130 between COVID-19 and non-ASB traits. COVID-19 was positively genetically correlated with the
- 131 following:

132 1. COPD (
$$r_q = 0.40$$
) -- COVID-19 (release 6)

133 2. COPD (
$$r_q = 0.33$$
) -- COVID-19 (release 4)

- 134 3. Heavy manual labor ($r_g = 0.38$) -- COVID-19 (release 6)
- 135 4. Heavy manual labor ($r_g = 0.20$) -- COVID-19 (release 4)
- 136 5. Genitourinary diseases ($r_g = 0.32$) -- COVID-19 (release 6)
- 137 6. Noisy workplace ($r_g = 0.28$) -- COVID-19 (release 6)
- 138 7. Noisy workplace ($r_g = 0.26$) -- COVID-19 (release 4)
- 139 COVID-19 was negatively genetically correlated with the following:
- 140 1. Cheese intake ($r_g = -0.39$) -- COVID-19 (release 6)
- 141 2. Cheese intake ($r_g = -0.36$) -- COVID-19 (release 4)

142	3.	Education years ($r_a = -0.46$)	COVID-19 (release 6)
-----	----	-----------------------------------	----------------------

- 143 4. Education years ($r_q = -0.32$) -- COVID-19 (release 4)
- 144 5. Verbal reasoning ($r_g = -0.49$) -- COVID-19 (release 6)
- 145 6. Verbal reasoning ($r_g = -0.28$) -- COVID-19 (release 4)
- 146 7. Healthspan ($r_g = -0.41$) -- COVID-19 (release 6)
- 147 8. Healthspan ($r_g = -0.25$) -- COVID-19 (release 4)
- 148 9. Breastfed as baby ($r_q = -0.24$) -- COVID-19 (release 6)
- 149 10. Lifespan ($r_g = -0.30$) -- COVID-19 (release 6)
- 150 11. Average income ($r_g = -0.21$) -- COVID-19 (release 6)
- 151 Notably, ASB and COVID-19 were both positively genetically correlated with having a noisy
- 152 workplace, doing heavy manual labor, COPD, and genitourinary diseases. They were both inversely
- 153 genetically correlated with average income, education years, healthspan, verbal reasoning, lifespan,
- 154 cheese intake, and being breastfed as a baby. The r_{gs} between COVID-19 and the non-ASB traits are
- 155 presented in **Figure 2** and **Table 3** along with confidence intervals and h_g^2 estimates.

156 **Discussion**

In support of prior observational findings by O'Connell *et al.* $(2021)^5$, Carvalho and Machado (2020)³, Miguel *et al.* $(2021)^4$, and Nivette *et al.* $(2020)^6$, the positive r_g between ASB and COVID-19 suggests that those with antisocial tendencies are more likely to be exposed to SARS-CoV-2 than those who do not engage in ASB. Although ASB is generally associated with impulsive and risk-taking proclivities, the r_g between COVID-19 and risk tolerance was null in our study, a result that argues against a propensity for risk-taking behavior underlying the link between ASB and exposure to SARS-CoV-2. The totality of our data instead suggests that a broad architecture of factors predispose some to

164	both ASB and COVID-19. Traits, for example, that are positively genetically correlated with both ASB
165	and COVID-19—having a noisy workplace, doing heavy manual labor, and having COPD—are also
166	strongly inversely genetically correlated with education years, verbal reasoning, and average income.
167	We observed positive r_{gs} between ASB and the psychiatric and violence-related traits we
168	measured. But none of these traits were genetically correlated with COVID-19. That they were not
169	comports with a meta-analytic review of mood disorders and risk for COVID-19 in 91 million
170	individuals ¹⁷ . Namely, Ceban et al. (2021) found no association between pre-existing mood disorders
171	and COVID-19 ¹⁷ . Thus, the link between ASB and COVID-19 is unlikely to be due to those engaging
172	in ASB having comorbid mood disorders.
173	We note that the strength of the r_g for ASB and COVID-19 dropped from 0.51 (release 4) to
174	0.35 (release 6). Earlier GWA study releases by the COVID-19 Host Genetics Initiative capture data
175	from earlier timepoints in the pandemic—release 4 being earlier (October 20, 2020) than release 6
176	(June 15, 2021). This may be important since release 4 occurred before vaccines against SARS-CoV-2
177	were available, and by June 15, 2021, 47% of those eligible for vaccination had completed an initial
178	protocol for full vaccination in the U.S. ¹⁸ . Also, both releases 4 and 6 occurred prior to the appearance
179	of the more transmissible Omicron (B.1.1.529) variant, which most on the planet are expected to
180	encounter eventually ^{19,20} . Thus, our results seem to reflect an increased risk of exposure to SARS-
181	CoV-2 early in the pandemic for those prone to ASB. If those with antisocial tendencies
182	disproportionately refuse vaccination against SARS-CoV-2, however, the impact of ASB over time
183	may have shifted from who gets exposed to SARS-CoV-2 to who gets severe disease.
184	Our study has limitations, which must also be considered. First is that the h_g^2 estimates for both
185	measures of COVID-19, while >0, were very small. This indicates that, based on the GWA results,
186	SNPs can only explain a very small proportion of the individual differences in risk for COVID-19.

Hence, although the r_{as} between ASB and COVID-19 were considerable, in absolute terms the genetic 187 variance that is overlapping between the two traits is low. Second is that r_{gs} , while robust against most 188 environmental confounders, can still suffer from genetic sources of confounding (i.e., even with r_{as} , as 189 190 we mentioned above, correlation is not necessarily causation). To illustrate, it seems unintuitive and 191 unlikely that not being breastfed as a baby and eating less cheese cause ASB. One should, for somewhat obvious reasons, be similarly cautioned against the conclusion that being breastfed as a baby 192 and eating more cheese protect against COVID-19, despite the apparent r_{gs} . Indeed, we chose these 193 194 dietary traits to communicate the point that the shared genetic architecture that these have with 195 education years, verbal reasoning, and average income seem the more plausibly causal phenomenon. Third, supposing that some of the r_{as} represent causal linkages in some way, we nonetheless cannot 196 determine the direction of causality with r_{as} alone. For much of the discussion above, we tacitly 197 198 presumed plausible directions of effect (e.g., ASB causing exposure to SARS-CoV-2 and, thus, 199 COVID-19 versus COVID-19 causing ASB). But with all the traits in our matrix, the prevailing direction of effect could be the opposite and/or some level of bi-directional causation may exist^{16,21–23}. 200 201 And, as alluded to by "shared genetic architecture," the correlated traits could be tagging a latent 202 causal factor. These uncertainties are avenues for future research. Future studies could use either latent causal variable (LCV)²² models to infer causality between traits or perform bi-directional MR, an 203 204 instrumental variables technique, for which both directions of effect are probed. Regarding MR, few 205 genome-wide significant signals have been found for ASB, and using SNPs weakly associated with 206 ASB as instrumental variables would violate the assumptions necessary to perform MR. But assuming 207 SNPs strongly associated with ASB are eventually found, bi-directional MR can be used to decipher 208 the prevailing directions of effect between ASB and traits with which it's associated. A fourth 209 limitation is that our findings are limited to those of European ancestry. The limitations

210	notv	withstanding, r_{gs} obtained from LDSC are not affected by sample overlap (i.e., participants being in
211	both	GWA studies for which the r_{gs} were calculated) ¹⁶ . This is a strength of study, which enabled us to
212	capi	talize on the power of large, population-based cohorts and publicly available GWA studies to
213	prot	be timely questions. Finally, working to understand the etiology of ASB gets us closer to thinking
214	abou	at strategies to provide relief to a large part of the global population—both those engaged in ASB
215	and	those devastated by it.
216	Ack	anowledgements
217		We thank the consortia that made their GWA studies public.
218	Con	aflicts of Interest
219		The authors declare no conflicts of interest.
220	Ref	erences
221 222	1	Cohen MA. <i>The Costs of Crime and Justice</i> . 2nd edition. Routledge: New York, New York, 2020.
223 224	2	Koegl CJ, Farrington DP. Estimating the monetary cost of risk factors for crime in boys using the EARL-20B. <i>Psychol Serv</i> 2019; 18 : 441–453.
225 226 227	3	Carvalho L de F, Machado GM. Differences in adherence to COVID-19 pandemic containment measures: psychopathy traits, empathy, and sex. <i>Trends Psychiatry Psychother</i> 2020; 42 : 389–392.
228 229 230	4	Miguel FK, Machado GM, Pianowski G, Carvalho L de F. Compliance with containment measures to the COVID-19 pandemic over time: Do antisocial traits matter? <i>Pers Individ Dif</i> 2021; 168 . doi:10.1016/j.paid.2020.110346.
231 232 233	5	O'Connell K, Berluti K, Rhoads SA, Marsh AA. Reduced social distancing early in the COVID- 19 pandemic is associated with antisocial behaviors in an online United States sample. <i>PLoS</i> <i>ONE</i> 2021; 16 . doi:10.1371/journal.pone.0244974.
234 235	6	Nivette A, Ribeaud D, Murray A, Steinhoff A, Bechtiger L, Hepp U <i>et al.</i> Non-compliance with COVID-19-related public health measures among young adults in Switzerland: insights from a
236 237 238	7	longitudinal cohort study. <i>Soc Sci Med</i> 2021; 268 . doi:10.1016/j.socscimed.2020.113370. Burt SA. Are there meaningful etiological differences within antisocial behavior? Results of a meta-analysis. <i>Clin Psychol Rev</i> 2009; 29 : 163–178.
239 240 241	8	Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM <i>et al.</i> Meta-analysis of the heritability of human traits based on fifty years of twin studies. <i>Nat Genet</i> 2015; 47 : 702–709.
241 242 243	9	Rhee SH, Waldman ID. Genetic and environmental influences on antisocial behavior: a meta- analysis of twin and adoption studies. <i>Psychol Bull</i> 2002; 128 : 490–529.

- Tielbeek JJ, Barnes JC, Popma A, Polderman TJC, Lee JJ, Perry JRB *et al.* Exploring the
 genetic correlations of antisocial behaviour and life history traits. *BJPsych Open* 2018; 4: 467–
 470.
- Ip HF, van der Laan CM, Krapohl EML, Brikell I, Sánchez-Mora C, Nolte IM *et al.* Genetic
 association study of childhood aggression across raters, instruments, and age. *Transl Psychiatry*2021; **11**. doi:10.1038/s41398-021-01480-x.
- Tielbeek JJ, Johansson A, Polderman TJC, Rautiainen MR, Jansen P, Taylor M *et al.* Genome wide association studies of a broad spectrum of antisocial behavior. *JAMA Psychiatry* 2017; 74:
 1242–1250.
- 253 13 Massoglia M, Pridemore WA. Incarceration and health. *Annu Rev Sociol* 2015; **41**: 291–310.
- Vaughn MG, Salas-Wright CP, Delisi M, Maynard BR, Boutwell B. Prevalence and correlates
 of psychiatric disorders among former juvenile detainees in the United States. *Compr Psychiatry* 2015; 59: 107–116.
- Tielbeek JJ, Boutwell BB. Exploring the genomic architectures of health, physical traits and
 antisocial behavioral outcomes: a brief report. *Front Psychiatry* 2020; **11**.
 doi:10.3389/fpsyt.2020.00539.
- Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR *et al.* An atlas of genetic
 correlations across human diseases and traits. *Nat Genet* 2015; **47**: 1236–1241.
- Ceban F, Nogo D, Carvalho IP, Lee Y, Nasri F, Xiong J *et al.* Association between mood
 disorders and risk of COVID-19 infection, hospitalization, and death: a systematic review and
 meta-analysis. *JAMA Psychiatry* 2021. doi:10.1001/jamapsychiatry.2021.1818.
- Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C *et al.* A global database of
 COVID-19 vaccinations. *Nat Hum Behav* 2021; 5: 947–953.
- 267 19 Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C *et al.* SARS-CoV-2 Omicron268 B.1.1.529 leads to widespread escape from neutralizing antibody responses. *Cell* 2022; 185:
 269 467-484.e15.
- Aubrey A, Shapior A, Janse AM, Dorning C. Public health experts say most of us will get
 COVID-19. What does that mean? All Things Considered. NPR.
- 2022.https://www.npr.org/2022/01/12/1072548446/public-health-experts-say-most-of-us-will get-covid-19-what-does-that-mean (accessed 19 Feb2022).
- Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian
 randomization studies. *Human Mol Genet* 2018; 27: R195–R208.
- 276 22 O'Connor LJ, Price AL. Distinguishing genetic correlation from causation across 52 diseases
 277 and complex traits. *Nat Genet* 2018; **50**: 1728–1734.
- 278 23 Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of
 279 shared genetic influences on 42 human traits. *Nat Genet* 2016; **48**: 709–717.
- Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D *et al.* The MR-Base platform
 supports systematic causal inference across the human phenome. *eLife* 2018; **30**: e34408.
- Lyon M, Andrews S, Elsworth B, Gaunt T, Hemani G, Marcora E. The variant call format
 provides efficient and robust storage of GWAS summary statistics. *bioRxiv* 2020.
 doi:10.1101/2020.05.29.115824.
- 285 26 Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J *et al.* The MRC IEU
 286 OpenGWAS data infrastructure. *bioRxiv* 2020. doi:10.1101/2020.08.10.244293.
- 287 27 Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA *et al.* Genome-wide
 288 association study identifies 74 loci associated with educational attainment. *Nature* 2016; **533**:
 289 539–542.

290	28	Karlsson Linnér R, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA et al. Genome-
291		wide association analyses of risk tolerance and risky behaviors in over 1 million individuals
292		identify hundreds of loci and shared genetic influences. Nat Genet 2019; 51: 245-257.
293	29	Zenin A, Tsepilov Y, Sharapov S, Getmantsev E, Menshikov LI, Fedichev PO et al.
294		Identification of 12 genetic loci associated with human healthspan. Commun Biol 2019; 2.
295		doi:10.1038/s42003-019-0290-0.
296	30	Timmers PR, Mounier N, Lall K, Fischer K, Ning Z, Feng X et al. Genomics of 1 million parent
297		lifespans implicates novel pathways and common diseases and distinguishes survival chances.
298		<i>eLife</i> 2019; 15 . doi:10.7554/eLife.39856.001.
299	31	Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D et al.
300		Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a
301	22	meta-analysis of genome-wide association studies. <i>Lancet Neurol</i> 2019; 18 : 1091–1102.
302	32	COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19.
303	22	<i>Nature</i> 2021. doi:10.1038/s41586-021-03767-x.
304	33	Tielbeek JJ, Uffelmann E, Williams BS, Colodro-Conde L, Gagnon É, Mallard TT <i>et al.</i>
305		Uncovering the genetic architecture of broad antisocial behavior through a genome-wide
306		association study meta-analysis. <i>bioRxiv</i> 2021. doi:10.1101/2021.10.19.462578.
307		
308		
500		
309		
207		
310		
311		
312		
313		
214		
314		
215		
315		
316		
510		
317		
017		
318		
319		
320		
321		

322 **Table 1**. GWA study data sources.

Trait (abbreviation)	Data source: Consortium and Availability	Effective Sample Size
Average total household income before tax ("average income")	MRC-IEU; IEU Open GWAS Project identifier: ukb-b-7408; https://gwas.mrcieu.ac.uk/datasets/ ^{24–26}	397,751
Education years	Okbay <i>et al.</i> (2016) ²⁷ ; Social Science Genetic Association Consortium (SSGAC); https://www.thessgac.org/ ²⁸	293,723
Healthspan	Zenin <i>et al.</i> (2019) ²⁹ ; (UKBB; n=300,447 European); https://www.gwasarchive.org/	300,447
Lifespan	Timmers <i>et al.</i> ³⁰ (2019); UKBB/LifeGen study; https://datashare.ed.ac.uk/handle/10283/3209	1,012,240
Word interpolation ("verbal reasoning")	UKBB/Neale lab; IEU Open GWAS Project identifier: ukb-d-4957; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶	98,753 cases and 18,062 controls
Breastfed as baby	MRC-IEU; IEU Open GWAS Project identifier: ukb-b-13423; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶	251,150 cases and 100,944 controls
Cheese intake	MRC-IEU; IEU Open GWAS Project identifier: ukb-b-1489; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶	451,486
Self-rated happiness ("happiness")	UKBB/Neale lab; IEU Open GWAS Project identifier: ukb-a-367; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶	110,935
Parkinson's disease	Nalls <i>et al.</i> (2019) ³¹ . International Parkinson's Disease Genomics Consortium; IEU Open GWAS Project identifier: ieu-b-7; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶	33,674 cases and 449,046 controls
COVID-19	COVID-19 Host Genetics Initiative, release 4 ³² ; IEU Open GWAS Project identifier: ebi- a-GCST010780; https://gwas.mrcieu.ac.uk/datasets/ ^{24–26}	14,134 COVID-19 cases and 1,284,876 controls (release 4) SNPs=12,500,447
COVID-19	COVID-19 Host Genetics Initiative, release 6 ³² <u>https://www.covid19hg.org/results/r6/</u>	112,612 COVID-19 cases and 2,474,079 controls (release 6) SNPs= 8,141,092
Job involves heavy manual or physical work ("heavy manual labor")	MRC-IEU; IEU Open GWAS Project identifier: ukb-b-2002; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶	263,615
Noisy workplace	MRC-IEU; IEU Open GWAS Project identifier: ukb-b-2091; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶	151,624
ASB	Broad Antisocial Behavior Consortium (BroadABC); http://broadabc.ctglab.nl/ (data available upon request) ^{12,33}	56,575
Townsend Deprivation Index	MRC-IEU; IEU Open GWAS Project identifier: ukb-b-10011; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶	462,464
Gastrointestinal diseases	FINNGen Biobank analysis; 39,639 cases and 56,860 controls (European); binary; IEU Open	39,639 cases and 56,860 controls

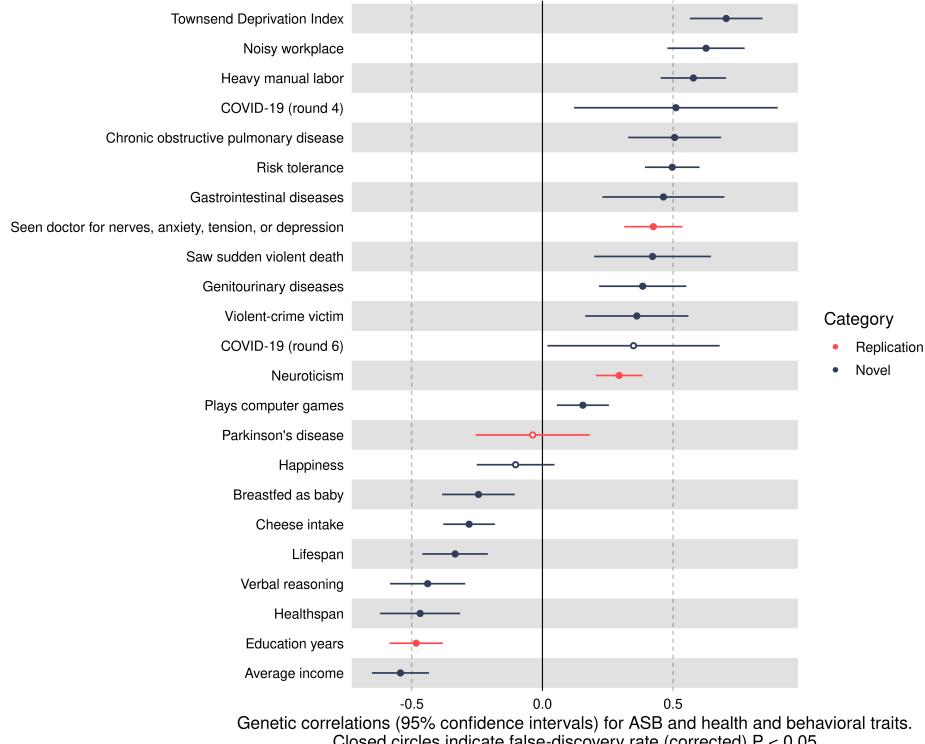
https://www.finngen.fi/fi/ ^{24–26}			
UKBB/Neale lab; IEU Open GWAS Project			
identifier: ukb-d-COPD_EXCL;	26,710 cases and 334,484 controls		
https://gwas.mrcieu.ac.uk/datasets/24-26			
UKBB/Neale lab; IEU Open GWAS Project			
identifier:	71 (20		
ukb-d-XIV_GENITOURINARY;	71,620 cases and 289,574 controls		
	374,323		
https://gwas.mrcieu.ac.uk/datasets/24-26			
identifier: ukb-b-6991;	158,565 cases and 300,995 controls		
https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶			
	462,433		
	,		
identifier: ukb-d-20529;	21,926 cases and 95,920 controls		
https://gwas.mrcieu.ac.uk/datasets/24-26			
Karlsson Linnér et al. (2019) ²⁸ ; Social Science			
	466,571		
UKBB/Neale lab; IEU Open GWAS Project			
identifier: ukb-d-20530;	15,959 cases and 101,903 controls		
https://gwas.mrcieu.ac.uk/datasets/24-26			
	identifier: ukb-d-COPD_EXCL; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶ UKBB/Neale lab; IEU Open GWAS Project identifier: ukb-d-XIV_GENITOURINARY; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶ MRC-IEU; IEU Open GWAS Project identifier: ukb-b-4630; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶ MRC-IEU; IEU Open GWAS Project identifier: ukb-b-6991; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶ MRC-IEU; IEU Open GWAS Project identifier: ukb-b-6991; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶ UKBB/Neale lab; IEU Open GWAS Project identifier: ukb-b-4779; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶ UKBB/Neale lab; IEU Open GWAS Project identifier: ukb-d-20529; https://gwas.mrcieu.ac.uk/datasets/ ²⁴⁻²⁶ Karlsson Linnér et al. (2019) ²⁸ ; Social Science Genetic Association Consortium (SSGAC); https://www.thessgac.org/		

323 UKBB = UK Biobank; IEU = Medical Research Counsel Integrative Epidemiology Unit at the 324 University of Bristol; GWAS = genome-wide association study. Most of the GWA studies were 325 performed solely in those of European ancestry. The two COVID-19 GWA studies came from meta-326 analyses that predominately consisted of those of European ancestry, but the COVID-19 (release 6) 327 included some participants of other ancestral backgrounds. However, the COVID-19 Host Genetics 328 Initiative cohort that generated the COVID-19 data performed sensitivity analyses generating SNPheritability (h_q^2) estimates for COVID-19 using only the data for those of European ancestry for release 329 6 and compared these to the h_g^2 estimates for the meta-analytic measures we used: the h_g^2 estimates 330 331 were nearly the same (see the Supplementary table 6 that accompanies the COVID-19 Host Genetics Initiative paper ³²). Were the h_q^2 estimates substantially different, use of the meta-analytic data for 332 333 LDSC would have been inappropriate. Thus, though we did not have access to the European-only

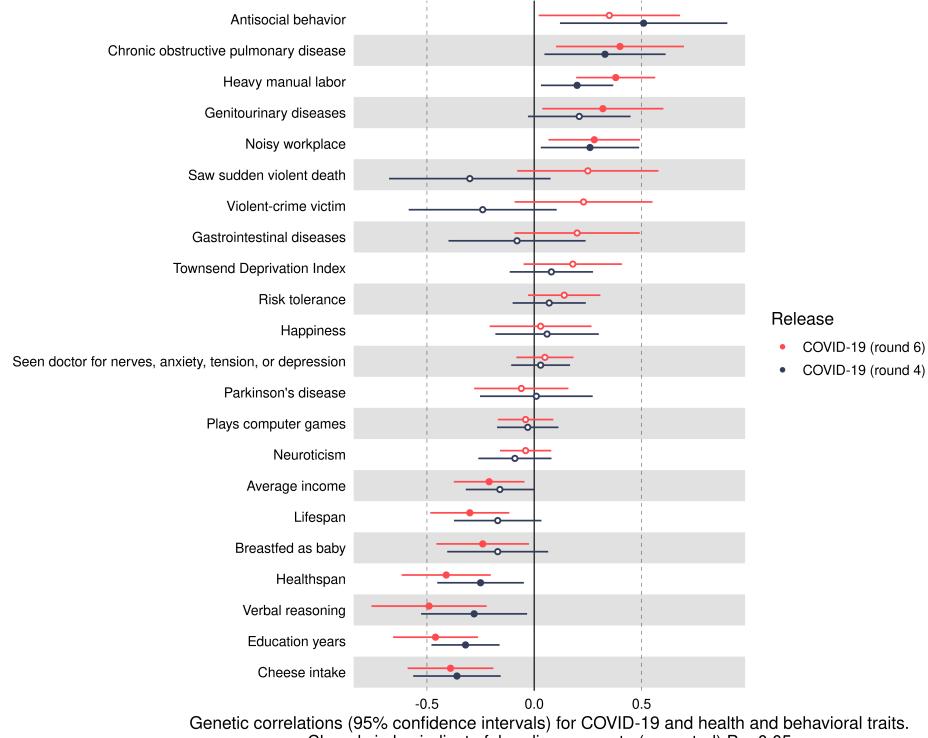
334	ancestry data for COVID-19 (release 6), the h_g^2 estimates for the meta-analytic data do not appear to be
335	confounded by mixed ancestries.
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	
352	
353	
354	
355	
356	

			Lower 95% CI	Upper 95% CI	FDR <i>P</i> -	h_g^2 for
Trait 1	Trait 2	r_g	for r_g	for r_g	value	trait 2
ASB	Average income	-0.54	-0.65	-0.43	9.88E-22	0.07
ASB	Education years	-0.48	-0.59	-0.38	9.76E-20	0.12
ASB	Healthspan	-0.47	-0.62	-0.31	5.97E-09	0.03
ASB	Verbal reasoning	-0.44	-0.58	-0.30	5.62E-09	0.08
ASB	Lifespan	-0.33	-0.46	-0.21	4.20E-07	0.02
ASB	Cheese intake	-0.28	-0.38	-0.18	6.97E-08	0.07
ASB	Breastfed as baby	-0.24	-0.38	-0.11	9.60E-04	0.03
ASB	Happiness	-0.10	-0.25	0.05	2.22E-01	0.06
ASB	Parkinson's disease	-0.04	-0.26	0.18	7.77E-01	0.02
ASB	Plays computer games	0.15	0.06	0.25	3.60E-03	0.07
ASB	Neuroticism	0.29	0.20	0.38	3.05E-10	0.11
ASB	COVID-19 (release 6)	0.35	0.02	0.68	5.21E-02	0.001
ASB	Violent-crime victim	0.36	0.16	0.56	5.82E-04	0.03
ASB	Genitourinary diseases	0.38	0.22	0.55	1.45E-05	0.02
ASB	Saw sudden violent death	0.42	0.20	0.65	3.95E-04	0.02
ASB	Seen doctor for nerves, anxiety, tension, or depression	0.42	0.31	0.54	2.36E-13	0.06
ASB	Gastrointestinal diseases	0.46	0.23	0.70	1.89E-04	0.04
ASB	Risk tolerance	0.50	0.39	0.60	6.34E-20	0.02
ASB	COPD	0.51	0.33	0.68	6.45E-08	0.01
ASB	COVID-19 (release 4)	0.51	0.12	0.90	1.54E-02	0.001
ASB	Heavy manual labor	0.58	0.45	0.70	8.31E-19	0.08
ASB	Noisy workplace	0.63	0.48	0.77	3.99E-16	0.06
ASB	Townsend Deprivation Index	0.70	0.56	0.84	2.25E-22	0.03

Table 2. Genetic correlations (r_{gs}) between ASB and health and behavioral traits.


358 ASB=antisocial behavior; r_g = genetic correlation; FDR = false-discovery rate (corrected) *P*-value; h_g^2

359 = SNP-heritability.


			Lower 95% CI	Upper 95% CI	FDR <i>P</i> -	h_g^2 for
Trait 1	Trait 2	r_{g}	for r_q	for r_q	value	trait 2
COVID-19 (release 6)	Chronic obstructive pulmonary disease	0.40	0.11	0.70	1.17E-02	0.02
COVID-19 (release 6)	Heavy manual labor	0.38	0.19	0.56	1.25E-04	0.08
COVID-19 (release 4)	Chronic obstructive pulmonary disease	0.33	0.04	0.61	3.44E-02	0.01
COVID-19 (release 6)	Genitourinary diseases	0.32	0.04	0.60	3.69E-02	0.02
COVID-19 (release 6)	Noisy workplace	0.28	0.07	0.50	1.45E-02	0.06
COVID-19 (release 4)	Noisy workplace	0.26	0.03	0.49	3.69E-02	0.06
COVID-19 (release 6)	Saw sudden violent death	0.25	-0.08	0.58	1.70E-01	0.03
COVID-19 (release 6)	Violent-crime victim	0.23	-0.09	0.55	1.97E-01	0.03
COVID-19 (release 4)	Genitourinary diseases	0.21	-0.03	0.45	1.17E-01	0.02
COVID-19 (release 4)	Heavy manual labor	0.20	0.03	0.37	2.65E-02	0.08
COVID-19 (release 6)	Gastrointestinal diseases	0.20	-0.10	0.49	2.36E-01	0.05
COVID-19 (release 6)	Townsend Deprivation Index	0.18	-0.05	0.41	1.66E-01	0.03
COVID-19 (release 6)	Risk tolerance	0.14	-0.03	0.31	1.31E-01	0.02
COVID-19 (release 4)	Townsend Deprivation Index	0.08	-0.11	0.27	4.81E-01	0.03
COVID-19 (release 4)	Risk tolerance	0.07	-0.10	0.24	4.97E-01	0.02
COVID-19 (release 4)	Happiness	0.06	-0.19	0.30	7.07E-01	0.06
COVID-19 (release 6)	Seen doctor for nerves, anxiety, tension, or depression	0.05	-0.09	0.18	5.40E-01	0.06
COVID-19 (release 4)	Seen doctor for nerves, anxiety, tension, or depression	0.03	-0.11	0.17	7.22E-01	0.06
COVID-19 (release 6)	Happiness	0.03	-0.21	0.27	8.38E-01	0.06
COVID-19 (release 4)	Parkinson's disease	0.01	-0.26	0.27	9.59E-01	0.02
COVID-19 (release 4)	Plays computer games	-0.03	-0.17	0.11	7.19E-01	0.07
COVID-19 (release 6)	Plays computer games	-0.04	-0.17	0.09	6.23E-01	0.08
COVID-19 (release 6)	Neuroticism	-0.04	-0.16	0.08	5.25E-01	0.11
COVID-19 (release 6)	Parkinson's disease	-0.06	-0.28	0.16	6.61E-01	0.02
COVID-19 (release 4)	Gastrointestinal diseases	-0.08	-0.39	0.24	7.06E-01	0.04
COVID-19 (release 4)	Neuroticism	-0.09	-0.26	0.08	3.68E-01	0.11
COVID-19 (release 4)	Average income	-0.16	-0.32	0.00	6.02E-02	0.07
COVID-19 (release 4)	Lifespan	-0.17	-0.37	0.04	1.47E-01	0.02
COVID-19 (release 4)	Breastfed as baby	-0.17	-0.41	0.06	1.93E-01	0.03
COVID-19 (release 6)	Average income	-0.21	-0.37	-0.04	2.06E-02	0.07
COVID-19 (release 4)	Violent-crime victim	-0.24	-0.58	0.11	2.24E-01	0.03
COVID-19 (release 6)	Breastfed as baby	-0.24	-0.46	-0.03	3.69E-02	0.02
COVID-19 (release 4)	Healthspan	-0.25	-0.45	-0.04	2.53E-02	0.03
COVID-19 (release 4)	Verbal reasoning	-0.28	-0.52	-0.03	3.79E-02	0.08
COVID-19 (release 6)	Lifespan	-0.30	-0.48	-0.11	2.73E-03	0.02
COVID-19 (release 4)	Saw sudden violent death	-0.30	-0.68	0.07	1.50E-01	0.03
COVID-19 (release 4)	Education years	-0.32	-0.48	-0.16	1.39E-04	0.13
COVID-19 (release 4)	Cheese intake	-0.36	-0.56	-0.16	9.65E-04	0.07
COVID-19 (release 6)	Cheese intake	-0.39	-0.59	-0.20	1.88E-04	0.07
COVID-19 (release 6)	Healthspan	-0.41	-0.62	-0.20	2.23E-04	0.03
COVID-19 (release 6)	Education years	-0.46	-0.66	-0.26	1.09E-05	0.13
COVID-19 (release 6)	Verbal reasoning	-0.49	-0.76	-0.22	6.28E-04	0.09

369 **Table 3**. Genetic correlations (r_{gs}) between COVID-19 and health and behavioral traits.

370 r_g = genetic correlation; FDR = false-discovery rate (corrected) *P*-value; h_g^2 = SNP-heritability.

Closed circles indicate false-discovery rate (corrected) P < 0.05.

Closed circles indicate false-discovery rate (corrected) P < 0.05.