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Abstract

The impact of the COVID-19 pandemic on excess mortality from all causes in 2020 varied across and

within European countries. Using data for 2015-2019, we applied Bayesian spatio-temporal models to

quantify the expected weekly deaths at the regional level had the pandemic not occurred in England, Greece,

Italy, Spain, and Switzerland. With around 30%, Madrid, Castile-La Mancha, Castile-Leon (Spain) and

Lombardia (Italy) were the regions with the highest excess mortality. In England, Greece and Switzerland,

the regions most affected were Outer London and the West Midlands (England), Eastern, Western and
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Central Macedonia (Greece), and Ticino (Switzerland), with 15-20% excess mortality in 2020. Our study

highlights the importance of the large transportation hubs for establishing community transmission in the

first stages of the pandemic. Acting promptly to limit transmission around these hubs is essential to prevent

spread to other regions and countries.

Introduction

By December 2020, the World Health Organization (WHO) reported 1,813,188 Coronavirus disease 2019 (COVID-

19) related deaths globally [1]. Although COVID-19 related deaths are key to monitoring the pandemic’s burden,

vital statistics generally suffer from issues related to accuracy and completeness [2]. Additionally, they can

be subject to changes in definition and different policies regarding testing and reporting [3, 4]. At the same

time, focusing only on COVID-19 deaths does not provide information about indirect pandemic effects due to

disruption to health services and wider economic, social and behavioural changes in the population [5]. An

effective way to quantify the total mortality burden of the COVID-19 pandemic is through excess mortality [6].

Excess mortality compares the number of deaths from all causes observed during the pandemic, and the number

of deaths expected had the pandemic not occurred, using data from recent pre-pandemic years. Preliminary

estimates suggest that the total number of global deaths attributable to the COVID-19 pandemic in 2020 is at

least 3 million, with approximately 37% of these deaths occurring in the European region [1].

Previous studies have examined excess mortality at the national level reporting a disproportionate mortality

burden [7, 6]. In Europe, England and Wales, Spain and Italy experienced the largest increase in mortality

during March-May 2020, with excess mortality estimates for the two sexes ranging from 70 to 102 per 100,000

population [7]. In contrast, from October to December 2020, the impact on mortality was great in Switzerland

[6]. Studies focusing on the regional level have also found differential effects on mortality [8, 9, 10]. In Italy

higher excess mortality was observed in some provinces in the North-west [8, 9]. In England, the highest excess

mortality was observed in London and in the West Midlands during March-May 2020 [11, 12]. In Greece,

Eastern Macedonia and Thrace, Western Macedonia and Central Macedonia reported more than 10% excess

mortality, in contrast to the Aegean islands and Crete for which the excess was smaller than 3% [10]. Studying

these variations may help our understanding of the transmission patterns and the effectiveness of policies and

measures to contain the pandemic. Other factors that may have also contributed to the varying impact on

mortality across regions include differences in demographics [13], the prevalence of comorbidities [13] and

environmental factors [12, 14, 15].

In this study of five European countries, we examined the impact of the COVID-19 pandemic on mortality in
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2020 using weekly regional all-cause mortality data. We included countries from Northern, Western and Southern

Europe (England, Greece, Italy, Spain and Switzerland) and analysed regions defined by Eurostat, which are

consistent across different European countries, Supplementary Fig. S1. We used a model-based approach to

predict deaths for 2020 by specific age- and sex groups, under the counterfactual scenario that COVID-19 had

not occurred. To the best of our knowledge, this is the first international study of the COVID-19 regional impact

on mortality.

Results

A total of 565,505 deaths were recorded in 2020 in England, 132,514 in Greece, 756,450 in Italy, 485,536 in Spain

and 77,222 in Switzerland (Table 1). The estimated population in 2020 was 56,702,967 in England, 10,718,447 in

Greece, 59,641,219 in Italy, 47,332,587 in Spain and 8,681,297 in Switzerland (Table 1). In all countries, the

number of deaths in males compared to females was larger for all age groups below 80 years. Comparing the

observed number of deaths with the mean number of deaths from 2015 to 2019, there were 40,631 and 27,739

excess deaths in males and in females, respectively, in England, 5,380 and 5,909 in Greece, 59,327 and 52,206 in

Italy, 35,868 and 33,208 in Spain and 5,788 and 4,526 in Switzerland (Table 1).

Model validation. Overall the models had good predictive ability in cross validation over 2015 to 2019,

Supplementary Table S1. The highest correlation between observed and predicted was observed for age group 80

years or older, with the medians and 95% credible intervals (i.e. 0.95 probability that the true value lies in this

interval) ranging from 0.83 (95% CrI 0.82–0.84) in females in England to 0.97 (95% CrI 0.97–0.98) in males in

Spain. For the same age group, the coverage (i.e. the probability that the observed number of deaths falls in the

95% credibility interval of the predicted) varied from 0.90 in females in Spain to 0.95 in males in Switzerland,

Supplementary Table S1. Although the coverage for the <40 age group is close to 0.95, we excluded this age

group from the results reported, as (i) the correlation between observed and predicted values was low, varying

from 0.15 in females England to 0.69 in males in Spain, Supplementary Table S1, and (ii) this was the age group

least affected by COVID-19 mortality during 2020 [13].

Country-level trends and overall excess mortality. Temporal patterns differed across countries, with

England and Spain experiencing a larger death toll during March-May 2020 and Switzerland and Greece during

November-December 2020, Fig. S2-3 and S5-6. Mortality was high in Italy during both periods, Fig. S4. Across

the five nations, the median relative excess mortality together with the 95% credible intervals for the entire 2020

(relative to what is expected had the pandemic not occurred) ranged from 6% (95% CrI -1%–13%) in Greece to

12% (95% CrI 6%–19%) in Spain in men. For women, it ranged from 6% (95% CrI -2%–13%) in Greece to 12%
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(95% CrI 6%–19%) in Spain, Fig. 2 and Supplementary Tables S2-6. For the country-level weekly trends see

Supplementary Fig. S2 to S6.

Sub-national level trends: NUTS2 regions. Excess mortality was evident for most regions, but with large

intra-country variability, as shown in Fig. 1. Across the five countries, Madrid, Castile-La Mancha, Castile-Leon

(Spain) and Lombardia (Italy) are the regions with the highest excess mortality in 2020, ranging from 28%

(95% CrI 22%–34%) to 33% (95% CrI 27%–39%) for males and 25% (95% CrI 17%–38%) to 32% (95% CrI

23%–40%) for females (Fig. 1 and Supplementary Table S4-5). Ceuta (Spain) experienced a similar median

excess for females (31%: 95% CrI 14%–54%), albeit associated with larger uncertainty, Fig. 1 and Supplementary

Table S5. For males, the regions most affected in England, Greece and Switzerland were Outer London and

the West Midlands, Eastern, Western and Central Macedonia, and Ticino, with the median excess mortality

varying from 15% (95% CrI 8%–24%) to 21% (95% CrI 15%–28%), Fig. 1 and Supplementary Table S2-3 and

S6. For females, the median excess mortality varied from 18% for the Ticino to 19% in Western Macedonia and

15% in East-North East outer London, Fig. 1 and Supplementary Table S2 and S6. The regions that show

the lowest excess mortality are Cornwall and Isle of Scilly and Devon in England, Crete, and North and South

Aegean in Greece for males, Lazio in Italy for females and Canary and the Balearic islands in Spain, Fig. 1 and

Supplementary Table S2-6.

Finer sub-national level trends: NUTS3 regions. The higher resolution maps in Fig. 2 and 3 show the

median relative excess mortality and the posterior probability of a positive excess, allowing appreciation of

patterns missed by the lower resolution. In England, the high excess experienced by the West Midlands was

driven by Birmingham, the largest urban area in the region, which recorded values above 20%. In Greece, the

municipality of Drama, with an excess >20% was responsible for the high excess in Eastern Macedonia and

Thrace. For Italy, outside the Northern regions, the model highlights localised excess in the provinces of Rimini,

Pesaro-Urbino and Foggia, on the Eastern coast, while central Spain and Catalonia had the highest excess in

Spain. In Switzerland, all regions had a relative excess of <20% but the French and Italian speaking regions

experienced a posterior probability of a positive excess above 0.95. In contrast, the German-speaking regions

were more diverse, Fig. 2 and 3. In Supplementary Fig. S7 to S16 we report the spatial trends by age and sex at

the higher geographical resolution. The spatial trends differ depending on the age group, but are similar for men

and women for age groups over 60 years.

Spatio-temporal trends at the regional level. Fig. 4 shows the relative excess mortality and the posterior

probability that the excess mortality is greater than 0 for the different NUTS2 regions, for each week in 2020.

Across the five countries, relative excess larger than 200% is observed only during the first epidemic period

4

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.10.18.21264686doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.18.21264686
http://creativecommons.org/licenses/by/4.0/


of 2020 (March-May 2020) in England (Greater London), Italy (Lombardia) and Spain (Madrid, Castille-La

Mancha, Catalonia), Fig. 4. In Switzerland, during the first epidemic period, the geographical patterns of

excess mortality were highly localised, with Ticino experiencing the highest excess mortality. In contrast, the

geographical variability in Greece was more diffuse. During the second epidemic period (October-December

2020), the excess mortality in Italy and Switzerland was similar across the country, whereas in Greece it was

highly localised, with Central Macedonia experiencing a relative excess mortality between 100-200% during

November 2020, Fig. 4.

Discussion

To the best of our knowledge, this is the first multi-country study examining excess mortality in 2020 across five

European countries at the sub-national level. We found that excess mortality in 2020 varied widely both between

countries and within countries. Spain experienced the largest excess mortality among the five countries studied.

Within Greece and Italy the northern regions were more affected than other regions. The temporal trends at

the sub-national level showed patterns of localised excess mortality in England, Italy, Spain and Switzerland

during the first wave, whereas in Greece the excess mortality was homogeneous. During the second wave, excess

deaths were overall lower in magnitude and their distribution more homogeneous in England, Italy and Spain.

In contrast, in Greece and Switzerland, the second wave was more severe than the first one.

Our study has several strengths. It quantifies the short term, direct effect of the COVID-19 pandemic and

indirect effects on mortality due to other life-threatening conditions, such as myocardial infarction [16], in five

European countries. Reduced access to or uptake of medical care due to COVID-19 leading to delays in cancer

screening, cancer diagnosis, rescheduling of surgery or cancellation of outpatient visits in patients with chronic

conditions may have increased mortality during the pandemic, particularly in countries with weaker health

systems [17, 18, 19]. Our modelling approach incorporated spatial and temporal mortality trends, factors such as

temperature and public holidays, and the different population temporal trends across space, age and sex groups.

We carefully validated the model employing a cross-validation approach and found that it had high predictive

accuracy. In contrast to previous studies, we stratified by age and sex, thus allowing the spatial and temporal

mortality trends to vary across these groups. Weaknesses include the lack of detailed data on the causes of death,

which would have allowed insights into the sources of the observed variation in excess deaths.

Several previous studies reported nationwide excess mortality for 2020. The Office for National Statistics in

England reported a 17.9% increase in male mortality and 11.2% in females [11]. A recent study of 40 industrialised

countries covered the period from February 2020 to February 2021 and found an excess mortality of 15% to 20%
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in England and Wales, Spain and Italy [20]. Our estimates are lower but credibility intervals include the figures

from both studies. Reasons for the discrepancies include the different periods used to train the model, different

data sources, different prediction periods and the exclusion of Wales from our data [21]. Our results are in line

with estimates from the Hellenic Statistical Authority, which reported a 7.3% increase in the relative excess

in Greece during 2020 [10], a Swiss study reporting a 10.6% increase in excess mortality in males and a 7.2%

increases in females relative to 2019 [22] and the estimates from the Italian National Institute of Statistics [23].

The latter reported a 15.6% excess for 2020 compared to the average number of deaths 2015 to 2019 [23]. In

Spain, the relative excess mortality varied from 26.8% to 77.9% across the different age groups for the period

March to May 2020 and from 10.0% to 18.9% during the period July to December 2020 [24].

At the regional level, our findings align with the Office for National Statistics in England, which reported

a 20% increase in the relative excess mortality in London, the largest relative excess observed nationwide in

2020 [11]. Our estimates are also in line with the Hellenic Statistical Authority reports suggesting that Macedonia

and Thrace experience the largest relative increase in excess deaths in Greece (14.9% in males and 12.9% in

females) [10]. The observed north-to-south geographical gradient in the impact of COVID-19 in Italy is in

line with previous studies [9, 8]. The Italian National Institute of Statistics reported that the provinces with

the highest excess of mortality in Northern Italy were Bergamo (51.5%), Cremona (47.5%), Lodi (39.9%) and

Piacenza (35.7%) [23]. In central and southern Italy, Pesaro-Urbino (21.1%) and Foggia (16.1%) were the most

affected provinces [23]. The Instituto de Salud Carlos III together with the European mortality monitoring

initiative (EuroMOMO) reported the highest excess mortality in Madrid, varying from 17.6% for age group 65

to 74 years during August 2020 to January 2021 to 21.6% for those aged 74 years or older during the period

March to May 2020 [24]. Similarly to our study, Madrid, Castile-La Mancha, Castile-Leon, and Catalonia had

the highest excess mortality [24].

Several factors may have contributed to the differences in excess mortality we observed during the COVID-19

pandemic across countries and regions. Mortality depends on the probability of being infected and mortality

among those infected. Both probabilities vary depending on the country’s demographic and socio-economic

characteristics, including age structure, ethnicity, level of deprivation, and environmental factors [14]. Further,

the timeframe of non-pharmaceutical interventions in countries and regions and the resilience and capacity of

health care systems have played a role [7]. The mobility of populations across borders and between regions and

the timeliness of lockdowns have probably been the most important factors [25, 26].

The first wave of the pandemic was mainly exogenous, with international airports and transport routes

serving as main entry points. Thus, the highest number of excess deaths during the first wave was observed in
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the areas affected first, i.e., big transit hubs like London, Madrid, Lombardia and Ticino, and Geneva. From the

initial point of introduction, SARS-CoV-2 spread to nearby large urban areas where community transmission was

established and increased exponentially, spreading to the entire country in the absence of mobility restrictions [27].

Furthermore, during the first wave stochastic super-spreader events like the Champion’s League football game

between Atalanta and Valencia on February 19, 2020 [28] played an important role in establishing community

transmission [29]. The lockdowns in Italy, England and Spain were introduced after community transmission

was established in the areas first affected. On the day of the national lockdown 1,797 new cases were reported in

Italy, 1,159 in Spain and 2,349 in the UK. The lockdown reduced mobility, allowing some areas to maintain

lower levels of community transmission and, for example, leading to the north-south divide in Italy. In Greece, a

nationwide lockdown was imposed on March 13, 2020, before the country reached 100 reported cases per day,

probably explaining the lack of a spatial gradient excess mortality during the first six months of 2020.

The spatial distribution of excess mortality during the second wave of the pandemic was more homogeneous,

reflecting multiple routes of entry and transmission. Factors contributing to this situation included the relaxation

of non-pharmaceutical interventions with the reopening of schools, retail and other activities, domestic and

international travel, and the public’s loosening of preventive behaviours [30]. The timeliness of the lockdowns

and population mobility again played a crucial role. Lockdowns during the second wave were slower to be

implemented and less rigorous [31]. In Italy and Switzerland, the geographical distribution of the excess deaths

was equal nationwide, whereas it was more variable in England, Greece and Spain. In Greece, where community

transmission was not established during the first epidemic wave, the patterns observed were highly localised,

mimicking the patters observed in the other countries during the first epidemic wave. Central Macedonia

(with the transit hub Thessaloniki), Eastern Macedonia and Thrace, and Western Macedonia which border on

Bulgaria and Turkey, are the hardest-hit regions. On November 3, 2020, the Greek nationwide lockdown limited

transmission in the rest of the country, resulting in lower excess mortality in areas in the south. In Switzerland,

the area hit hardest during the second wave was the lake of Geneva region, potentially influenced by the French

second wave [30].

In conclusion, this study provides the first comprehensive analysis of weekly sub-national excess mortality for

2020 across five countries, disaggregated by sex and age groups. Our findings highlight how excess mortality

varied largely across countries, within countries and over time. They suggest that a timely lockdown led to

reduced community transmissions and, subsequently, lower excess mortality. However, lockdowns have adverse

short and long-term health, psychosocial and economic effects that need to be considered [7, 32]. Community

transmission was established in the transit hubs and nearby large metropolitan areas during the first stages of
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the pandemic. Therefore, rapid action to limit transmission around these hubs is essential to prevent spread to

other regions and countries.

Methods

All-cause mortality. We retrieved data for all-cause deaths and population counts from the Office for National

Statistics in England (derived from the national mortality and birth registrations and the Census), the Hellenic

Statistical Authority in Greece, the Italian National Institute of Statistics in Italy, the National Centre of

Epidemiology at the Carlos III Health Institute and the Daily Monitoring Mortality System and also the

National Statistics Institute and Ministry of Justice in Spain and the Federal Statistical Office in Switzerland,

Supplementary Table S8. We selected the current Nomenclature of Territorial Units for Statistics (NUTS) and

in particular NUTS3 (small regions for specific diagnoses) as the main spatial unit of our analysis [33]. We also

show results at the NUTS2 level, which is defined to reflect basic regions for the application of regional policies

(https://ec.europa.eu/eurostat/web/nuts/background/). The number of deaths from all-causes and the

population denominator was available by sex, age, week and NUTS3 region defined as areas with a population

varying from 150,000 to 800,000, for 2015-2020. We used the International Organization for Standardization

(ISO) week calendar, i.e. the seven consecutive days beginning with a Monday and ending with a Sunday. We

aggregated mortality and population data by age groups <40, 40-59, 60-69, 70-79 and 80 years and above to

maintain consistency between countries and the literature [12].

Population at risk. Population estimates for the years 2014-2020 are available for Greece, Italy and Spain

for the January 1 of every year, whereas for Switzerland for December 31, Supplementary Table S7. To obtain

weekly 2020 population figures we performed a two-step linear interpolation. In a first step, using the years

2015-2020, we predicted population counts by age, sex and NUTS3 regions for January 1, 2021. In a second

step, we calculated weekly 2020 population figures by linear interpolation of the estimates on January 1, 2020,

and January 1, 2021, by age, sex and NUTS3 regions. For England, mid-year population figures were available,

Supplementary Table S7, which for 2020 were affected by COVID-19 deaths during the first wave. We, therefore,

used the data for 2015 to 2019 and estimated the midyear population of 2020 through linear interpolation for

England. We estimated population numbers for January 1 2020, and then used linear interpolation to obtain the

weekly population of 2019, which we used as a proxy for 2020.

Covariates. As ambient temperature influences death rates [34], we retrieved data on temperature from the

ERA5 reanalysis data set of the Copernicus climate data [35]. Using data from global in situ and satellite

measurements, ERA5 provides hourly estimates of a large number of atmospheric, land and oceanic climate
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variables, spatially and temporally compatible with our analysis [35]. For each centroid of the grid cells (at

0.25◦ × 0.25◦ resolution) that fall into the NUTS3 regions, we calculated the daily mean temperature during

2015-2020 and then the weekly mean, align temperature and mortality data. Additionally, as mortality from all

causes can be different during national holidays, we also included a binary variable taking the value 1 if the week

contains a public holiday and 0 otherwise.

Statistical methods. We used Bayesian hierarchical models to predict deaths in 2020, under the scenario of

absence of the pandemic. Let yjtsk be the number of all-cause deaths, Pjtsk be the population at risk and rjtsk

the risk in the j-th week of the t-th year (t = 1, . . . , 5 with year 1 corresponding to 2015), for the s-th spatial

unit (s = 1, . . . , S) and k-th age-sex group (k = 1, . . . , 10) (male-female and <40, 40-59, 60-69, 70-79, ≥ 80).

The models in the main analysis excluded the age group below 40 years, based on the cross-validation exercise.

We assume a Poisson distribution for the number of deaths yjtsk and modeled the risk rjtsk using the following

specification:

yjtsk ∼ Poisson
(
rjtskPjtsk

)
log (rjtsk) = β0t + β1Zj + f(xjts) + bs + wj ,

where β0t is the year specific intercept given by β0t = β0 + εt, with β0 being the global intercept and εt ∼

Normal(0, τ−1
ε ) an unstructured random effect representing the deviation of each year from the global intercept,

with τε denoting the precision of εt. The term β1 represents the effect of public holidays (i.e. Zj = 1 if week

j contains a public holiday and 0 otherwise). The linear predictor includes also a non-linear effect f(·) of the

average weekly temperature in each area, xjts; in particular, we assume the following second-order random walk

(RW2) model:

xjts | x(j−1)ts, x(j−2)ts, τx ∼ Normal
(
2x(j−1)ts + x(j−2)ts, τ

−1
x

)
, (1)

with τx denoting the precision.

The term bs is a spatial field defined as an extension of the Besag-York-Mollié model given by the sum of an

unstructured random effect, vs ∼ Normal(0, τ−1
v ), and a spatially structured effect us [36, 37, 38]. In particular

bs is defined as follows:

bs =
1

τb

(√
1− φv?s +

√
φu?s

)
,

where u?s and v?s are standardised version of us and vs to have variance equal to 1 [39]. The term 0 ≤ φ ≤ 1 is a

mixing parameter which measures the proportion of the marginal variance explained by the structured effect.
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To account for seasonality, we included in the linear predictor a non-linear weekly effect wj , common to all

the areas, with a first order random walk (RW1) structure:

wj | wj−1, τw ∼ Normal(wj−1, τ
−1
w ),

where τw is the precision of wj .

We specified minimally informative prior distributions, i.e. Normal(0, 103) for the fixed effects β0 and β1.

For the spatial field hyperparameters φ and τb we adopted priors that tend to regularise inference while not

providing too strong information, the so-called penalize complexity (PC) priors introduced in [39]. In particular,

for the standard deviation σb =
√

1/τb we selected a prior so that Pr(σb > 1) = 0.01, implying that it is

unlikely to have a spatial relative risk higher than exp(2) based solely on spatial or temporal variation. For φ

we set Pr(φ < 0.5) = 0.5 reflecting our lack of knowledge about which spatial component, the unstructured

or structured, should dominate the field b. Finally, PC priors are also adopted for all the standard deviations

σε =
√

1/τε, σx =
√

1/τx and σw =
√

1/τw such that for each hyperparameter Pr(σ > 1) = 0.01.

We train the model using the years 2015-2019 and predict area level weekly mortality for 2020 assuming that

the pandemic did not take place. To summarise the results we retrieve samples by age, sex, week and NUTS3

regions for 2020 from the posterior predictive distribution:

p(yjsk6 | D) =

∫
p(yjsk6 | θθθ)p(θθθ | D)dθθθ,

where θθθ is the vector of the model parameters and D the observed data. We report the weekly observed number

of deaths in 2020 together with p(yjsk6 | D) at the weekly resolution. We also compare p(yjsk6 | D) with the

observed number of deaths in 2020 and retrieve the posterior of the relative (percent) increase in mortality (i.e.

relative to what is expected had the pandemic not occurred). We summarise the above posterior reporting

medians, 95% credible intervals and posterior probability that the relative excess mortality is larger than 0.

Model validation. We perform a cross-validation like procedure to examine the validity of our predictions.

Using the years 2015-2019, we fit the proposed model multiple times, leaving out one year at a time and predicting

the weekly number of deaths by NUTS3 regions for the year left out. We repeat for the different age and sex

groups, and different countries. We assess the agreement between the predicted and observed deaths at the year

t. We use the following metrics: a) the correlation between the predicted and observed deaths and b) the 95%

coverage, defined as the probability that the observed deaths lie within the 95% interval estimated from the

model.
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Data availability statement

We provide at https://github.com/gkonstantinoudis/ExcessDeathsCOVID the final version of the datasets

for Italy and Switzerland as their mortality data is available online.

Raw mortality data files for Switzerland are provided at https://www.bfs.admin.ch/bfs/en/home/statistics/

population/births-deaths/deaths.assetdetail.19184461.html and https://www.bfs.admin.ch/bfs/en/

home/statistics/population/births-deaths/deaths.assetdetail.13187299.html, whereas for Italy at

https://www.istat.it/it/archivio/240401. Access to mortality data for Greece, England and Spain is

subject to requests. For England, the data were obtained from the Small Area Health Statistics Unit (SAHSU),

which does not have permission to supply data to third parties. The data can be requested through the Office for

National Statistics (https://www.ons.gov.uk/). For Greece, mortality data can be requested from ELSTAT

(https://www.statistics.gr) and for Spain from the National Centre of Epidemiology at the Carlos III Health

Institute (https://eng.isciii.es/eng.isciii.es/Paginas/Inicio.html).

Population data is available at the following locations:

England: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/

datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland

Greece: The selected aggregation by age, sex and NUTS3 regions is subject to a request at: https://www.

statistics.gr/en/statistical-data-request

Italy: http://demo.istat.it/ricostruzione/download.php?lingua=ita for 2015-2019 and http://demo.

istat.it/popres/download.php?anno=2020&lingua=itafor2020

Spain: https://www.ine.es/jaxiT3/Tabla.htm?t=9691

Switzerland: https://www.pxweb.bfs.admin.ch/pxweb/en/px-x-0102010000_102/-/px-x-0102010000_102.

px/

Code availability

All models were fitted using the Integrated Nested Laplace Approximation (INLA) using its R software interface

[40]. To ensure reproducibility and transparency to our results and approach the code for running the analysis

is available at https://github.com/gkonstantinoudis/ExcessDeathsCOVID. Results are also provided in a

Shiny app (http://atlasmortalidad.uclm.es/excess/), to facilitate communication with the general public

and stakeholders.
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Tables

Table 1: Age and sex-specific number of excess and observed deaths and population for 2020 by country of death.

Males
England Greece Italy Spain Switzerland

Excess Observed Population Excess Observed Population Excess Observed Population Excess Observed Population Excess Observed Population
<40 -1,216 6,675 14,400,227 -139 1,230 2,477,962 -616 4,652 12,067,152 -114 4,040 10,318,712 57 898 2,054,813

40-59 2,850 27,448 7,285,268 90 5,976 1,511,414 1,819 26,463 9,063,297 479 22,786 7,436,645 -50 2,855 1,257,300
60-69 3,407 36,749 2,860,281 773 9,151 606,322 4,749 42,224 3,527,676 3,806 32,930 2,576,976 186 4,385 470,892
70-79 12,039 72,721 2,323,869 855 15,023 455,459 14,173 90,103 2,736,665 10,216 57,285 1,810,637 1,386 8,900 347,460
≥ 80 23,551 142,090 1,182,213 3,801 35,476 164,268 39,201 204,874 1,655,296 21,482 129,962 1,056,287 4,210 21,061 178,639
Total 40,631 285,683 28,051,858 5,380 66,856 5,215,425 59,327 368,316 29,050,086 35,868 247,003 23,199,257 5,788 38,099 4,309,104

Females
<40 -488 4,142 13,913,794 -86 538 2,434,019 -367 2,466 11,469,522 -14 2265 9,957,901 -4 479 1,965,192

40-59 1,308 17,636 7,443,579 211 3,075 1,603,581 512 15,611 9,288,376 357 11791 7,432,715 -72 1,676 1,242,592
60-69 1,403 24,300 3,009,520 485 4,502 685,346 1,401 23,441 3,836,725 2,180 15553 2,773,818 0 2,508 485,305
70-79 7,529 54,344 2,583,842 308 9,899 548,506 5,934 58,466 3,231,926 5,223 32827 2,173,945 791 6,125 395,491
≥ 80 17,987 179,400 1,700,375 4,992 47,644 231,571 44,726 288,150 2,764,583 25,462 176,097 1,794,951 3,811 28,335 283,613
Total 27,739 279,822 28,651,110 5,909 65,658 5,503,023 52,206 388,134 30,591,133 33,208 238,533 24,133,330 4,526 39,123 4,372,194

Total
<40 -1,705 10,817 28,314,021 -226 1,768 4,911,980 -983 7,118 23,536,674 -128 6,305 20,276,614 53 1,377 4,020,006

40-59 4,158 45,084 14,728,847 301 9,051 3,114,996 2,331 42,074 18,351,674 836 34577 14,869,360 -122 4,531 2,499,892
60-69 4,809 61,049 5,869,801 1,258 13,653 1,291,668 6,151 65,665 7,364,402 5,985 48,483 5,350,794 186 6,893 956,197
70-79 19,568 127,065 4,907,711 1,163 24,922 1,003,965 20,107 148,569 5,968,591 15,439 90,112 3,984,582 2,177 15,025 742,950
≥ 80 41,537 321,490 2,882,587 8,793 83,120 395,839 83,927 493,024 4,419,878 46,944 306,059 2,851,238 8,021 49,396 462,252
Total 68,368 565,505 56,702,967 11,289 132,514 10,718,447 111,532 756,450 59,641,219 69,077 485,536 47,332,587 10,314 77,222 8,681,297
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Figures

Fig. 1: Posterior distribution of relative excess deaths (%) across the different countries by NUTS2 region and sex
in 2020. The first panel shows the posterior of relative excess deaths in the different NUTS2 regions in England, the second in
Greece, the third in Italy, the fourth in Spain and the last in Switzerland. The red line highlight the 0% relative excess deaths,
which mean no observed difference in the 2020 mortality compared to the counterfactual scenario that the pandemic did not occur.
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Fig. 2: Median relative excess deaths (%) across the different countries by NUTS3 region in 2020. The different
panels show the median relative excess deaths in (clockwise) England, Greece, Italy, Spain and Switzerland in categories. Areas in
blue indicate areas that observed less deaths than expected had the pandemic not occurred, whereas the different shades of red
indicate the higher relative excess mortality. The black solid lines correspond to the NUTS2 region borders.
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Fig. 3: Probability that the relative excess deaths is higher than 0% across the different countries by NUTS3 region
in 2020. The different panels show the probability that the relative excess deaths is higher than 0% in (clockwise) England, Greece,
Italy, Spain and Switzerland in categories. Areas in blue indicate weak evidence of an increased relative excess, areas in white
insufficient evidence, whereas areas in red strong evidence. The black solid lines correspond to the NUTS2 region borders.
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Fig. 4: Weekly median relative excess deaths (%) across the different countries by NUTS2 region in 2020 (left)
and corresponding probability that the weekly relative excess is larger than 0% (right). The first panel shows the
weekly median relative excess deaths and posterior probability form England, the second for Greece, the third for Italy, the fourth
for Spain and the fifth for Switzerland. Different shades of red on the left panels indicate higher relative excess mortality, whereas
the white relative excess mortality lower than 0. The white colour on the right panel indicate insufficient evidence of a relative
excess larger than 0%, whereas the red strong evidence.
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