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Abstract 
Motivation: Identifying pathological metabolic changes in complex disease such as Dementia with 

Lewy Bodies (DLB) requires a deep understanding of functional modifications in the context of meta-

bolic networks.  Network determination and analysis from metabolomics and lipidomics data remains 

a major challenge due to sparse experimental coverage, a variety of different functional relationships 

between metabolites and lipids, and only sporadically described reaction networks.  

Results: Distance correlation, measuring linear and non-linear dependences between variables as well 

as correlation between vectors of different lengths, e.g. different sample sizes, is presented as an ap-

proach for data-driven metabolic network development. Additionally, novel approaches for the analysis 

of changes in pair-wise correlation as well as overall correlations for metabolites in different conditions 

are introduced and demonstrated on DLB data. Distance correlation and signed distance correlation 

was utilized to determine metabolic network in brain in DLB patients and matching controls and results 

for the two groups are compared in order to identify metabolites with the largest functional change in 

their network in the disease state. Novel correlation network analysis showed alterations in the meta-

bolic network in DLB brains relative to the controls, with the largest differences observed in O-phos-

phocholine, fructose, propylene-glycol, pantothenate, thereby providing novel insights into DLB pathol-

ogy only made apparent through network investigation with presented methods. 
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1 Introduction  

Elucidating metabolic changes that associate with risk and resiliency 

in neurodegenerative disease represents a new direction in dementia re-

search, one aimed at targeting the metabolic processes required for pre-

clinical patients to exhibit cognitive symptoms  (Alecu and Bennett, 2019; 

Foolad, et al., 2019; Hallett, et al., 2019). This approach requires analyses 

of biological networks as a parallel investigation to individual feature 

characteristics and establishing the interconnection of these features 

within a biological system while comparing different disease conditions 

(Ma'ayan, 2011). Methods for such biological network development are 

broadly divided into knowledge-driven and data-driven approaches where 

knowledge-based networks primarily aim to contribute to data interpreta-

tion while data-based networks derive novel interactions from the data 

(Amara, et al., 2022). Combining these two approaches can help identify 

biologically active processes that associate with disease progression. Net-

work analysis is particularly important in metabolomics where extensive 

maps of all possible metabolic connections are available; however, the ac-

tive components of the network are specific to the state of the biological 

system under investigation and have to be obtained from the system data. 

Several methods for data-driven network determination have been 

used in metabolomics. Pearson or Spearman correlation-based methods 

are arguably the most prevalent (Amara, et al., 2022). While providing 

critical information about the direction of dependencies, both methods 

measure linear or monotonic correlations and cannot detect non-linear me-

tabolite interactions (Rosato, et al., 2018).  Other correlation-based meth-

ods, such as weighted gene correlation network analysis (WCGNA) are 

widely used to interrogate transcriptomic data (Langfelder and Horvath, 

2008). WCGNA has only begun to be applied to metabolomics (Grapov, 

et al., 2015; Pei, et al., 2017). The main advantage of WCGNA is the ca-

pacity to determine the threshold value automatically by assuming a scale-

free network topology (Langfelder and Horvath, 2007).  It is important to 

note that the assumption of a scale-free network structure does not neces-

sarily apply to metabolic networks resulting in information loss (Lee, et 

al., 2008). Distance correlation, a novel non-parametric approach for cor-

relation analysis, has been proposed as a measure of all types of data rela-

tionships (linear and non-linear) as well as correlations between vectors of 

different lengths (Edelmann, et al., 2021; Gábor and Maria, 2009; Székely 

and Rizzo, 2013; Székely and Rizzo, 2013). Distance correlation can take 

into consideration the sparse coverage of metabolomic and lipidomic data, 

the potential for non-linear relationships, the non-normal distribution as 

well as the possibly random network topology associated with metabo-

lism; however, it cannot describe the direction of the dependencies. While 

under investigation for general characteristics (Edelmann, et al., 2021; 

Shen and Zhang, 2021) and with several publications showing its use in 

transcriptomic assessments (Hou, et al., 2022; Pardo-Diaz, et al., 2021), 

only a handful of applications have applied this method to analysis of 

metabolomic datasets (Cuperlovic-Culf, et al., 2021; Oliveira, et al., 2015; 

Tang, et al., 2019) and none, to our knowledge, have utilized this approach 

to provide insight into the metabolic network disruptions that define neu-

rodegenerative diseases such as dementias. 

Taken together, issues of missing metabolic reactions, sparse analyt-

ical coverage, different numbers of measurements for different molecules, 

and the potential for non-linear or indirect metabolite relationships em-

phasizes the need for further development and application of novel meth-

odologies applicable to metabolomics.  To address this need, we compare 

here the metabolic networks elucidated by Pearson, distance, and a novel 

hybrid signed distance correlation approach in two metabolomic datasets 

of post-mortem human brain of cognitively normal controls and individu-

als with Dementia with Lewy Bodies (Akyol, et al., 2020).  We show here 

that Pearson correlation fails to observe number of significant relation-

ships that are readily obtained by distance correlation calculations. Addi-

tionally we provide approaches for selection of major differences between 

correlation levels both for individual, pair-wise correlations and pan-me-

tabolite wide changes. Using metabolomics and lipidomics data for DLB 

we show that this novel approach for correlation analysis combined with 

novel methods for comparison between networks provides highly relevant 

information about the metabolic changes in the disease state. SidCo 

(Signed distance correlation) method is provided as a Python package and 

Web-based application (https://complimet.ca/sidco).  

2 Methods 

2.1 Sample collection and datasets 

Sample collection and patient characteristics are described in detail in 

(Akyol, et al., 2020). Briefly, the neocortex (Brodmann area 7) was col-

lected from patients with histopathologically confirmed DLB (n=15) or 

from age- and sex- matched controls with no known neurological disease 

(n=30). Tissues were obtained from the Brains for Dementia Research 

Group, Institute of Clini-

cal Neurosciences, School 

of Clinical Sciences, Uni-

versity of Bristol, Bristol, 

UK as part of the study 

approved by the Beau-

mont Health System’s 

Human Investigation 

Committee (HIC No.: 

2018-387), following all 

approved guidelines.  The acquisition, normalization, and quantification 

of metabolite concentrations by 1H NMR and high performance liquid 

chromatography electrospray ionization tandem mass spectrometry are 

described in detail in (Akyol, et al., 2020).  Complete dataset comprising 

215 analytes (log-normalized concentrations) is provided as Supplemen-

tary Table 1. Patient demographics information is outlined in Box 1.  

 

2.2 Overview of SidCo data analysis 

The SiDCo workflow is presented in Figure 1.  Prior to analysis, the user 

defines the array to be analyzed, the distance correlation, and the p-value 
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thresholds.  Data are automatically z-score normalized across all samples. 

Distance correlations and p-values are calculated as described below and 

a directionality sign is assigned using Pearson correlation as an indication 

of the overall trend in the data.  It is important to note that the strength of 

the correlation coefficient does not indicate the strength of the linear cor-

relation, but rather a strength of distance correlation, with sign considering 

overall linear trend. The output file contains both the correlation coeffi-

cients and the p values for each calculation. Distance correlation calcula-

tions in SiDCo are provided in two forms “one-to-one”, calculating corre-

lations between each pair of features and “one-to-all”, providing correla-

tions for each feature with all the other features combined. The signed 

distance correlation calculation is provided as a Web application at 

http://complimet.ca/SiDCo with a RShiny front-end GUI interface for a 

Python implementation of the method which includes automatic z-score 

normalization and signed distance correlation calculation.   

 

Figure 1. Outline of the SIDCO software for signed distance correlation 

analysis in one-to-one and one-to-all mode. 

 

 

 

In both one-to-one and one-to-all calculations distance correlation is ob-

tained following formalism presented by Szekely and Rizzo (Edelmann, 

et al., 2021)  as defined in Eq. 1 using in-house developed Matlab func-

tions and Python implementation.  

Distance correlation, 𝑑𝐶𝑜𝑟(𝑋, 𝑌) between features X and Y is calculated 

as: 

 

𝑑𝐶𝑜𝑟(𝑋, 𝑌) =
𝑑𝐶𝑜𝑣(𝑋, 𝑌)

√𝑑𝑉𝑎𝑟(𝑋)𝑑𝑉𝑎𝑟(𝑌)
 

 

(1) 

In contrast to Pearson correlation which uses covariance between values 

obtained as: 𝐶𝑜𝑟(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋,𝑌)

√𝜎𝑋𝜎𝑌
, with covariance calculated 

as: 𝐶𝑜𝑣(𝑋, 𝑌) = ∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛
𝑖=1 ,  

Distance correlation depends on the distance covariances that are deter-

mined as: 

𝑑𝐶𝑜𝑣(𝑋, 𝑌)2 =
1

𝑛2
∑ ∑ 𝐴𝑗,𝑘𝐵𝑗,𝑘

𝑛

𝑘=1

𝑛

𝑗=1

 
 

(2) 

with A and B calculated as simple linear functions of the pairwise distances 

between elements in samples X and Y. A and B are doubly centered dis-

tance matrices for variables X and Y, respectively, calculated from the pair-

wise distance between elements in each sample set. Slight differences in 

calculating A and B in one-to-one and one-to-all applications are outlined. 

 

Distance correlation one-to-one calculation 

 

In one-to-one calculation array of values for each feature is compared with 

array of values for all other feature one at a time. In this comparison two 

feature arrays have the same length and are one dimensional arrays.   

In this case doubly centered distance matrix is calculated using: 

𝐴𝑗,𝑘 = 𝑎𝑗,𝑘 − 𝑎̅𝑗. − 𝑎̅𝑘. + 𝑎̿..  where 𝑎𝑗,𝑘 = √(𝑥𝑗 − 𝑥𝑘)(𝑥𝑗 − 𝑥𝑘)′  

and 𝑎̅𝑗. and  𝑎̅𝑘. are respectively the j-row and k-column mean values and 

𝑎̿.. is the overall mean of matrix A. Distance between 𝑥𝑗 and 𝑥𝑘 is calcu-

lated using Euclidian distance. Matrix B is populated using equivalent 

measures for variable Y. The distance correlation calculation was written 

in-house under Matlab using pdist2 to calculate distances between features 

with Euclidean metric and implemented in Python in SiDCo 

(https://complimet.ca/sidco). For distance correlation p-value is calculated 

using Student's t cumulative distribution function (tcdf function in Matlab 

and t.cdf in Python). The sign of the distance correlation was equated to 

the sign of the Pearson correlation calculation as shown by (Pardo-Diaz, 

et al., 2021)  and implemented in SiDCo as:  

 

𝑑𝐶𝑜𝑟(𝑋, 𝑌) = 𝑠𝑖𝑔𝑛 (
𝐶𝑜𝑣(𝑋, 𝑌)

√𝜎𝑋𝜎𝑌

 ) ∗
𝑑𝐶𝑜𝑣(𝑋, 𝑌)

√𝑑𝑉𝑎𝑟(𝑋)𝑑𝑉𝑎𝑟(𝑌)
 

 

(3) 

 

Distance correlation one-to-all calculation 

 

Additionally, SiDCo offers distance correlation between each feature and 

all the other features (denoted as one-to-all or the correlation of a given 

feature with the entire network).  Here, the distance covariance for each 

feature out of M features in N dimensional sample space is compared to 

that of the other features in N x (M-1) dimensional space.  Distance corre-

lation and distance covariance are calculated using Equation (1) and (2) 

where X is in this case array of values for one feature across all samples  

(N x1 array) and Y is matrix of all other features across all samples (N x 

(M-1) matrix). Doubly centered distance matrix for variable Y is calculated 

as:   

 𝐵𝑗,𝑘 = 𝑏𝑗,𝑘 − 𝑏̅𝑗. − 𝑏̅𝑘. + 𝑏̿.. where 𝑏𝑗,𝑘 = √∑ (𝑥𝑗𝑠 − 𝑥𝑘𝑠)(𝑥𝑗𝑠 − 𝑥𝑘𝑠)′𝑀−1
𝑠=1  .  

 

Calculation is in this case performed for each feature correlated to all the 

other features. SiDCo provides distance correlation value as well as p-
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value. In Matlab library SiDCo p-value is once again calculated using stu-

dent cumulative distribution function (function  tcdf). In Python one-to-all 

distance correlation is performed using pingouin.distance_corr function 

(running under pingouin statistical package: https://pingouin-stats.org/in-

dex.html) with p-value evaluated using permutation test as described in 

the original application documentation.  

Detailed instructions and examples of use for SiDCo are provided on the 

website.   

 

Correlation coefficient comparison methods 

Two different approaches for comparison of correlations between differ-

ent sample groups are presented in this work.  

 

Box 2. Example of linear 

regression analysis ap-

proach for selection of 

features showing major 

difference between corre-

lation measures for two 

groups. Negative slope 

would indicate major 

change in the overall net-

work for a feature. 

Comparison between individual correlation coefficients obtained between 

pairs of features using either different methodologies or different sample 

groups is performed using Fisher z-transformation. Fisher z-transform 

changes sampling distribution of correlation coefficients into normal dis-

tribution for statistical analysis. Fisher z-transformed values are calculated 

as: 𝑧𝑖𝑗 = 0.5 ∗ 𝑙𝑜𝑔
1+𝑟𝑖𝑗

1−𝑟𝑖𝑗
  where 𝑟𝑖𝑗 is the correlation coefficient between 

features i and j. Difference between correlation values is obtained as:  

𝑍𝑖𝑗 =
𝑧𝑖𝑗

(1)
− 𝑧𝑖𝑗

(2)

√
1

𝑛1 − 3
+

1
𝑛2 − 3

 
 

(4) 

where, respectively, 𝑧𝑖𝑗
(1)

 and 𝑧𝑖𝑗
(2)

 are Fisher z-transformed correlation val-

ues for group 1 with 𝑛1samples and group 2 with 𝑛2 samples used for 

correlation calculations and √
1

𝑛1−3
+

1

𝑛2−3
  is standard deviation for two 

sample sets. Statistical significance of the obtained difference between 

correlation values is calculated using normal cumulative distribution func-

tion calculation following Z matrix normalization and analysis of normal 

distribution with mean 0 and standard deviation of 1. Significant differ-

ence between correlation values is associated with p<0.05. 

Overall changes in the correlation network for each feature between dif-

ferent methods or sample groups is performed through linear regression 

comparison of two correlation groups. By optimizing linear function be-

tween correlation calculations for a feature obtained for one group using 

data from the second group we determine overall changes in correlations. 

Demonstration of this approach is shown in schematic box 1. 

Slope values that deviates significantly from 1 indicates major change in 

overall correlation network between compared conditions. Linear regres-

sion obtains parameters for prediction of one variable using the other var-

iable with possible differences in result depending on the dependent and 

independent group assignment. 

To compare approaches, Pearson, distance, and signed distance correla-

tion values with p>0.05 were set to zero in subsequent analyses, keeping 

only the most statistically significant correlations.  Correlation results are 

presented using circular plots created with circularGraph 

[https://github.com/paul-kassebaum-mathworks/circularGraph] with 

some in-house modifications.   

Matlab functions for distance correlation, Fisher z-transformation and sig-

nificance analysis as well as correlation linear regression analysis are pro-

vided on GitHub.  

3 Results 

General sample characteristics 

Both 1H NMR and LC-ESI-MS/MS metabolomics were used to collect 

information about the concentration of 215 metabolites in brain samples 

from DLB patients and age and sex-matched healthy controls.  Concen-

trations are reported in Supplementary Table 1. Sample information is 

summarized in Figure 2A. Principal Component Analysis (PCA) of log-

corrected and z-score normalized brain metabolomics data showed some 

limited grouping of samples by disease diagnosis in PC1 but no clear un-

supervised separation by sample type (Figure 2B). This is further corrob-

orated with Wilcox Rank Sum test showing that PC1 provides separation 

by diagnosis and both PC1 and PC2 are statistically significantly related 

to subjects’ age (Table in Figure 2B).  Similarly, hierarchical clustering 

performed on z-score normalized data and using Ward linkage indicated 

clustering by molecular groups but, similarly to PCA, not explicit group-

ing by sample type (Figure 2C). Relieff (Lionelle, 2005) selected top four 

features including: O-Phosphocholine, sn-glycerol-3-phosphate, PC(O-

34:0) and Putrescine provide an improvement in the separation of DLB 

and CTRL subjects although with several DLB patients still clustering 

within the control group (Figure 2B).  

 

 

Comparison of metabolic networks derived from pair-wise Pearson 

correlation and distance correlation  

A data-driven network of features in the two groups was determined using 

Pearson, distance correlation, and signed distance correlation calculation, 

building on (Székely and Rizzo, 2013). In latter assessments, both proxi-

mal as well as distant interactions, including both non-linear and linear 

Figure 2. (A) Principal Component Analysis (PCA) of log transformed and z-score 

normalized features (metabolite levels). Ellipses indicate 95% confidence regions. (B) 

The most significantly different metabolites between control and DLB selected by Re-

lieff (C) Hierarchical clustering (HCL) of samples and features following z-score nor-

malization of features, with colours on the right indicating  groups of metabolites and 

colours along the bottom indicating control and DLB samples;  
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correlations, were established. Combining distance correlation with Pear-

son’s correlation (see Materials and Methods) provided signed distance 

correlation values indicating both strength and overall directionality of 

correlations.  

Fisher z-transformation of correlation data was used to normalize the 

distribution of correlation values in order to allow determination of the 

significance and the difference in correlation values obtained using Pear-

son and distance methods in control and DLB groups (Fig. 3). Generally, 

and not surprisingly, for all feature pairs distance correlation leads to 

higher values with subset of correlation pairs showing statistically signif-

icant difference between the two methods. Supplementary Figure 1A. pro-

vides the percentage of statistically different correlations for each feature 

between the two methods in each sample groups. The largest number of 

statistically significant differences are observed for symmetric dimethyl 

arginine (SDMA) and spermine in CTRL and PC(26:0) in DLB and scatter 

plot of results from two correlation methods for these three metabolites 

are shown (Supplementary Figure 1B). It is important to observe in these 

examples several metabolite pairs that have significant distance correla-

tion and zero Pearson correlation including mutual correlations between 

SDMA, urea, fumarate and spermine all metabolites that are part of urea 

cycle and thus can be expected to show some level of correlation that is 

obtained by distance correlation but omitted in linear analysis with Pear-

son correlation.   

Further investigation focused on the largest differences between correla-

tion values of Fisher z-transformed Pearson and distance correlation in 

control (Figure 4A) and DLB groups (Figure 4B). In this case it is ob-

served that number of metabolite pairs have zero or extremely low Pearson 

correlations and non-zero distance correlations. Shown are differences for 

the correlation levels for metabolites that have the largest pair-wise dis-

tance in standard error units of over 5. For these metabolites and their larg-

est pair-wise correlation distance metabolic partners we have performed 

pathway enrichment assessment. Enrichment analysis of these metabolite 

Figure 3. Metabolite pairs with the highest differences between Fisher z-transformed Pearson and distance correlations for A. control and B. DLB groups. Shown are metabolite pairs 

and correlation difference (heatmap) and enrichment analysis result for these metabolites obtained using Metaboanalyst (red bar plot with –log(p) values for enrichment analysis are 

indicated).  
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groups shows significant representation of processes known to be of sig-

nificance in the neurodegeneration and dementia indicating that linear cor-

relation observed with Pearson method is insufficient to provide infor-

mation about many relevant aspects of the correlation network. Presented 

examples of correlations that were not observed in Pearson’s analysis 

show advantage of distance correlation approach for possibly complex, 

non-linear and indirect relationships crucially important for metabolomics 

data analysis including processes of relevance in neurodegeneration. 

 

Distance correlation analysis as a preferred method for determination 

of active metabolic interactions.  

Fisher z-transformation is used for comparing distance correlation values 

between patient groups. Assessment of normality of the distance correla-

tion values is done using Lilliefors test running under in-house routine for 

distance correlation calculation. For all correlations in both control and 

DLB groups null hypothesis that the transformed correlation for each fea-

ture to all the other features comes from a normal distribution was shown 

as significant with p-value approaching zero in all cases. Following this 

confirmation we have performed analysis of both statistical significance 

of distance correlation change as well as analysis of the level of change in 

Fisher z-transformed data and major results are shown in Figure 4. Anal-

ysis of significantly changed correlations between two groups shows that 

O-phosphocholine, that was also selected as the species with the largest 

concentration difference between groups (Figure 2D) is a feature with the 

largest number of significant changes between control and DLB groups 

(Figure 4A). O-phosphocholine is in this analysis followed by a number 

of phospholipids all showing statistically significant change in their cor-

relation levels in control and DLB groups. Overall, out of 22898 possible 

correlation pairs, 1642 show highly statistically significant difference be-

tween control and DLB group (p<0.01)s. Further major changes in the 

level of pair-wise correlation in control and DLB groups are explored with 

Figure 4B showing species with the largest maximal pair-wise correlation 

change between two sample groups and lists their other most changed cor-

relation partnerships. Once again, many of the species showing the single 

largest pair-wise correlation changes are phospholipids with particularly 

significant change observed in correlations between number of amino ac-

ids and phospholipids. This is in agreement with previously determined 

role of amino acids and particularly serine in phospholipid synthesis 

(Hirabayashi and Furuya, 2008). Correlation networks in the two sample 

groups for O-phosphocholine and serine, as metabolites with major 

changes presented below are shown in Figure 7.  

Figure 4. Statistical comparison of the Fisher z-transformed distance correlation values between control and DLB. A. Percentage of pairs with statistically significant change in 

distance correlation value in two sample groups (p<0.01). Shown are metabolites with the largest number of changed partners. B. Metabolites with the largest difference in pair-wise 

correlation and their other 15 metabolic partners with the largest change in correlation. Differences are calculated using equation 4. 
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Figure 5. Comparison of Distance correlation network between control and DLB using 

linear regression comparison (A) metabolites with the largest deviation from slope of 1 in 

linear regression analysis of overall correlation differences for each metabolite (B) Exam-

ples of linear regression result for metabolites with the largest difference from the slope 1.  

 

 

An alternative approach to selection of functionally altering major feature 

compares overall correlation network for each metabolite between two 

sample groups. In this case comparison is on the original statistically sig-

nificant distance correlation levels in the two groups using linear regres-

sion comparison as described in Materials and Methods. Metabolites 

showing the most significant change based on this comparison are outlined 

in Figure 5 with Figure 5B showing scatter plot of the correlation values 

in the two sample groups for selected metabolites as well as linear regres-

sion plot. Figure 5A displays the major network differences obtained from 

the linear regression analysis of 1-to-1 metabolite correlations in DLB vs. 

control. Figure 5B shows the value of the slope of the linear regression 

plot showing control values as a function of distance correlation values in 

DLB (see Materials and Methods). In this analysis, fructose shows the 

largest change in its pairwise metabolic correlation network between DLB 

and control followed by prolylene glycol, SM(d18:1/20:2) and panthone-

ate. Correlation network nearest partners for these four metabolites in con-

trol and DLB groups are shown in Figure 7A and B respectively.  

 It is important to stress out that apart from O-phosphocholine 

none of the metabolites selected through distance correlation analysis 

show statistically significant differences in concentrations between the 

control and DLB groups (Figure 6); however, their correlation values and 

main partners change, suggesting the possibility that different pathways 

are activated for these metabolites in the DLB group.  

Based on the distance correlation network analysis (Figure 7), the fruc-

tose network changes from only a minimal number of significant correla-

tions in the control group to a much larger number of significant edges in 

the DLB group, leading to a hypothesize that fructose plays a more signif-

icant role in the brains of DLB patients. Similarly, the second and third 

most significantly altered metabolic networks (propylene-glycol and pan-

tothenate metabolism) show more correlations with other metabolites in 

the DLB cohort. To the best of our knowledge, endogenous propylene-

glycol has not been linked to dementia previously, possibly due to its lim-

ited concentration change.  However, several pathways related to propyl-

ene-glycol have been reported as associated with dementia (Killingsworth, 

et al., 2021). On the other hand, pantothenate, i.e. vitamin B5, has been 

previously observed to be significantly changed in different types of de-

mentias (Andres-Hernando, et al., 2019; Xu, et al., 2016). Similarly to 

fructose, based on distance correlation network analysis, pantothenate 

goes from having no significant correlations in the control group to a num-

ber of significant correlations in the DLB group. Strong correlation part-

ners of pantothenate include a metabolites that show significant concen-

tration changes (Figure 2) as well changes in correlation network (Figure 

4).  

 

Figure 6. Concentrations of metabolites selected by network analysis and Relieff as signif-

icant in control and DLB. 
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4 Discussion 

Network analysis is used to visualize and interpret data and in this work 

we are showing novel way to use distance correlation network analysis to 

determine features with significant activity changes. In order to obtain in-

formation about both linear and non-linear correlations possibly on data 

with not strictly normal distribution and importantly provide measure that 

correlation is only zero when variables are fully independent (Edelmann, 

et al., 2021) we are introducing application of distance correlation as a 

method of choice for correlation analysis in metabolomics and lipidomics. 

Additionally, by combining distance correlation value with the sign of 

Pearson correlation we introduce a way to determine signed distance cor-

relation for metabolomics data. Application of these approaches is pre-

sented on the metabolomics and lipidomics profile of DLB patient brain 

samples with age and sex matched controls leading to novel information 

about major metabolic changes in this disease.  

Objective diagnosis as well as disease-modifying therapies are lacking 

for DLB. This progressive and terminal disease is currently only diag-

nosed based on its clinical presentation, as there are no known biomarkers 

for early, sensitive and specific detection. Earlier diagnosis and proper 

stratification would allow for the development and utilization of specific 

and directed therapies based on an identified and mechanistically-under-

stood metabolic dysregulation. Small-molecule metabolites and lipids are 

at the intersection of a cell or tissue’s genetic background and environ-

mental history. In particular, the level of a specific metabolite or lipid 

within a cell or tissue is a consequence of its physiological, developmen-

tal, and pathological state (Fiehn, 2002). These levels can be used as a 

reflection of specific phenotypes (Shamim, et al., 2018). Due to major in-

ter-dependences within the metabolome, only looking at the concentration 

of each metabolite may be short-sighted. Analysis of the metabolic net-

work differences between patient groups is needed in order to determine 

functional changes between metabolites and across metabolic pathways 

and networks. Feature selection through statistical or machine learning ap-

proaches focuses on the determination of features that are most relevant 

for sample classification without considering functional changes that are 

leading to the observed concentration differences. The development of in-

teraction networks is a major step in understanding the role of metabolites 

in the pathophysiology of any given disease and the relevance of metabolic 

markers for diagnosis as well as therapy. Data-driven metabolic networks 

can be obtained through correlation or classification methods. Small sam-

ple size, incomplete knowledge of all the steps in a metabolic pathway, as 

Figure 7. Closest correlation network partners determined using distance correlation for metabolites showing largest overall change in correlation networks. Shown are edges with 

distance correlation over 0.6 and p-value <0.05 for A. control and B. DLB groups for Fructose, Propylene glycol, SM(d18:1/20:2), O-phosphocholine, serine and Panthothenate. All 

shown correlations are positive based on the Pearson sign derivation. 
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well as sparse coverage of metabolites present a unique challenge for net-

work derivation. Here, we present metabolic networks for metabolites and 

lipids in the brain of DLB patients and matching controls as determined 

using distance correlation analysis. Our analysis revealed major changes 

in the metabolism of fructose, O-phosphocholine, propylene-glycol, 

SM(d18:1/20:2) and pantothenate (Figure 5). Additionally, number of 

pairwise correlation changes are observed with for example major changes 

in serine and proline correlation with members of the phosphcholine fam-

ily (Figure 4). This is further compounded by the concentration changes 

for O-phosphocholine, sn-glycero-3-phosphocholine, putrescine, PC(O-

34:0) and hydroxyvalerylcarnitine (C5-OH (C3-DC-M)) and major over-

all changes in network topology for a number of metabolic families in 

DLB. 

Notably, the correlation network for fructose had significant correla-

tions only with glucose and LPC(17:0) in the control group, but presents 

many significant edges in the DLB group. The role of fructose and its 

changing metabolism has been previously hypothesized for different types 

of dementias and is considered a risk factor in this disease family 

(Johnson, et al., 2020; Xu, et al., 2020). The link between either endoge-

nous or dietary fructose and the induction of the purine degradation path-

way was suggested in Alzheimer’s disease (AD) (Johnson, et al., 2022) 

and we report its strong correlation in DLB using our distance correlation 

analysis (Figure 7). The purine degradation pathway is induced by fruc-

tose through its rapid depletion of cellular ATP levels and activation of 

AMP deaminase (AMPD), eventually leading to the production of uric 

acid. Changes in the level of uric acid have been previously linked to the 

risk of dementia, with low levels associated with Parkinson’s disease 

(Ellmore, et al., 2020; Johnson, et al., 2022) and high levels of serum uric 

acid linked to vascular or mixed dementia and to a lesser extent AD 

(Latourte, et al., 2018).  

Distance correlation analysis showed major differences in correlation 

partners for fructose in patients with DLB compared to healthy controls, 

including significant correlations with several metabolites that are part of 

purine metabolism including ADP, adenine, inosine and urea. Significant 

changes, especially in certain acylcarnitine and LPC levels, have been pre-

viously associated with a high fructose diet (Garcia-Esparcia, et al., 2017). 

A number of metabolites in the fructose network are also part of lactose 

synthesis and galactose metabolism. These include glucose, UDP glucose, 

UDP galactose, ADP and fructose. Fructose production from glucose 

through the polyol pathway has been previously observed in different tis-

sues including brain (Andres-Hernando, et al., 2019). The production of 

fructose through this pathway stimulates triglyceride and uric acid accu-

mulation and is hypothesized to be a relevant factor in the development of 

metabolic syndrome. Up-regulation of aldose reductase, a rate-limiting en-

zyme in this pathway, has been shown in aging and is indicated as a re-

sponse to a number of known dementia risk factors (Johnson, et al., 2020). 

It is important to point out that the concentration of fructose does not show 

a significant difference between control and DLB cohorts, suggesting a 

significant change in the fructose metabolic production and utilization ra-

ther than accumulation or depletion of this metabolite in these patients. 

In both control and DLB cohorts, propylene glycol has a strong corre-

lation with acetone which suggests a link via propanoate metabolism in 

agreement with previous work linking this pathway to aging and AD 

(Killingsworth, et al., 2020). Propylene glycol is metabolized to lactate, 

acetate, and pyruvate and significant correlations with these metabolites 

exist in the DLB group. In fact, propylene glycol as well as several of its 

correlation partners, i.e., succinate, acetate, lactate, acetone, pyruvate, 2-

hydroxybutyrate are involved in propanoate metabolism (based on KEGG 

map00640 pathway list). The propylene glycol and propanoate metabo-

lism are further linked through the -Alanine metabolic pathway, which 

includes anserine (part of -Alanine metabolism) and pantothenate, both 

of which correlated strongly with propylene-glycol in DLB. Several me-

tabolites from the propanoate pathway have previously been reported to 

be significantly different in the saliva of dementia patients (Figueira, et 

al., 2016) and alterations to this pathway have been observed in AD 

(Kong, et al., 2014). It is important to point out that propylene-glycol is 

also used as a solvent for several intravenously administered drugs includ-

ing lorazepam and diazepam, both of which are used to treat symptoms 

associated with DLB. The correlation with therapeutic intervention needs 

further examination, particularly as changes in concentration of pantothe-

nate (vitamin B5), anserine, and dimethyl sulfone could also occur as a 

result of treatment with either as drugs or supplements (Ding, et al., 2018). 

For example, anserine is a supplement used to improve symptoms of de-

mentia; dimethyl sulfone is an anti-pain, inflammatory and osteoarthritis 

drug (Drug Bank ID: DB14090 - (Wishart, et al., 2018) and pantothenate 

is a recommended supplement for dementia patients.  

Pantothenate shows one of most significant network changes in the 

DLB group compared to the control group, with strong correlations to pro-

pylene glycol, anserine and dimethyl sulfone. As mentioned previously. 

pantothenate plays a role in -alanine metabolism and CoA biosynthesis. 

In the control group, pantothenate has no significant partners at correlation 

levels over 0.6 and p-values below 0.01. However, in the DLB group, pan-

tothenate gains several strong correlations, including 4-aminobutanoate, a 

by-product of one of the steps of -alanine synthesis, as well as anserine, 

suggesting its role in metabolism changes in DLB patients. 

There are several strengths of the present study. These include the 

standardized brain collections, the use of age- and sex-matched controls 

of this unique cohort, a combined quantitative metabolomic approach de-

livering the most comprehensive metabolite coverage of the DLB brain 

metabolome, and implementation of novel, analytical approaches within 

the realm of DLB metabolomics. The small sample size of this unique 

cohort is a major limitation; however, one should be cognizant of the prob-

lems in obtaining such a specialized and well-characterized post-mortem 

brain sample set. Through the examination of well-characterized samples, 

even at this sample size, we can develop models of high diagnostic accu-

racy. It would be worthwhile to expand the analysis carried out here to 

other brain regions to assess the wider metabolic disturbances in the DLB 

brain. For any future diagnostic developments, brain tissue is far from an 

ideal matrix for discovering dementia biomarkers, and it will be necessary 

to validate our findings in more accessible, non-invasive biological matri-

ces such as blood serum/plasma, as evidenced by Varma et al. for AD 

(Varma, et al., 2018). Another major limitation which may have provided 

some additional, useful insight to our exploratory study is the lack of a 

detailed medical report with important information regarding medications 

and supplements. 

         In this study, we introduce a novel approach of signed distance 

correlation analysis, as well as novel methods for determination of major 

changes in the correlation network for the study of DLB. The application 

of these new analytical approaches on such a unique metabolomics data 

set highlights fructose, propylene-glycol and pantothenate, as well as their 

associated metabolic pathways as key factors linked with DLB pathology. 

Novel methods presented in this work are made available for future use 

for other applications in metabolomics and lipidomics. Our findings have 

the potential to provide new insight into the pathophysiology of DLB, in-

spiring development of novel therapeutics and diagnostic methods capable 

of accurately discriminating DLB from control brain with a high degree 
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of accuracy. Understanding of the major changes in brain metabolism/bi-

ochemistry are crucial for future development of treatments.  
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Figure Legends 

Figure 1. Outline of the SIDCO software for signed distance correlation 

analysis in one-to-one and one-to-all mode. 

Figure 2. (A) Principal Component Analysis (PCA) of log transformed 

and z-score normalized features (metabolite levels). Ellipses indicate 95% 

confidence regions. (B) The most significantly different metabolites be-

tween control and DLB selected by Relieff (C) Hierarchical clustering 

(HCL) of samples and features following z-score normalization of fea-

tures, with colours on the right indicating  groups of metabolites and col-

ours along the bottom indicating control and DLB samples. 

Figure 3. Metabolite pairs with the highest differences between Fisher z-

transformed Pearson and distance correlations for A. control and B. DLB 

groups. Shown are metabolite pairs and correlation difference (heatmap) 

and enrichment analysis result for these metabolites obtained using 

Metaboanalyst (red bar plot with –log(p) values for enrichment analysis 

are indicated).  

Figure 4. Statistical comparison of the Fisher z-transformed distance cor-

relation values between control and DLB. A. Percentage of pairs with sta-

tistically significant change in distance correlation value in two sample 

groups. Shown are metabolites with the largest number of changed part-

ners. B. Metabolites with the largest difference in pair-wise correlation 

and their other 15 metabolic partners with the largest change in correla-

tion. Differences are calculated using equation 4. 

Figure 5. Comparison of Distance correlation network between control 

and DLB using linear regression comparison (A) metabolites with the 

largest deviation from slope of 1 in linear regression analysis of overall 

correlation differences for each metabolite (B) Examples of linear regres-

sion result for metabolites with the largest difference from the slope 1.  

Figure 6. Concentrations of metabolites selected by network analysis and 

Relieff as significant in control and DLB. 

Figure 7. Closest correlation network partners determined using distance 

correlation for metabolites showing largest overall change in correlation 

networks. Shown are edges with distance correlation over 0.6 and p-value 

<0.05 for A. control and B. DLB groups for Fructose, Propylene glycol, 

SM(d18:1/20:2), O-phosphocholine, serine and Panthothenate. All shown 

correlations are positive according to Pearson sign derivation. 

 

Supplementary Figure 1. Comparison of Pearson correlation network 

between CTRL and DLB using Fisher z-transformation analysis of indi-

vidual correlation differences. (A) Percentage of correlation values that 

have statistically significant difference between Pearson and Distance cor-

relations (p<0.05) for control and DLB groups separately. (B) Comparison 

between Pearson and Distance correlation values for several examples of 

metabolites with highest percentage of different values. Indicated are me-

tabolites with highest difference between Pearson and Distance correla-

tions in this examples.  
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