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Introduction/Background context:  
Adolescent idiopathic scoliosis (AIS) is the most common type of scoliosis, and affects up to 
4% of adolescents in early stages1. The deformity can develop during any of the rapid periods 
of growth in children2, and the time of pubertal growth spurt also plays a role in spinal curve 
progression3. Hence it is crucial to detect the disease early, to provide timely intervention.  
 
Detection of scoliosis when it is mild or before the growth spurt can be conducted via various 
screening methods. Adam’s forward bend test (FBT) and scoliometer measurement of the angle 
of trunk rotation (ATR) are commonly used4, to observe lateral bending and rotation of the 
spine, causing a visible rib hump. Moiré topography can also be used, but is reserved for second 
tier due to some degree of ambiguity5. X-rays (XR) remain the best way to diagnose scoliosis, 
as it provides a clear image of the spine and allows measurement of Cobb angle; however it 
has risks associated including requirement of the use of ionising radiation6. 
  
Infrared (IR) thermography can be used to measure surface temperature and is performed with 
an IR camera. The temperature distribution and data matrix can be visualised into a thermal 
map, which has previously been studied and associated with the thermal asymmetry in 
paraspinal muscles7, as well as significant temperature differences between the convex and 
concave side of the spinal curvature for idiopathic scoliotic patients8. We hypothesize that such 
asymmetry and temperature differences may produce a detectable pattern on IR thermography, 
which would prompt further confirmatory investigations to reach a fast and non-radiation 
screening of AIS.  
 
 
Aims and Objectives: 
For the purposes of this study, the hypothesised thermal pattern detected by IR thermography 
will be compared to the spinal deformities observed on XR, the ground truth as labelled by 
specialists. This will allow us to establish a paired dataset comparing spine visualisation 
between the two imaging modalities. Thus, the compared dataset would enable the generation 
of a machine learning model capable of automated classification of the deformity severities. 
The predictive accuracy of the model will be evaluated by the specialists’ assessment results. 
The aim of the project is to use IR to predict the severity of the scoliotic curve, opening up the 
possibility of using IR thermography with no radiation exposure and fully automated analytical 
pipeline for the screening of AIS. 
 
Methods and Materials: 
Dataset and preprocessing 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.16.21265088doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.10.16.21265088
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subjects 
Patients diagnosed with AIS at a specialist clinic from May 2018 to August 2019 who met the 
Scoliosis Research Society (SRS) Brace Manual criteria9 were enrolled in the study10. The 
inclusion criteria are: male or female at age between 10-15 years old at the time of consent 
provided, skeletal immaturity defined by Risser grade11(amount of ossification and eventual 
fusion of the iliac apophysis) of 0-2 inclusively. For females, they must be either premenarchal 
or less than 1 year post-menarche. Exclusion criteria were no other diagnoses apart from AIS, 
disabilities or systemic illnesses and no prior treatment was received.  Ethics was approved by 
the Institutional Review Board of the University of Hong Kong/ /Hospital Authority Hong 
Kong West Cluster (HKU/HA HKW IRB) – IRB Reference number: UW17-136.  
 
IR Camera and Experimental Procedure 
Having met the requirements, participants were then referred for infrared thermography at 
Hong Kong Polytechnic University8. Subjects were asked to rest for 20 minutes to allow for 
acclimatisation prior to taking the image. They were also asked to avoid caffeinated beverages 
and exercise 4 hours before12. After undressing, markers were placed on the subjects’ back, 
according to the landmarks recommended by the Society on Scoliosis Orthopaedic and 
Rehabilitation Treatment (SOSORT) guidelines13. The temperature of the room was controlled 
to 20 °C ± 2 °C and a relative humidity of 55%14. The IR thermal images were captured using 
a FLIR E33 camera (FOL-18 lens; 10,800 pixels) in a dark room, placed on a tripod 1.5m away 
from the patients. The camera has a thermal sensitivity of 0.07 °C and camera emissivity level 
of 0.98. This was conducted in accordance with the Helsinki Declaration of the World Medical 
Association Assembly, and ethics was approved by the Human Subjects Ethics Sub-committee 
(HSESC) of the Hong Kong Polytechnic University. All participants and/or their legal guardian 
provided written informed consent regarding the data for study. 
 
Data Visualisation and Normalisation Methods 
The visualisation of the IR images is implemented using the 𝑂𝑝𝑒𝑛𝐶𝑉 package (Fig. 1). The  
images were then processed by a computer to generate a thermal matrix dataset of CSV files, 
each representing the thermal matrix of one patient’s back surface. They were then processed 
and standardised (Fig. 2) via normalisation methods, to improve the model performance in the 
severity prediction. This included removing the background temperature and adjusting the 
visualisation sensitivity. 

  

 
 

 
 

 
Figure 1: Original IR Thermal spine image 
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Figure 2: Standardised processed spine image 

Generation of ground truth of the spinal deformities 
PA radiographs were taken for all patients for diagnostic purposes of AIS, which also serves 
as a baseline image for the subjects’ spine (Fig. 3). Coronal cobb angles of the major and minor 
curve(s) were measured, and these were considered the ground truth of the structural curvature. 
Location, directionality and magnitude of the curves (major curve Cobb angles) were then 
compared to the pattern from the IR thermal matrix generated, creating a paired dataset.  
 

 

Figure 3: XR spine (ground truth) 

Machine learning based severity classification 
Traditional machine learning methods which are not based on artificial neural networks, were 
opted for in this study. They do not require a large amount of data sample for model fitting, 
which is necessary for deep learning methods. Three ensemble learning models were used, 
namely XGBoost15, AdaBoost16 and Random Forest17. One common feature of these three 
models is that they train a set of decision trees, and subsequently ensemble the results given by 
each tree in order to increase the robustness. In general, ensemble methods help partially 
overcome three problems which arise from non-ensembled methods18. The first is the statistical 
problem which always occurs when the space of hypothesis is too large with regards to the 
amount of training data. In this case, there may be multiple hypotheses that give the same 
accuracy. Ensemble methods mitigate the risks of choosing an inappropriate hypothesis by 
taking the votes of many equally good classifiers. The second problem lies in computation. 
During the training of one classifier, due to the non-convexity of the objective function, the 
model parameters may end up with the local optima. A combination of multiple different local 
optima would mitigate the risk of choosing the wrong local optima. The last problem is 
representation. This arises when there does not exist a hypothesis in the hypothesis space that 
can capture the true reality. To some extent, taking a combination of hypotheses expands the 
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set of functions that can be presented. Hence, we employed the tree-based ensemble learning 
methods in this study, which have strong robustness. 
 
Decision trees are a class of non-parametric supervised learning methods consisting of tree 
nodes and branches. They map an input of vector form to a categorical (for classification tasks) 
or scalar (for regression tasks) output. At each non-leaf node, one element of the input 
(attribute), is considered and a decision threshold with respect to this attribute determines 
which branch a data sample goes to. One common algorithm for attribute selection is the Gini 
index19. Suppose pi is the probability that an arbitrary data point in the dataset D belongs to 
class Ci, then the Gini index for D is calculated by: 

𝐺𝑖𝑛𝑖(𝐷) = 1 −/𝑝!"
#

!$%

 

where m is the number of classes in the dataset. Suppose we partition the datatset D based on 
attribute A into two subsets D1, D2, in other words, the data points in D1 have value in attribute 
A smaller than a threshold ak while the data points in D2 have value in attribute A larger than 
ak, then the Gini index based on attribute A and the threshold ak is:  
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In this case, we would select attribute A and splitting threshold ak with the smallest Gini index. 
Note that we need to enumerate all the possible splitting points for each un-used attribute. 
 
When it comes to ensemble learning, multiple trees are trained by subsets of attributes and 
samples, and restrictions on tree depth are imposed to prevent overfitting. In this study, we 
reshaped each thermal image with size 120*160 into a row vector with length 19200 before 
passing into the ensemble models. 
 
The dataset from the paired imaging modalities, was subsequently fed into the three machine 
learning models, in order to teach each model to classify images based on the severity of the 
spinal curvature. Train-test split procedure was performed for evaluation. Split percentage of 
the sample was train: 70%; test: 30%. The accuracy of the model was assessed by comparing 
the classification of the severity of the curve based on IR thermography, to the true severity 
based on Cobb angle from XR. Correct identification into the class was considered a positive 
result. 
 
Statistical assessments 
4 classes were used to differentiate between severity of curves based on coronal Cobb angle: 
Group 0 < 20°, Group 1 20°- 30°, Group 2 31°- 40°, Group 3 > 40°. Resampling techniques 
were employed to artificially rebalance the dataset to avoid under-sampling the majority class 
or over-sampling the minority class. The minority class was oversampled to augment the 
original dataset using SMOTE: Synthetic Minority Over-sampling Technique 20 , without 
sacrificing the existing numbers. Evaluation metrics were selected for comparison between 
machine learning performances include precision/sensitivity, recall/ positive predictive value, 
f1-score, weighted averages , macro averages and accuracy. Furthermore, cases where the spine 
could not be clearly mapped out from the IR image (eg. Fig 4) were manually excluded, 
generating a filtered sample with outliers excluded. The model training was carried out using 
both original and filtered data. Student’s t test (p<0.05) was used to compare performance 
measures. 
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Figure 4: IR Thermal spine image where spine is not identifiable 

Results: 
Subjects 

82 participants (18 males and 64 females) were recruited for the study (Fig. 5). 

 Study Group 
Number of subjects 82 

Age (mean/median/SD) 12.1/12/1.32 
Gender Female 64 

Male 18 
Major curve Cobb 
angle distribution 

>20° 5 
20°- 30° 43 
31°- 40° 26 

>40° 8 
Period between IR image and XR image (mean 

months/SD) 
1.16/1.75 

Figure 5 Baseline characteristics of study group 
 
The severity of AIS of the sample group was imbalanced (Fig 6) and not normally distributed 
(Fig 7). Hence the clinical gold standard classification of severity of spinal curvatures (mild < 
20° , moderate 20°- 40°, severe > 40°) was not used, as the accuracy of the model severity 
prediction would be subject to frequency bias. Furthermore, 15 cases were excluded to produce 
a filtered set of a total of 67 curves.  

 
 
 
 
 
 
 

Fig 6: Distribution of Cobb angles in each class  
 

Major curve Cobb angle Curves (%) 
Mild > 20° 6.10 

Moderate 20°- 30° 52.4 
30°- 40° 31.7 

Severe > 40° 9.76 
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Figure 7: Cobb angles distribution.  

Data Visualisation 
All pixel values were extracted and plotted, summing to a total of 1,574,400. The range of all 
pixel values were from 16.59 to 41.85. The distribution is positively skewed, where most of 
the pixels are of value between 20  and 30	(Fig. 8). There was also a large variation in 
environment temperature (20°+/-6°) across all original images, which was standardised after 
normalisation. 
 

 

Figure 8: Image Pixel values. The 𝑋 − 𝑎𝑥𝑖𝑠  represents the pixel value and the 𝑌 − 𝑎𝑥𝑖𝑠 
represents the number of pixels. 

Result of severity prediction for the 3 machine learning models 
Overall out of the 3 machine learning models, XGBoost and Random Forest performed better 
in all parameters than AdaBoost. After resampling, all performance metrics (precision, recall, 
f2-score, accuracy) improved statistically significantly for the two models, for both original 
(n=82) and filtered data (n=67). The accuracy for prediction of the severity of the curve for the 
original data were XGBoost = 0.83, Random Forest= 0.81. All weighted parameters (precision, 
recall, f1-score) also reached >=0.80. However, the accuracy for AdaBoost was 0.66, and none 
of the other parameters reached 0.70 in either original or filtered data. In terms of filtering the 
dataset, there was no statistically significant improvement in overall accuracy or classwise 
performance for all 3 models.  
 
In terms of class-wise performance, the precision, recall and f1-score were mostly highest in 
groups 0 and 3. Precision was 0.88 and 1.00 for each group respectively for both XGBoost and 
Random Forest. This implies that the model was strongest for the mildest and most severe 
curves, which may not be reliable and could be attributed to oversampling of the minority class. 
XGBoost mildly outperforms Random Forest for all classes, including precision of group 1 
(0.77; 0.71) and group 2 (0.69; 0.67). However the weighted averages of precision and recall 
for the two models were not significantly different. Fig 9-11 shows the accuracy and weighted 
averages for both data before and after resampling, for both datasets, for the different models. 
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XG Boost 

  Original 
Imbalanced 

Resampled  

Original Accuracy 0.44 0.83 

Weighted Precision 0.43 0.83 

Weighted Recall 0.44 0.83 

Weighted F1-score 0.43 0.83 

Filtered Accuracy 0.33 0.84 

Weighted Precision 0.25 0.84 

Weighted Recall 0.33 0.84 

Weighted F1-score 0.28 0.83 

Fig 9. Accuracy and weighted averages for XG Boost  

 
AdaBoost 

  Original 
Imbalanced 

Resampled  

Original Accuracy 0.60 0.55 

Weighted Precision 0.52 0.68 

Weighted Recall 0.60 0.55 

Weighted F1-score 0.54 0.51 

Filtered Accuracy 0.48 0.66 

Weighted Precision 0.23 0.69 

Weighted Recall 0.48 0.66 

Weighted F1-score 0.31 0.66 

Fig 10. Accuracy and weighted averages for AdaBoost  
Random Forest 

  Original 
Imbalanced 

Resampled  

Original Accuracy 0.48 0.81 

Weighted Precision 0.46 0.80 

Weighted Recall 0.48 0.81 

Weighted F1-score 0.47 0.81 

Filtered Accuracy 0.43 0.86 

Weighted Precision 0.32 0.88 

Weighted Recall 0.43 0.86 
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Weighted F1-score 0.34 0.86 

Fig 11- Accuracy and weighted averages for AdaBoost 
 
Raw Data with class wise performance 

1. Original Data 

Imbalanced Data 

XGBoost 

 

AdaBoost 

 

Random Forest 
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Resampled Data 

XGBoost 

 

AdaBoost 

 

Random Forest 
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Filtered Data 

Imbalanced Data 

XGBoost 

 

AdaBoost 

 

Random Forest 
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Resampled Data  

XGBoost 

 

AdaBoost 

 

Random Forest 

 
 
Discussion: 
The current screening process involves several different techniques and stages, which may be  
cumbersome and take a long time to reach a diagnosis. This paper sees to investigate whether 
the use of IR thermography would reduce the multi-step process into one single step, thereby 
increasing the efficiency of screening and reduce the amount of radiation patients are exposed 
to during repeated follow-ups. The integration of the two modalities may be complimentary 
and provide a more holistic overview as well as complete picture about the spine and back 
muscles.  
 
The visualization functionality of the paired dataset aimed to provide a simple user-interface 
(UI), in which the user can click on one button to select the CSV file containing the thermal 
matrix from the computer, as well as the thermal image side by side. The UI is implemented 
by the 𝑡𝑘𝑖𝑛𝑡𝑒𝑟 library in Python. This allows both the original and processed thermal images 
to be compared to the ground truth XR. However, it was unable for the two programs to capture 
the spatial information stored in the image, and rather a flattened vector was required. This 
could be developed using other convolutional kernels, to record the specific gestures and actual 
images itself. 
 
In terms of classification of the severity of the curve based on thermography, the overall 
performance for XGBoost and Random Forest shows the potential and feasibility to use 
traditional machine learning methods to classify the severity of scoliosis with fine-tuning from 
an IR thermal matrix. The precision, recall and f1-score were similar after resampling (all 
>=0.80) which therefore does not show particular weaknesses for false positives/negatives in 
these two models. It is evident that resampling plays an important role in our study in enhancing 
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the robustness of the models. This technique was however employed due to imbalanced dataset. 
This may have resulted in over sampling of both Group 0 and 3 and caused overfitting in some 
situation. The precision, recall and f1-score were all 1.00 for both XGBoost and Random Forest 
after resampling. Interpretation of class-wise performance is therefore limited from our study. 
Recruitment of more samples was not possible due to the time constraint, in addition to the 
difficulty specifically recruiting only mild and severe cases. Nonetheless, with all parameters 
>=0.80 for two types of machine learning models, it shows the potential of integrating infrared 
thermography into the screening of AIS. 
 
There were other limitations in the study due to the small sample size, including opting for 
traditional machine learning methods for analysis. More datasets can be used in the future, 
which would allow the implementation of deep convolutional neural network. Deep machine 
learning models may have the potential to outperform the traditional methods - XGBoost and 
Random Forest, and extract other patterns from the images that are not considered by human 
experts, potentially providing additional information on the spinal deformity. Another 
alternative is by adding attention to the network. However, as attention mechanisms were first 
applied in recurrent neural network for natural language processing which involves sequential 
data, how this can be retrieved from the thermal matrix and scoliotic patients need to be 
investigated further. 
 
Secondly, there was difficulty in observing the spine on some thermography images due to 
various factors, such as clothing, background interferences and obesity of the patient (Fig. 12). 
 

   
Figure 12: Thermal Image with patients wearing clothing and background interference 
Full exposure of the back with no clothing would allow a better and more complete visual field 
of the spine. Furthermore, the markers placed were also unnecessary for the purposes of this 
study. Omitting them would allow each scan to be conducted quicker, lowering the workload 
of the practitioner. Both improvements would also allow more data points into the thermal 
matrix.  
 
The BMI or waist:hip ratio of the patient can also be correlated with the spinal curve, to 
determine whether a BMI cut-off point should be set for IR thermography. It was notably more 
difficult to observe the spine on obese patients, as compared to thinner patients. They were thus 
excluded in the filtered dataset. 
 
Additionally, the standing posture and arm position of patients should also be standardised. 
The subjects were not all facing directly ahead, with some turning to the side. The position of 
the arms were also held at a different angle away from the body in each patient (Fig 13.). The 
variation in posture may be accounted to difficulty in finding a focal point in a dark room, long 
waiting time between standing and actual photo taken and subject getting bored. Varied trunk 
rotational angles will affect the visualisation of the spine as well as detection of the temperature 
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of the paraspinal muscles by IR. The arm position may also involve contraction of the back 
muscles, and hence affect surface temperature of the concerned region. As there is difficulty 
placing an entire frame in front of the 3D scanner for the patient’s back to lean against, a metal 
plate at the heel may be more suitable. Explicit instructions regarding the posture of the trunk 
and position of the arms should also be stated at the beginning prior to image taking.  
 

 
 
Figure 13: Thermal Image with patients holding arms at different positions 
 
Conclusion: 
The accuracy of prediction of severity of curves based on Cobb angles is > 0.80 for 2 machine 
learning types (XGBoost and Random Forest) after resampling. This shows promising 
potential for the use of infrared thermography to predict the severity of the scoliotic curve, and 
thus can be considered for screening of AIS, albeit its limitations in interpretation of class-wise 
performance. However, the actual feasibility and cost-effectiveness of integrating IR 
thermography into the current screening program has yet to be determined. A larger sample 
size would be required for validation, as there were only 10-15 cases in each class after 
resampling in this study. Furthermore, IR images of healthy non-scoliotic individuals would 
also be needed, in order to assess the usage and effectiveness of IR thermography for general 
screening of AIS. 
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