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ABSTRACT
Regular monitoring of common physiological signs, including heart rate, blood pressure, and
oxygen saturation, can be an effective way to either prevent or detect many kinds of chronic
conditions. In particular, cardiovascular diseases (CVDs) are a worldwide concern. According to
the World Health Organization, 32% of all deaths worldwide are from CVDs. In addition,
stress-related issues cost $190 billion in healthcare costs per year.  Currently, contact devices
are required to extract most of an individual’s physiological information, which can be
uncomfortable for users and can cause discomfort. However, in recent years, remote
photoplethysmography (rPPG) technology is gaining growing interest, which enables
contactless monitoring of the blood volume pulse signal using a regular camera, and ultimately
can provide the same physiological information as a contact device. In this paper, we propose a
benchmark comparison using a new multimodal database consisting of 56 subjects where each
subject was submitted to three different tasks. Each subject wore a wearable device capable of
extracting photoplethysmography signals and was filmed to allow simultaneous rPPG signal
extraction. Several experiments were conducted, including a comparison between information
from contact and remote signals and stress state recognition.  Results have shown that in this
dataset, rPPG signals were capable of dealing with motion artifacts better than contact PPG
sensors and overall had better quality if compared to the signals from the contact sensor.
Moreover, the statistical analysis of the variance method had shown that at least two HRV
features, NNi 20 and SAMPEN were capable of differentiating between Stress and Non-Stress
states. In addition, three features, IBI, NNi 20, and SAMPEN were capable of differentiating
between tasks relating to different levels of difficulty. Furthermore, using machine learning to
classify a 'stressed' or 'unstressed’ state, the models were able to achieve an accuracy score of
83.11%.
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INTRODUCTION
There is growing interest in technologies related to remote patient monitoring (RPM) solutions,
an interest that has largely piqued as of late amid the COVID- 19 pandemic. Furthermore, these
technologies can be used to monitor several disorders. Cardiovascular disease (CVD) is a
group of disorders related to the heart and blood vessels. According to the World Health
Organization [1], 32% of all deaths worldwide are attributed to CVDs. The most common health
issues include the risk of a heart attack, stroke, and heart failure.
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In addition, stress-related issues place a significant burden on the global healthcare system.
Data from the American Institute of Stress [2] shows that 83% of US workers suffer from
work-related stress. As a result of work stress, US businesses lose up to $300 billion yearly, and
work-related stress issues cause up to 120,000 deaths and result in $190 billion in healthcare
costs per year.

RPM solutions are being developed for a multitude of customers of varying ages and varying
health conditions of patients are efficiently being monitored outside traditional settings with
increased accessibility to regular physiological assessments. Regular physical evaluations of a
patient’s health allow the capture of longitudinal data that can be used to provide a highly
personalized level of care and has the potential to predict the onset of severe health problems.

Well-established methods for capturing physiological data include the use of electrocardiograms
(ECG) or photoplethysmography (PPG), both of which require the use of contact sensors.
These methods, through their physiological signals, have the ability and the potential to
measure several different physiological parameters such as: heart rate (HR), respiration rate,
oxygenation, and mental stress.

One of the main parameters used in these studies is Heart-rate Variability (HRV), which can be
accessed through the time difference between two peaks of the signal, either the ECG with the
R part of PPG with the systolic peak, in both cases can simply be named the R-R interval.

Since HRV can be deduced from both methods and it is well-established that HRV is an
accurate non-invasive proxy to measuring changes in the autonomic nervous system (ANS) and
thus accesses the patient’s psychological information. Kim et al. [3], investigated the assumption
of correlating HRV and stress levels. Their findings show that HRV features changed in
response to stress-induced by different methods. HRV characteristics change in association
with low parasympathetic activity, which is characterized by a decrease in the high-frequency
band (0.16 Hz - 0.4 Hz) and an increase in the low-frequency band (0.04 Hz - 0.15 Hz).

HRV can also be used to measure potential cardiovascular issues. Although contact-based
methods are noninvasive and can capture valuable information about an individual’s health &
wellness, they can irritate those with sensitive skin, and such physical devices to capture ECG
or PPG signals may not be easily accessible.

Alternatively, researchers have recently introduced the Remote Photoplethysmography (rPPG)
technique, which is a low-cost, non-contact method and an alternative solution for measuring
the same parameters as the PPG signal in a contact-less way. Since it is a method that can be
performed on any consumer technology device with an embedded camera, its ease of use
makes it an attractive addition to the suite of RPM solutions.

The information acquired through rPPG reflects the variations of blood volume in skin tissue
which is modified by cardiac activity. The reflection of light is influenced by the change in the
volume of blood and of the movement of the wall of blood vessels; this phenomenon is visible
within frame-to-frame changes of a red, green, and blue (RGB) camera. There are, however
several challenges when attempting to retrieve an optimal rPPG signal. Distortion to clean rPPG
signals mostly arises from low illumination, significant head movement, a camera’s frame rate,
and its resolution.
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rPPG methods are usually carried out using a four- step-methodology, which can be
summarized as Frame- to-frame extraction, Region of Interest (ROI) detection, signal
processing, and vitals estimation. First, the video files are usually separated into several frames,
and the amount of frames in a certain period is denoted as frame rate, measured in frames per
second (FPS). ROI detection is performed by detecting face regions in each video frame, this
process is commonly used with face tracking and landmark detection algorithms such as the
Viola-Jones method [4]. Once the ROIs are selected, pixel intensity components are extracted;
those components are in the RGB color space. In addition, the RGB components are spatially
averaged over all pixels in the ROI to yield a red, blue, and green component for each frame
and form the raw signals.

Next, a signal processing stage is applied, also known as the 'rPPG Core'. This has been the
object of various studies in the last decade, resulting in multiple methods which seek to extract
reliable rPPG signals from RGB components. Some rely on Blind Source Separation (BSS)
methods, which can retrieve information by de-mixing raw signals into different sources.
Principal Component Analysis (PCA)-based and Independent Component Analysis (ICA)-based,
which use different criteria to separate temporal RGB traces into uncorrelated or independent
signal sources, are some of the used techniques.

ICA separates the pulsatile signal from noise by minimizing the Gaussianity within the de-mixed
signal. Mc Duff et al. [5] have used the JADE implementation of ICA to recover source signals
from the observations, maximizing the non-Gaussianity within the sources. However, the
experiment uses a novel digital single-lens reflex (DSLR) camera, capable of capturing five
color channels: red, green, blue, cyan, and orange (RGBCO). On the other hand, Lewandowska
et al. [6] obtained the rPPG signal using a 640 x 480 pixels RGB camera, the chosen method
was through PCA. The authors then compared the PCA results with FastICA as well as the
pulse rate obtained with the ECG ground truth.

Other authors have tried to improve the quality of the signal by changing the color space to a
chrominance-based domain. Haan and Jeanne [7], in their work, have proposed a
chrominance-based method (CHROM) to extract the rPPG signal by assuming a standardized
fixed skin-color tone, where it is assumed to be the same for every- one under white light.

In a recent study, Wang et al. [8] introduced a new alternative to process RGB components into
an rPPG signal, called the “plane-orthogonal-to-skin” (POS) algorithm. The main idea of the
algorithm is to filter out intensity variations by projecting RGB components on a plane
orthogonal to a determined normalized skin tone vector. As a result, a 2-D signal referent to the
projections is obtained and then combined into a 1-D signal which is one of the input signal
dimensions that is weighted by an alpha parameter. The alpha parameter is the quotient of the
standard deviations of each signal.

In this article, we aim to evaluate the efficacy of our rPPG method using the UBFC-Phys public
database [9]. The advantage of this dataset over other datasets that are suitable for rPPG
evaluation is that UBFC-Phys contains additional data which can be used for stress and
emotion analysis. The dataset also contains videos in which subjects are exhibiting significant
head movements, which are a good test of how well our rPPG method can handle such
conditions.
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The remainder of this paper is structured as follows. In section II, an overview of the
methodology is presented, which consists of details about the dataset used in this work, the
processing techniques needed to cope with noisy signals, as well as a full description of the
proposed rPPG Core method. Furthermore, the metrics that were used to evaluate the
performance of this work are also shown in this section. Section III presents the results of our
experiments that aim to improve the understanding of this data set. In Section IV we discuss our
results and the analyses that seek to support the performance achieved. We conclude the
article by summarizing our findings and discussing future work ideas in Section V.

Materials and Methods
The methodology proposed by this work is divided into different stages that go from data
acquisition and signal processing to the evaluation method. The flowchart in Fig.1 shows the
proposed method.

Figure 1: Proposed method - Flowchart.

Dataset
To evaluate the efficacy of the proposed rPPG methodology, the method was benchmarked
against the UBFC-Phys data set [9]. This dataset is a public multimodal dataset and whilst it is
dedicated to psychophysiological studies, it contains information that can be used to benchmark
general rPPG methods. The dataset contains 56 participants of ages between 19 and 38, with
46 females and 10 males. Each of them followed a 3-step experience that involved a resting
task 'T1', a speech task 'T2', and an arithmetic task 'T3'. The participants were filmed during
each of the three tasks with an EO-23121C camera by Edmund Optics at 35 frames per second
and a resolution of 1024 x 1024 pixels. An artificial light source was used to ensure adequate
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lighting conditions. The participants wore a wristband (Empatica E4) that measured their Blood
Volume Pulse signal (BVP), sampled at 64 Hz as well as their ElectroDermal Activity signal
(EDA), sampled at 4 Hz. Both the wristband signals and the video file are exactly 3 minutes
long.

During the rest of the task, participants were asked to be quiet and not to talk. Therefore, most
of the clean signals can be found in the T1 samples. T2 and T3 were interactive tasks and the
subjects were randomly assigned to a 'test' or 'ctrl' group to denote the varying levels of difficulty
for each of the speech and arithmetic tasks. 26 subjects were assigned to the “test” group; in
this group, they had to endure higher levels of difficulty in comparison to the “ctrl” group, which
consisted of 30 individuals, for both tasks. The researcher intended to collect physiological
responses that could be well indicative of stress and emotion for the 'test' group.  Further details
of the dataset can be found in the UBFC-Phys original paper [10].

BVP Processing
Since the BVP signals were obtained using a wrist- band, the body movement performed by the
individual can lead to poor signal quality. In an attempt to prove it, a processing stage was
performed. Firstly, the BVP signal was re-sampled from its original sampling frequency (64 Hz)
to the sampling frequency of our proposed method (30.30 Hz).

Once the BVP signal was resampled, digital filtering techniques were applied to improve the
signal quality. Firstly, a 4th order and 19 frames Savitzky-Golay filter [11] was used, to smooth
the time series through a moving average. In addition, a 2nd order Butterworth band-pass filter
[12], with low-cut and high-cut of 0.7 Hz - 7 Hz respectively, was applied to remove noise
artifacts.

rPPG Processing
In this section, we will describe our method in more detail.   The purpose of the method is to find
an optimal rPPG signal capable of holding the same physiological information as a PPG signal
from a contact sensor. The method is described in Fig.2.

Figure 2: rPPG signal extraction methodology.
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The landmark detection algorithm from the OpenCV library [13] was used to extract RGB
components from ROIs. This work proposes the use of three ROIs from the forehead, left cheek,
and right cheek. Once the raw signal was collected, the rPPG Core, which is composed of the
POS algorithm and a filtering stage based on convolutional filters, was applied to extract a clean
rPPG signal.

POS Algorithm
Originally proposed by Wang et al. [8], the POS algorithm seeks to mix RGB channels into a
single channel rPPG signal. According to the authors, the input RGB signal channels are mixed
on the time interval t as follows:

The subscript n represents normalization, representing the instant color values divided by the
mean value of the color channel. The rPPG signal on this interval is constructed as denotes
Eq.3:

where α is the ratio between the standard deviation of U(t) and V(t) calculated in the interval.

Convolutional Filter
To clean the signal, this work proposes the use of a convolutional filter (ConvFilter). The
ConvFilter will apply the convolution operation of the input single-channel signal ‘s orig’, which is
extracted after the POS algorithm, with the template that represents a single heartbeat peak of
the same signal. The template is built by averaging segments of the ‘s orig’ signal around the
detected peaks in the signal. Since the signal could be a bit noisy, to make peak detection
easier, it is recommended to apply a bandpass filter with the pass bandwidth from 0.7 Hz to 7.0
Hz. The cleaner “heart” signal is obtained via convolution Eq.4 or the equivalent correlation Eq.5
with this template t[k ]:
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An example of a resulting rPPG signal is shown along with the corresponding BVP GT signal
from the dataset in Fig.3.

Figure 3: GT Signal vs. rPPG signal.

Signal-Post Processing
Even though the set of digital filtering techniques, which were applied to the signals, can well
remove artifacts and noise issues, it may not be able to improve the signal quality to an
acceptable level. Meziati et al. [10] in the original paper, have chosen a strategy to cope with
those signals by simply removing them. In our work, we propose a post-processing stage, which
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seeks to find and remove specific segments of the signal that are damaged in an attempt to
avoid removing the entire sample. The procedure is entirely based on detecting corrupted
peaks, either peak detected when it should not be or missing peaks. The peak validation
process is a set of test rules that are used to find reliable and unreliable peaks either in the BVP
or rPPG signals. Firstly, using the original peaks, the IBI signal is calculated. In the first rule, we
propose the use of an IBI threshold, in which the IBI signal should be within the range from min
IBI to max IBI values that correspond to 210 bpm and 42 bpm of heart rate, respectively.
Second, since each peak has its left and right IBI component, for valid peaks, the absolute IBI
sequential difference should be less than 0.5 seconds.

The valid peaks are those that have valid both their left and right IBI components. Therefore, the
first detected peak in the signal is invalid because it has no left IBI, and the last peak is invalid
because it has no right IBI.
Finally, a peak that is just before or after the invalid peak is assumed to be invalid. This
processing is applied only once, as a last validation test. In this way, there are two invalid peaks
at the beginning and the end of the signal. Moreover, 4 invalid peaks can be expected to appear
around 1 invalid IBI in the signal. This rule aims to eliminate isolated peaks surrounded by
invalid peaks. Fig.4 presents an example of a post-processing algorithm in use.

Figure 4: Post-processing algorithm over the rPPG signal.
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Metrics
As stated previously, this work seeks to evaluate our proposed method of remote health
screening using rPPG signals extracted from video files. To compare the performance of our
method, the BVP signal was used as the “ground truth”. Thus, physiological features were taken
from both contact and remote signals and then compared.

The main tool used to calculate those features is the RR Interval, also known as pulse-to-pulse
interval, which is the time difference between two peaks in terms of milliseconds (ms) Eq.6.
Heart rate (HR), measured in beats per minute (bpm), can be calculated from the RR intervals,
Eq.7 shows the definition. In addition, we also compile the following features in the time domain:
InterBeat-Interval (IBI) Eq.8, Root Mean Square of Successive Differences between Normal
Heartbeats (RMSSD) Eq.9 and the Standard Deviation of Normal to Normal Heartbeats (SDNN)
Eq.10. In the frequency domain, we measured the power from the low-frequency band (LF)
[0.04; 0.15]Hz and the high-frequency band (HF) [0.15; 0.4]Hz.
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To evaluate the accuracy of our rPPG method against the contact sensor, we measured the
mean absolute error (MAE) for each comparative feature described above. For the stress
classification task, statistical metrics were used, as described in Eq.11, Eq.12, Eq.13, Eq.14,
and Eq.15. We also use the F1-Score Eq.15 to evaluate how well the rPPG method can identify
pulsatile peaks in a signal.

The F1-Score is the weighted average of Precision Eq.12 and Recall Eq.13, which the score
takes both, false positives and false negatives into account. The concepts of true positives, false
positives, and false negatives are entirely based on the position of the pulsatile peaks in the
signal.

• True Positive (TP): Event in which there was a peak and the algorithm found it correctly.
• False Positive (FP): Event in which there was not a peak and the algorithm incorrectly points.
• False Negative (FN): Event in which there was a peak and the algorithm has not found it.

Stress Experiments
This work also seeks to evaluate how well we can predict whether an individual is under stress
or not, just by looking at features of the rPPG signal. In the UBFC-Phys dataset, there are at
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least three different ways to measure this. Stress classification between stress and unstress,
task differentiation between subjects in T1, T2, and T3, and finally group differentiation between
test and control.

To conduct the analysis, only HRV features in the time, frequency, and nonlinear domains were
used. Moreover, this work does not use the self-reported scores assigned to subjects before
and after the experiment. The group separation between stress and non-stress was created in
the following way: All T1 samples were labeled as non-stress, T2 and T3 samples were labeled
as stress if the sample belongs to the test set otherwise, if the subject belongs to the control set,
then this sample is labeled as non-stress.

In our work we used two different approaches for each one of the experiments, using a
statistical One-Way Analysis of Variance (ANOVA) test and Machine Learning (ML) models. ML
models are often used for classification tasks, in this work we propose the use of HRV features
as inputs to those models.

Moreover, ANOVA was used to verify the hypothesis that the groups are separable. ANOVA is a
statistical tool that compares means of several samples, this is done by analyzing the variances
between the data and within these groups, it is also known as an extension of the t-test for two
independent samples to more than two groups [14]. ANOVA test of the hypothesis is based on a
comparison of two independent estimates of the population variance [15].

The null hypothesis of the ANOVA test represents that there is no difference between the
groups, to reject this hypothesis, the p-value resulting is observed and compared with a certain
threshold, usually a significance level of 0.05. In other words, if the resulting p-value is below
0.05 (p-value < 0.05), it rejects the hypothesis and it is possible to conclude with 95%
confidence that there are differences between the means of the group, thus the groups are
separable.

However, to use the ANOVA test, a normally distributed data set is required. To test whether a
feature follows a normal distribution or not, the Shapiro- Wilk test [16] was applied. The
Shapiro-Wilk test is based on the correlation between the data and the corresponding normal
scores [17]. The null hypothesis of the Shapiro-Wilk test is that the feature is normally
distributed, which is represented by a p-value above 0.05 (p-value > 0.05).

Even though ANOVA is a powerful tool that indicates that at least one group differs from the
other groups, the method does not show which particular group differs or if there is more than
one. Thus, ANOVA is often equipped with a specific test that compares the two means between
the pairs or groups, also known as pairwise comparisons. In this work, Tukey’s test was applied
[18].
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Results
In this study, video files from the UBFC data set [9] were used to extract physiological
information from individuals. Each one of the videos was processed using our proposed method
described in section II C, which returns the rPPG signal.

The information obtained through the rPPG signal was then compared to that obtained from the
BVP signal, which was taken as ground truth.

Firstly, after the rPPG signals were obtained, the post-processing algorithm described in section
IID was used to better understand the relationship between the quality of the contact and
remote signals. Fig.5 shows the percentage of validated peaks, according to the
post-processing algorithm, in each sample per task for both Contact GT and Remote rPPG
signals. Moreover, Fig.6 shows the calculated F1 score obtained over the synchronized GT and
rPPG peaks.

(a) Task 1
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(b) Task 2

(c) Task 3
Figure 5: Percentage of valid maxes (peaks) for contact GT / remote rPPG in each sample per

task.

To extract the heart rate values over time from each subject, a sliding window approach, with a
size of 30 seconds and stride of 1 second was used. Fig.7 shows the results comparing HR
estimation using the BVP GT and rPPG signals, for three different samples and tasks, in
agreement with the original experiment setup. Those results are only using filtering techniques
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to clean the signal. Moreover, Fig.8 shows the same experiment, as ever, now using the
proposed post-processing algorithm.

(a) Task 1.

(b) Task 2.
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(c) Task 3.
Figure 6: F1-Score percentage obtained from TP, FP, and FN considering Contact and Remote

extracted peaks

(a)
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(b)

(c)
Figure 7: Remote and Contact heart rate signals using 30 seconds sliding window - Results with

filtered signals, no post-processing stage.

(a)

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.18.21265118doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.18.21265118
http://creativecommons.org/licenses/by-nc/4.0/


(b)

(c)
Figure 8: Remote and Contact heart rate signals using 30 seconds sliding window - Results

after post-processing algorithm.

To understand the real spatial difference between estimated and ground-truth HR, two plots
were created. First, Fig.9 shows the scatter plots for each task, where the x-axis represents the
presumed correct value from the contact sensor and the y axis represents the remote estimated
heart rate, both calculated using Eq.7. In addition, the best-fit line, as well as the perfect 1:1 line,
are also shown to visualize the correlation. The best-fit line was obtained using a first-degree
polynomial function using Eq.16, with the following coefficients:

y = Ax + B (16)
• T1: A: 0.891862, B: 11.74
• T2: A: 0.377204, B: 51.50
• T3: A: 0.661961, B: 27.63

Moreover, Fig.10 brings the heart rate error level distribution for each one of the three tasks.
The bins correspond, respectively, to

• Error < 5
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• 5 ≤ Error < 10
• 10 ≤ Error < 15
• Error ≥ 15

(a) Task 1.

(b) Task 2.

(c) Task 3.
Figure 9: Contact vs. Remote - overall mean heart rate estimation.
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(a) Task 1.
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(b) Task 2.

(c) Task 3.
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Figure 10: Overall heart rate error level distribution.

It’s clear to see that the UBFC dataset has damaged signals, and these signals can be either
one of BVP GT or rPPG signals or both. In contrast with the original article, which proposes
exclusion criteria based on a comparative assessment between the rPPG and BVP signals, this
work aims to create a more robust approach to identify unreliable signals. This condition must
be under the assumption that four scenarios are possible:

(a) Acceptable GT and acceptable rPPG.
(b) Acceptable GT and unacceptable rPPG.
(c) Unacceptable GT and acceptable rPPG.
(d) Unacceptable GT and unacceptable rPPG.

These scenarios are apparent in any of the three tasks. Fig.11 shows one example of a signal
for each possible scenario.

(a) Acceptable GT and acceptable rPPG.
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(b) Acceptable GT and unacceptable rPPG.

(c) Unacceptable GT and acceptable rPPG.
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(d) Unacceptable GT and unacceptable rPPG.
Figure 11: Contact vs. Remote - Signal Quality.

This work looked at several parameters to formulate a fair and robust exclusion criterion solely
based on removing damaged GT signals. To reach this goal, the following parameters were
investigated.

• Percentage of GT valid peaks;
• F1-Score of valid peaks (uses GT and rPPG peaks);
• Signal-to-noise ratio (SNR);
• Standard deviation of GT heart rate.

Experiments have shown that the most efficient and reliable parameter was the percentage of
GT valid peaks. However, the threshold used as the minimum required value to validate the
sample has its limitations. Table I shows the results for different thresholds of validated GT
peaks.

Table I: Overall abs. heart rate error using different exclusion criteria. Validated peaks obtained
from GT.

Evaluation of exclusion criteria - Abs. Error HR (bpm)

GT Validated Peaks Score

T1 TH > 60% TH > 70% TH > 80% TH > 90%

no. files
mean value
Min value

56
3.38
0.01

52
3.23
0.01

49
3.42
0.01

39
2.94
0.01
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max value 33.05 33.05 33.05 33.05

T2 TH > 60% TH > 70% TH > 80% TH > 90%

no. files
mean value
Min value
max value

34
5.58
0.00

26.34

24
4.99
0.00

26.34

11
3.72
0.37
8.87

4
3.81
1.28
5.82

T3 TH > 60% TH > 70% TH > 80% TH > 90%

no. files
mean value
Min value
max value

42
4.02
0.06

22.31

30
4.15
0.06

13.69

16
3.12
0.06

13.69

9
4.18
0.39

13.69

Although using an exclusion criterion based on GT valid peaks can increase the reliability of the
results, it is possible to see that the maximum value of all three tasks was considerable. Those
large errors can be accepted if the problem was due to suboptimal rPPG signals, which can be
understood as those samples in which the rPPG method failed, however, this is not always the
case.

Using the samples that survived from the exclusion criterion of GT valid peaks > 60%, each
sample that could be a potential outlier was investigated by evaluating the Signal to Noise Ratio
(SNR) of the GT signal. Using a threshold of 4 dB, we removed GT signals that fell below this
threshold, indicating that this signal was not of sufficient quality for comparative evaluation.
Table II shows the results using these two exclusion criteria. Table II: Results after exclusion
criteria of GT valid peaks > 60% and SNR > 4dB.

Table II: Results after exclusion criteria of GT valid peaks > 60% and SNR > 4dB.
MAE HR (bpm)

T1 This work

no. files
mean value
min value
max value

55
3.33
0.01

33.05

T2 This work

no. files
mean value
min value
max value

22
3.08
0.00

16.26
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T3 This work

no. files
mean value
min value
max value

34
2.77
0.06

22.31

Despite applying these techniques to avoid including damaged GT signals in our analysis, it is
still evident that damaged GT signals were still left. Therefore, a manual check on the GT signal
was performed to avoid damaged signals that neither of the proposed materials was able to
filter. We only found additional damaged signals in Task 1 during our manual check. Fig. 12,
shows an example of a damaged GT signal with good quality rPPG, and Table III presents the
results after applying our exclusion criteria which is based on: Valid GT valid peaks > 60%, SNR
> 4 dB, and a manual GT signal check.

Figure 12: Example of the damaged signal.

Table III: Results of this work after proposed exclusion criteria, GT valid peaks > 60%, SNR > 4
dB, and manual GT signal check.

MAE HR (bpm)

T1 This work

no. files
mean value
min value
max value

47
1.10
0.01
4.70

T2 This work

no. files 22
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mean value
min value
max value

3.08
0.00

16.26

T3 This work

no. files
mean value
min value
max value

34
2.77
0.06

22.31

Using the exclusion criteria based on the percentage of valid GT peaks > 60%, SNR > 4 dB,
and a manual check, features from time, frequency, and non-linear domains were extracted from
each one of the remaining samples using Contact and Remote signals after the post-processing
algorithm. It also involves adaptive modeling techniques with the help of the Farr Institute
(https://www.farrinstitute.org/healthcare-informatics).

From those HRV features, the most important ones, according to this work, are shown in Table
IV, which demonstrates the average of each feature per task as well as the mean absolute error
in the specific feature over all the remaining samples.

Table IV: Comparison of contact/remote features per task. Using proposed exclusion criteria.

T1 Contact Remote MAE

HR (bpm)
IBI (ms)

RMSSD (ms)
SDNN (ms)

LF (s2)
HF (s2)
LF/HF

83.56
745.18
153.98
127.53

7.42
6.29
1.40

84.13
728.51
75.22
77.40
3.89
1.85
2.13

1.10
22.09
93.98
62.10
6.31
5.18
0.98

T2 Contact Remote MAE

HR (bpm)
IBI (ms)

RMSSD (ms)
SDNN (ms)

LF (s2)
HF (s2)
LF/HF

80.51
810.57
352.00
267.14
22.61
23.77
0.97

80.53
778.81
266.76
212.93
29.88
14.39
1.40

3.08
57.82

120.37
88.64
28.14
13.07
0.73

T3 Contact Remote MAE
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HR (bpm)
IBI (ms)

RMSSD (ms)
SDNN (ms)

LF (s2)
HF (s2)
LF/HF

82.70
777.15
296.97
224.09
15.58
17.46
1.09

82.26
756.81
208.75
165.73

9.25
9.69
1.05

2.77
58.34

125.45
89.28
10.04
11.76
0.52

Since the main purpose of the UBFC dataset was to create a database for social stress studies,
in this work, we have investigated the ability of the proposed rPPG method to recognize stress
states. First, statistical methods were used to explore the assumption that HRV tissues can
differentiate between stress and non-stress states.

To investigate whether this assumption may be valid, we can visualize the distribution of certain
HRV features across each task. Fig.13 shows the box plot distribution for each HRV feature
across all 3 tasks.

(a)
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(b)
Figure 13: Box plot evaluation in each task for HRV features - a) NNi 20 and b) MEAN HR.

In addition, we investigated the use of machine learning models to correctly identify stress
states and distinguish between tasks. Four classifiers were considered: Random Forest (RF)
with 20 trees, Support Vector Machine (SVM) with a linear kernel, K-Nearest Neighbors (KNN)
with k = 5, and Light Gradient Boosting Machine (Light- GBM).

Using metrics such as Accuracy, Precision, Sensitivity, Specificity, and F1-Score Table V shows
the results for Stress State Recognition and Table VI shows the results for Task classification for
each one of the models. In addition, Fig.14 shows the confusion matrix using the Random
Forest model for each experiment.

Table V: Statistical analysis of this work, Stress Recognition.

Model Accuracy Precision Sensitivity Specificity F1-Score

RF
SVM
KNN

LightGBM

83.11%
72.72%
71.42%
77.92%

77.08%
68.00%
68.08%
70.37%

94.87%
87.17%
82.05%
97.43%

71.05%
57.89%
60.52%
57.89%

85.05%
76.40%
74.41%
81.72%

Table VI: Statistical analysis of this work Task Recognition.

Model Accuracy Precision Sensitivity Specificity F1-Score

RF
SVM

77.38%
71.42%

66.91%
57.11%

66.13%
56.62%

83.21%
78.59%

66.51%
56.83%
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KNN
LightGBM

76.19%
75.00%

63.36%
63.50%

64.05%
62.20%

82.13%
81.41%

63.49%
62.65%

(a) Classification between stress and non-stress.

(b) Classification between tasks: T1, T2, and T3.

Figure 14: Confusion Matrix for Random Forest models.

Discussion
​​In this work, we discovered that to accurately & fairly benchmark PPG signals against remote
methods, there is a need to develop an exclusion criterion to evaluate which signals should be
discarded and which signals should be included for comparative purposes. Across the UBFC
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dataset, we found that, on average, the quality of our rPPG signals was better than that of PPG
signals from a contact sensor when applying the same evaluation metric to both.

After synchronizing the PPG and rPPG signals in time, we could analyze how well our rPPG
method was able to measure ground truth pulsatile peaks in the signals and we use the F1
score as the metric for this evaluation. From Fig.6, it is clear to see that the rPPG and PPG
signals were well synchronized in time, with a mean F1 score of above 90%, however, the lower
F1 score for tasks T2 & T3 can be explained by some phase shift in the signals when motion is
introduced.

Even though our post-processing algorithm can handle some damaged signals, as shown
previously, in some samples, it is not possible to correct them to an acceptable level therefore
the most appropriate approach is to filter out those files.

Table I details different thresholds that we can use for our exclusion criteria, which is based on
the number of valid peaks in a signal as a percentage of all peaks detected in that signal. A
threshold of 60% would mean that the signal must have at least 60% of its peaks marked as
valid for comparative purposes. Table I shows how many files survived for each threshold and
the comparative mean HR MAE as well as the minimum and maximum HR MAE.

However, despite applying this filter to the GT signals, we could still observe some outliers in
terms of MAE values > 10 bpm, therefore to ensure that we are making a fair comparison on
these samples, there was a need to include second exclusion criteria. Table II shows that while
using a threshold of 60% in our first criteria and applying an additional SNR filter to the GT
signal, there was a significant improvement in MAE values in both tasks T2 and T3.

There were still some outliers present in T1, therefore, to avoid comparing our rPPG signals
against unacceptable GT signals, we performed a manual check on some of the GT samples.
Eight GT signal samples from T1 were discarded due to their poor quality and none were further
discarded from T2 & T3.

Overall, after applying various exclusion criteria to filter out poor quality GT signals, the HR MAE
for T1, T2, and T3 was 1.10 bpm, 3.08 bpm, and 2.77 bpm respectively.

Stress Recognition
To evaluate our ability to detect stress states, this work proposed the use of two different
approaches, a statistically cal ANOVA test and machine learning.

Firstly, a one-way ANOVA was performed between subjects to compare the effect of each HRV
characteristic sequentially on stress recognition. A probability p-value and a score F are defined
to decide the significance of the variability. The p-value was compared to a significant level of
0.05. Hence, for p values lower than the significance level, it is possible to conclude that the
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group means are different, and the groups can be separable. However, before running the
ANOVA test, we first need to check that the features are normally distributed using the
Shapiro-Wilk test.

Based on the RR intervals from each signal, 32 HRV features were extracted. For those, there
are 168 rows, which represents 56 subjects of 3 tasks. However, only four of those features are
normally distributed according to the Shapiro-Wilk test: IBI, NNi 20, MEAN HR, and SAMPEN.
The following conclusions can be made for those features.

The IBI and MEAN HR feature were not shown to be statistically significant for stress state at
the p value < 0.05 level of p-value <0.05 for two conditions. IBI: [F(1, 166) = 1.75, p = 0.187],
MEAN HR: [F(1, 166) = 1.00, p = 0.317]. However both NNi 20 and SAMPEN were shown to be
statistically significant for stress state recognition at the p value < 0.05. NNi 20: [F(1, 166) =
8.65, p = 0.003], SAMPEN: [F(1, 166) = 7.34, p = 0.007]. We can conclude that both NNi 20 and
SAMPEN were able to detect stress states with a 95% of confidence level.

These results suggest that in the time domain only the number of pairs of successive RR
intervals that differ by more than 20 ms can differentiate between stress and non-stress.
However, it should be noted that other HRV features could potentially accomplish this result.

In addition, the same experiment was conducted to find features that could differentiate between
tasks.

Once again there was not a significant effect of MEAN HR on Task recognition at the p-value <
0.05 level for three conditions.  MEAN HR: [F(2, 165) = 1.52, p = 0.221].  MEAN HR failed to
separate tasks T1, T2, and T3.

However, there was a significant effect of IBI, NNi 20 and SAMPEN on Task recognition at the p
value < 0.05 level for three conditions IBI: [F(2, 165) = 6.47, p = 0.001], NNi 20: [F(2, 165) =
26.97, p = 7.286e-11], SAM- PEN: [F(2, 165) = 8.27, p = 0.0003]. In fact, all of which, IBI, NNi
20 and SAMPEN succeeded a 95% confidence interval in separating at least two of three tasks
T1, T2, and T3.

Even though ANOVA can statistically show whether the framework is able or not to separate the
target, machine learning approaches are an easier way to classify whether the subject is under
stress or not. The HRV features previously mentioned were extracted without any kind of
windowing function, which means that there are only 168 entries that would be divided into train
and test sets.

Besides that, the number of Stress and Non-Stress samples are heavily imbalanced, which
might represent un- reliable results. To deal with this problem, the SMOTE algorithm proposed
by [19] was applied to provide an evenly distributed dataset. This algorithm creates synthetic
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samples based on the Nearest Neighbors of the minority class sample. Hence, the number of
entries increased to 232, equally distributed between Stress and Non-Stress classes.

Furthermore, as stated previously, the dataset has 32 HRV features; however, only 20 of them
were used to build the models. A grid search analysis between globally assigned features was
performed to define the best set of features.

Table V shows that all four ML models performed reasonably well. However, SVM, KNN, and
LightGBM had problems with False Positives, represented by the Specificity metric. The
Specificity around 60% can be explained by the situations where the subject was not under
stress, however, the model classifies it as stress. In real-world situations, where a stress
recognition system is applied to decide if a driver should rest, wrong classifications in the
non-Stress class represent a more tolerable situation than wrong predictions in the Stress class.
If the subject was under stress and the system allows him to drive, this wrong decision may
contribute to a severe consequence such as a car accident.

Overall, the Random Forest model performed the best in most of the metrics and was able to
achieve 83% ac- curacy with an F1-Score of 85%.

Moreover, Fig.14a shows that the RF model was able to achieve 95% of accuracy in the Stress
class, however only 71% in classifying Non-Stress state.

Furthermore, in task classification the results were similar between the classifiers, however, the
overall results were worse than in stress classification. The best result shows 77% accuracy and
66.51% F1-Score in the Random Forest model.

These results show that the model struggled to classify between T2 and T3, corroborating the
hypothesis that T2 and T3 are similar tasks that should be within a single group, as activity.

Conclusions
In this work, we proposed a benchmark comparison using the novel Multimodal UBFC dataset.
The data set was built to allow studies on social stress since each of the 56 subjects was
assigned to three different tasks, the first (T1) being a resting task and the second and third (T2
and T3) activity tasks. However, the main contribution of this dataset was to allow the
comparison between Contact and Remote extraction of physiological information through BVP
and rPPG signals.

The BVP signal had fewer filtering stages, which typically refers to a band-pass filter to remove
unwanted frequencies as well as a moving average filter to smooth the signal. Whilst the rPPG
signal was obtained using the method proposed by this work. Firstly, the RGB components were
obtained from three different ROIs and averaged. Hence, a POS algorithm was used to mix the
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RGB channels into the rPPG signal, which ultimately was passed through a convolutional filter
to improve the quality of the signal and make the peak detection more robust.

Furthermore, this work proposed a post-processing stage that seeks to filter out unreliable
peaks. This method excludes peaks that do not abide by the IBI threshold rules. Although the
post processing stage was possible to extract the percentage of validated peaks in each one of
the signals as well as synchronize the contact and remote signals to measure the F1 score to
evaluate how accurately our proposed method can detect pulsatile peaks.

The results showed that, according to the postprocessing algorithm, the rPPG signal had fewer
corrupted peaks than the BVP signal, which represents a cleaner signal. Furthermore, by
comparing contact and remote heart rate extracted using a 30-second sliding window approach
there was a high correlation between the majority of the people. However, there were highly
compromised samples, which correspond to signals with a very high level of noise that even the
post-processing algorithm was unable to deal with.

This work performed an exclusion criterion to create a fair comparison using only reliable GT
signals. Ultimately the exclusion criteria were based on the percentage of validated GT peaks
above 60%, SNR of GT signal above 4 dB, and a manual GT signal quality check. The results
have shown a considerable improvement, with 1.10 bpm of mean error in T1 in 47 samples,
3.08 bpm in T2 in 22 samples, and finally 2.77 bpm in T3 in 34 samples.

In terms of stress recognition, this work proposed two different approaches. The ANOVA test
was conducted over HRV features extracted from the rPPG signal, results show that two
features were able to statistically differentiate between stress and non-stress. Moreover, three
HRV features were able to differentiate between tasks. Using Tukey's test, we discovered that
those three characteristics were able to differentiate between T1 (rest task) and T2 or T3, which
represents the tasks for which there was a higher level of activity.

Ultimately, four machine learning models were evaluated to investigate if any of them were able
to classify between stress and non-stress as well as between T1, T2, and T3. Results have
shown that the Random Forest model reached 83.11% of accuracy, 77.08% of precision, and
94.87% of recall in the binary classification, which denotes the effectiveness of the model in
classifying the Stress status.

In task recognition problems, once again the Random Forest model obtained the best score with
77.38% of ac- curacy, 66.91% of precision, and 66.13% of recall. Although these results
highlighted the difficulty of distinguishing between T2 and T3, it also showed that the model was
able to differentiate between T1 and T2 or T3.

Further work will include the enhancement of the rPPG core algorithm to better deal with motion
robustness, once the method can improve the results in those noisy signals it will considerably
decrease the mean error. Moreover, further studies in stress recognition using the remote signal
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will be performed, through the results of this work can be concluded that there is a correlation
between HRV features and stress tasks, however, with additional data, it will be possible to
conclude which features are more likely to carry the stress information.
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