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Abstract— Deep learning is a powerful tool for assessing
pathology data obtained from digitized biopsy slides. In the
context of supervised learning, most methods typically di-
vide a whole slide image (WSI) into patches, aggregate con-
volutional neural network outcomes on them and estimate
overall disease grade . However, patch-based methods in-
troduce label noise in training by assuming that each patch
is independent with the same label as the WSI and neglect
the important contextual information that is significant in
disease grading. Here we present a Graph-Transformer (GT)
based framework for processing pathology data, called
GTP, that interprets morphological and spatial information
at the WSl-level to predict disease grade. To demonstrate
the applicability of our approach, we selected 3,024 hema-
toxylin and eosin WSIs of lung tumors and with normal
histology from the Clinical Proteomic Tumor Analysis Con-
sortium, the National Lung Screening Trial, and The Can-
cer Genome Atlas, and used GTP to distinguish adeno-
carcinoma (LUAD) and squamous cell carcinoma (LSCC)
from those that have normal histology. Our model achieved
consistently high performance on binary (tumor versus
normal: mean overall accuracy = 0.975 + 0.013) as well
as three-label (normal versus LUAD versus LSCC: mean
accuracy = 0.932 + 0.019) classification on held-out test
data, underscoring the power of GT-based deep learning
for WSI-level classification. We also introduced a graph-
based saliency mapping technique, called GraphCAM, that
captures regional as well as contextual information and
allows our model to highlight WSI regions that are highly
associated with the class label. Taken together, our findings
demonstrate GTP as a novel interpretable and effective
deep learning framework for WSlI-level classification.

Index Terms—Digital pathology, Graph convolutional
network, Lung cancer, Transformer

[. INTRODUCTION

OMPUTATIONAL pathology [1]-[4], which entails the

analysis of digitized biopsies of a bodily tissue, is gaining
increased attention over the past few years. The sheer amount
of information on a single whole slide image (WSI) typically
can exceed over a gigabyte, so traditional image analysis
routines may not be able to fully process all this data in an
efficient fashion. Modern machine learning methods such as
deep learning have allowed us to make great progress in terms
of analyzing WSIs including disease classification [5], tissue
segmentation [6], mutation prediction [7], spatial profiling of
immune infiltration [8], and so on. Most of these methods
rely on systematic breakdown of WSIs into image patches,

followed by development of deep neural networks at patch-
level and integration of outcomes on these patches to create
overall WSI-level estimates. While patch-based approaches
catalyzed research in the field, the community has begun
to appreciate the conditions in which they confer benefit
and in those where they cannot fully capture the underlying
pathology. For example, methods focused on identifying the
presence or absence of a tumor on an WSI can be developed
on patches using computationally efficient techniques such
as multiple instance learning [9]. On the other hand, if the
goal is to identify the entire tumor region or capture the
connectivity of the tumor microenvironment characterizing the
stage of disease, then it becomes important to assess both local
and regional information on the WSI. There are several other
scenarios where both the patch- and WSI-level features need to
be identified to assess the pathology [10], and computational
methods to perform such analysis are much needed.

The success of patch-based deep learning methods can be
attributed to the availability of pre-trained deep neural net-
works on natural images from public databases (i.e., ImageNet
[11]). Since there are millions of parameters in a typical deep
neural network, de novo training of this network requires
access to a large set of pathology data, and such resources
are not necessarily available at all locations. To address
this bottleneck, researchers have leveraged transfer learning
approaches that are pre-trained on ImageNet to accomplish
various tasks. Recently, transformer architectures were applied
directly to sequences of image patches for various classi-
fication tasks. Specifically, Vision Transformers (ViT) were
shown to achieve excellent results compared to state-of-the-
art convolutional networks while requiring substantially fewer
computational resources for training [12]. Position embeddings
were used in ViTs to retain spatial information and capture
the association of different patches within the input image.
Excitingly, the self-attention mechanism in ViT requires the
calculation of pairwise similarity scores on all the patches,
resulting in memory efficiency and a simple time complex-
ity that is quadratic in the number of patches. Leveraging
such approaches to perform pathology image analysis is not
trivial because each WSI can contain thousands of patches.
Additionally, some approximations are often made on these
patches such as using the WSI-level label on each patch during
training, which are not ideal in all scenarios as there is a
need to process both the local information as well as the WSI
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in its entirety to better understand the pathological correlates
of disease. Similar to the local and WSI-level examination,
we argue that an expert pathologist’s workflow also involves
examination of the entire biopsy slide using manual operations
such as panning and zooming in and out of specific regions
of interest to assess various aspects of disease at multiple
scales. In the zoom-in assessment, pathologists perform in-
depth, microscopic evaluation of local pathology whereas, the
zoom-out assessment involves obtaining a rational estimate
of the contextual features on the entire WSI. Both these
assessments are critical as the pathologist obtains a gestalt on
various features to comprehensively assess the disease [10].

Recent attempts to perform WSI-level analysis have shown
promising results in terms of assessing the overall tissue
microenvironment. In particular, graph-based approaches have
gained a lot of traction due to their ability to represent the
entire WSI and analyze patterns to predict various outcomes
of interest. Zhou and colleagues developed a cell-graph con-
volutional neural network on WSIs to predict the grade of
colorectal cancer (CRC) [13]. In this work, the WSI was
converted to a graph, where each nucleus was represented by
a node and the cellular interactions were denoted as edges
between these nodes to accurately predict CRC grade. Also,
Adnan and colleagues developed a two-stage framework for
WSI representation learning [14], where patches were sampled
based on color and a graph neural network was constructed
to learn the inter-patch relationships to discriminate lung
adenocarcinoma (LUAD) from lung squamous cell carcinoma
(LSCC). In another recent work, Lu and team developed a
graph representation of the cellular architecture on the entire
WSI to predict the status of human epidermal growth factor
receptor 2 and progesterone receptor [15]. Their architecture
attempted to create a bottom-up approach (i.e., nuclei- to WSI-
level) to construct the graph, and in so doing, achieved a
relatively efficient framework for analyzing the entire WSIL.

We contend that integration of computationally efficient
approaches such as ViTs along with graphs can lead to more
efficient approaches for the assessment of WSIs. To address
this aspect, we developed a graph-based vision transformer
called GTP that leverages the graph-based representation of
pathology images and the computational efficiency of trans-
former architectures to perform WSI-level analysis. The GTP
framework involves construction of a graph convolutional
network by embedding image patches in feature vectors using
contrastive learning, followed by the application of a trans-
former to predict a WSI-level label corresponding to a specific
disease type. We used WSIs from three publicly available data
resources to develop a GTP model to distinguish normal WSIs
from those with lung tumors. Additionally, we extended our
framework to classify normal WSIs from those with LUAD
or LSCC. We also introduce graph-based class activation
mapping (GraphCAM), a novel approach to generate WSI-
level saliency maps that are able to identify image regions
that are highly associated with the class label.

[I. MATERIALS AND METHODS

TABLE |: Study population. Whole slide images and cor-
responding clinical information from three distinct cohorts
including the Clinical Proteomic Tumor Analysis Consortium
(CPTAC), The Cancer Genome Atlas (TCGA) and the Na-
tional Lung Screening Trial (NLST) were used.

(a) CPTAC
Description Value
Number of patients 435
Number of whole slide images 2071
Number of whole slide images per class! 719, 667, 685

Number of patches? 1277, [100-8478]

Age 3 1, 4, 23, 80, 134, 89, 5, 99
Gender * 235, 101, 99
Race 5 89, 5, 1, 1, 339
(b) TCGA
Description Value
Number of patients 256
Number of whole slide images 288
Number of whole slide images per class! 92, 97, 99

Number of patches2 571.5, [100-7570]

Age 3 10, 1, 12, 42, 93, 84, 16, 8
Gender * 144, 112, 0
Race 5 188, 28, 3, 0, 37
(c) NLST
Description Value
Number of patients 345
Number of whole slide images 665
Number of whole slide images per class’ | 75, 378, 212

Number of patches2 2679.5, [110-7029]

Age 3 0, 0, 0, 87, 201, 57, 0, 0
Gender * 211,134,0
Race ® 315,14, 11, 1, 4

' Normal, LUAD, LSCC 2 Median, Range

3 Binned: 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, Unknown

4 Males, Females, Unknown

5 White, Black or African-American, Asian, American Indian or Alaskan
Native, Other/unknown

A. Study population

We obtained access to WSI data of lung tumors (LUAD and
LSCC) and normal tissue from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC), the National Lung Screening
Trial (NLST) and The Cancer Genome Atlas (TCGA) (Table
I). CPTAC is a national effort to accelerate the understanding
of the molecular basis of cancer through the application of
large-scale proteome and genome analysis [16]. NLST was
a randomized controlled trial to determine whether screening
for lung cancer with low-dose helical computed tomography
reduces mortality from lung cancer in high-risk individuals
relative to screening with chest radiography [17]. TCGA is a
landmark cancer genomics program, which molecularly char-
acterized thousands of primary cancer and matched normal
samples spanning 33 cancer types [18]. For each of these
cases, we also obtained relevant demographic and clinical
information.

B. Graph-Transformer

Our proposed Graph-Transformer (GT) network fuses a
graph representation G of an WSI and a transformer that can
generate WSI-level predictions in a computationally efficient
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Fig. 1: Schematic of GTP deep learning framework. Each whole slide image (WSI) was divided into patches followed
by elimination of the patches that predominantly contained the background. Each image patch was then embedded in feature
vectors by a contrastive learning-based patch embedding module. The feature vectors were then used to build the graph followed
by a transformer that takes the graph as the input and predicts WSI-level class label.

fashion (Figure 1). Let G = (V, E) be an undirected graph
where V' is the set of nodes representing the image patches and
E' is the set of edges between the nodes in V' that represent
whether two image patches are adjacent to each other. We
denote the adjacency matrix of G as A = [A;;] where A;; =1
if there exists an edge (v;,v;) € £ and A;; = 0 otherwise. An
image patch must be connected to other patches and can be
surrounded by at most 8 adjacent patches, so the sum of each
row or column of A is at least one and at most 8. A graph
can be associated with a node feature matrix F, I’ € RY*P s
where each row contains the D-dimensional feature vector
computed for an image patch, i.e. node, and N = |V|. An
example of a WSI, its patches, associated graph, and node
feature matrix are illustrated in Figure S1.

As shown in Fig. 1, given a WSI, the classification task
contains two steps, graph construction and graph interpretation
by a transformer. The second step aims to learn a mapping
from the WSI-associated graph and its node feature matrix to
the corresponding label of the WSI.

Using all the pixels within each image patch as features
can make model training computationally intractable. Instead,
our framework applies a feature extractor to generate a vector
containing features and uses it to define the information
contained in an image patch, which is a node in the graph. This
step reduces the node feature dimension from W), x H,, x C, to
D, where W, Hy,, and C), are width, height, and channel of
the image patch, and D x 1 is the dimension of extracted
feature vector. The expectation is that the derived feature
vector provides an efficient representation of the node and
also serves as a robust means by which to define a uniform
representation of an image patch for graph-based classification.

As described above, current methods that have been de-
veloped at patch-level impose WSI-level labels on all the
patches or use weakly supervised learning to extract feature
vectors that are representative of the WSI. This strategy is
not suitable for all scenarios, especially when learning the
contextual information on the WSI is needed. We leveraged a
strategy based on self-supervised contrastive learning [19], to
extract features from the WSIs. This framework enables robust
representations that can be learned without the need for manual
labels. Our approach involves using contrastive learning to
train a CNN that produces embedding representations by max-

imizing agreement between two differently augmented views
of the same image patch via a contrastive loss in the latent
space (Figure S2). GTP tiles the WSIs from the training set
into patches and randomly samples a mini-batch of K patches.
Two different data augmentation operations are applied to each
patch (p), resulting in two augmented patches (p; and p;).
The pair of two augmented patches from the same patch is
denoted as a positive pair. For a mini-batch of K patches, there
are 2K augmented patches in total. Given a positive pair, the
other 2K — 1 augmented patches are considered as negative
samples. Subsequently, our GTP approach uses a CNN to
extract representative embedding vectors (f;, f;) from each
augmented patch (p;, p;). The embedding vectors are then
mapped by a projection head to a latent space (z;, z;) where
contrastive leaning loss is applied. The contrastive learning
loss function for a positive pair of augmented patches (i, j) is
defined as:
exp(sim(z;,z;)/T)

Zi£1 I pj,zq) exp(sim(z;, 2x,) /T) ’
where Il;;) € {0, 1} is an indicator function evaluating to 1
if and only if k& # i and 7 denotes a temperature parameter.
Also, sim(u,v) = ulv/|ul|||v|]| denotes the dot product
between Lo normalized u and v (i.e., cosine similarity). For
model training, the patches were densely cropped without
overlap and treated as individual images. The final loss was
computed across all positive pairs, including both (i, j) and
(j, 1) in a mini-batch. After convergence, we kept the feature
extractor and used it for our GTP model to compute the
feature vectors of the patches from the WSIs. GTP uses
these computed feature vectors as node features in the graph
construction phase. Specifically, we obtained the node-specific
feature matrix F' = [f1; fo;...; fn], F € RY*P | where fi
is the D-dimensional embedding vector obtained from Resnet
trained using contrastive learning and N is the number of
patches from one WSI. Note that [V is variable since different
WSIs contain different numbers of patches. As a result, each
node in F' corresponds to one patch of the WSI. We defined
an edge between a pair of nodes in I’ based on the spatial
location of its corresponding patches on the WSI. If patch @
is a neighbor of patch j on the WSI (Figure S1), then GTP
creates an edge between node ¢ and node j as well as set

li,; = —log (1)
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A;; =1 and A;; = 1, otherwise A;; = 0 and A;j; = 0. GTP
uses feature node matrix I’ and adjacent matrix 4 to construct
a graph to represent each WSIL.

The Graph Transformer component of GTP consists of a
graph convolutional (GC) layer, a transformer layer, and a
pooling layer. We implemented the GC layer, introduced by
Kipf & Welling [20], to handle the graph-structured data. The
GC layer operates message propagation and aggregation in the
graph, and is defined as:

Hm_;,_1 = R@LU(AHmWnl)7
A=D 3AD*

m=1,2,..,M ()

(2b)

where A is the symmetric normalized adjacency matrix of .4
and M is the number of GC layers. Here, A= A+1is the
adjacency matrix with a self-loop added to each node, and D
is a diagonal matrix where Dm’ => j /L] H,, is the input of
the m-th GC layer and H; is initialized with the node feature
matrix F. Additionally, Wy, € IR»*%+1 is the matrix of
learnable filters in the GC layer, where C,, is the dimension
of the input and Cy, 11 is the dimension of the output.

The GC layer of GTP enables learning of node embeddings
through propagating and aggregating needed information.
However, it is not trivial for a model to learn hierarchical
features that are crucial for graph representation and classifi-
cation. To address this limitation, we introduced a transformer
layer that selects the most significant nodes in the graph and
aggregates information via the attention mechanism. Trans-
formers use a Self-Attention (SA) mechanism to model the
interactions between all tokens in a sequence [21], by allowing
the tokens to interact with each other (“self”) and find out
who they should pay more attention to (“attention”), and the
addition of positional information of tokens further increases
the use of sequential order information. Excitingly, the Vison
Transformer (ViT) enables the application of transformers to
2D images [12]. Inspired by these studies, we here propose a
transformer layer to interpret our graph-structured data. While
the SA mechanism has been extensively used in the context
of natural language processing, we extended the framework
for WSI data. Briefly, the standard qkv self-attention [21] is a
mechanism to find the words of importance for a given query
word in a sentence, and it receives as input a 1D sequence of
token embeddings. For the graph, the feature nodes are treated
as tokens in a sequence and the adjacency matrix is used to
denote the positional information. Given that x € RV is
the sequence of patches (feature nodes) in the graph, where [NV
is the number of patches and D is the embedding dimension of
each patch, we compute q(query), k(key) and v(value) (Eq.3a).
The attention weights A;; are based on the pairwise similarity
between two patches of the sequence and their respective query
q’ and key k? in Eq.3b. Multihead Self-Attention (MSA) is a
mechanism that involves combining the knowledge explored
by k number of SA operations, called “heads”. It projects
concatenated outputs of SA in Eq.3c. D;, (Eq.3a) is typically
set to D/k to facilitate computation and maintain the number

of parameters constant when changing k.

(4. k,v] =xUgpy, Uy € RP*3D (3a)
A= Softmax(qkT/\/Dih)7 A e RVXN (3b)
SA(x) = Av, (3c)
MSA(x) = [SA1(x);SA2(x); ... SAK(%)]U;pnsq, and
Ujpsq € RFPnXD, ()

The goal of the transformer layer is to learn the mapping:
H — T, where H is the graph space, and T is the transformer
space. We define the mapping of H — T as:

to = [Tetass; PP L B D e H O (4a)
t; =MSALN(ti_1)) + ti_1, I=1...L (4b)
ti = MLP(LN(t))) +t,, l=1...L (4¢)

where MSA is the Multiheaded Self-Attention (Eq.3), MLP is
a Multilayer Perceptron, and LN denotes Layer Norm. L is the
number of MSA blocks [12]. The transformer layer consists of
L MSA layers (Eq.4b) and L MLP blocks (Eq.4c). In order to
learn the mapping T — Y from transformer space T to label
space Y, we prepared a learnable embedding (t(()o) = Zclass)
to the feature nodes (Eq.4a), whose state at the output of the
transformer layer (29) serves as mapping of T — Y:

y = LN(2\"). (5)

In a recent work [12], position embeddings were added
to the patch embeddings to retain positional information.
Typically, the position embedding explores absolute position
encoding (e.g., sinusoidal encoding, learnable absolute encod-
ing) as well as conditional position encoding. However, the
learnable absolute encoding is commonly used in problems
with fixed length sequences and does not meet the requirement
for variable length of input patches in WSI analysis, because
the number of patches tiled from the corresponding WSI often
varies due to the inherently variable size of the WSI. To handle
this problem, Islam and colleagues showed that the addition of
zero padding can provide an absolute position information for
convolution [22]. In our work, the adjacency matrix in the WSI
graph which contains the spatial information is encoded with
the position information and added to the node features during
graph convolution. By taking advantage of graph convolutions
to aggregate context information, the node features are able to
obtain both local and contextual information, which enriches
the features that are encompassed in each node. In this fashion,
we were able to avoid the need of adding an additional encoder
for position embeddings, thus reducing the complexity of our
model.

The softmax function is typically used as a row-by-row
normalization function in transformers for vision tasks [23],
[24]. The standard self-attention mechanism requires the cal-
culation of similarity scores between each pair of nodes,
resulting in both memory and time complexity quadratic in
the number of nodes. Since the number of patches in WSIs is
large (potentially several thousands), applying the transformer
layer directly to the convolved graphs is not trivial. We
therefore added a mincut pooling layer [25] between the graph
convolution and transformer layers and reduced the number
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of input nodes to the transformer layer. In so doing, our
GTP graph-transformer was able to accommodate thousands
of image patches as input, which underscores the novelty of
our approach and its application to WSI data.

C. Class activation mapping

To understand how GT processes WSI data and identi-
fies regions that are highly associated with the class label,
we proposed a novel class activation mapping technique on
graphs. In what follows, we use the term GraphCAM to refer
to this technique. Our technique was inspired by the recent
work by Chefer and colleagues [26], who used the deep
Taylor decomposition principle to assign local relevance scores
and propagated them through the layers by maintaining the
total relevancy across layers. In a similar fashion, our method
computes the class activation map from the output class to the
input graph space, and reconstructs the final class activation
map for the WSI from its graph representation.

Transformer layer
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Fig. 2: Schematic of the GraphCAM. Gradients and rele-
vance are propagated through the network and integrated with
an attention map to produce the transformer relevancy maps.
Transformer relevancy maps are then mapped to graph class
activation maps via reverse pooling.

Let A represent the attention map of the MSA block [ in
Eq.3b. Following the propagation procedure of relevance and
gradients by Chefer and colleagues [26], GraphCAM computes
the gradient VA(®) and layer relevance R(™) with respect to
a target class for each attention map A("), where n; is the
layer that corresponds to the softmax operation in Eq.3b of
block [. The transformer relevance map C} is then defined as
a weighted attention relevance:

L

c, =[[A% (6)
=1

AD =E,(VAY © R) + 1 (6b)

where © is the Hadamard product, E;, is the mean across the
“heads” dimension, and [ is the identity matrix to avoid self
inhibition for each node.

The pooled node features by the mincut pooling layer are
computed as XP°% = ST X, where S € RNs* Nt is the dense

learned assignment, and N; and NN, are the number of nodes
before and after the pooling layer. To yield the graph relevance
map C, from transformer relevance map C;, our GraphCAM
performs mapping C; to each node in the graph based on the
dense learned assignments as C} 5 Cy. Finally, GraphCAM
reconstructs the final class activation map on the input WSI
using the adjacency matrix of the graph and coordinates of
patches from the WSI.

D. Data and code availability

All the WSIs and corresponding clinical data can be
downloaded freely from CPTAC, TCGA and NLST websites.
Python scripts and manuals are made available on GitHub
(https://github.com/vkola-lab/GraphCAM).

I1l. EXPERIMENTS

We performed several experiments to train and test our GTP
framework. The NLST data (1.8 million patches) was exclu-
sively used for contrastive learning to generate patch-specific
features (and the feature extractor), which were then used
to represent each node. The GTP framework was trained on
the CPTAC data (2,071 WSIs) using 5-fold cross validation,
and the TCGA data (288 WSIs) was used as an independent
dataset for model testing using the same hyperparameters. We
also conducted ablation studies to understand the contributions
of various components on the overall GTP framework. By
blocking out the GTP components, we were left with frame-
works that were comparable to the state-of-the-art in the field.
Finally, we used GraphCAMs to identify salient regions on
the WSIs, and explored their validity in terms of highlighting
the histopathologic regions of interest.

A. Experimental settings

Each WSI was cropped to create a bag of 512 x 512 non-
overlapping patches at 20x magnifications, and background
patches with non-tissue area > 50% were discarded. We used
Resnet18 as the CNN backbone used for the feature extractor
[27]. We adapted the Adam optimizer with an initial learning
rate of 0.0001, a cosine annealing scheme for learning rate
scheduling [28], and a mini-batch size of 512. We kept the
trained feature extractor and used it to build graphs for the
Graph-Transformer. We used one graph convolutional layer,
and set the transformer layer configurations as L=3, MLP
size=128, D=64 and k=8 (Eq.4, Eq.3). The GTP model was
trained in batches of 8 examples for 150 iterations. We adopted
Adam [29] as the optimizer. The learning rate was set to 1073
initially, and decayed to 10~% and 10~° at step 30 and 100,
respectively.

B. Ablation studies

We compared the effect of contrastive learning on the GTP
model performance by performing studies with and without it.
Later, we removed the transformer component and trained the
graph and compared it with the full GTP framework. In both
these studies, we explored various options to build the model,
including the use of pre-training to generate the features in


https://doi.org/10.1101/2021.10.15.21265060
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.10.15.21265060; this version posted October 18, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
6 It is made available under a CC-BY 4.0 International license .

lieu of contrastive learning, and also used a graph-based CNN
to predict the class label as a replacement to the transformer.
In essence, these ablation studies allowed us to fully evaluate
the power of our interpretable GTP framework in predicting
WSI-level class labels.

C. Computational infrastructure

We implemented the proposed model using PyTorch
(v1.9.0). The model was trained using a single NVIDIA
1080Ti graphics card with 12 GB memory on a GPU worksta-
tion. The training speed was about 2.4 iterations/s, and training
took less than a day to reach convergence. The inference speed
was about 30 ms per WSI when the test batch size was 2.

D. Performance metrics

For the tumor versus normal classification task, we gen-
erated receiver operating characteristic (ROC) and precision-
recall (PR) curves based on model predictions on the CPTAC
and TCGA datasets. The ROC curve was computed between
the true positive rate and false positive rate using different
probability thresholds while PR curve was computed between
the true positive rate and the positive predictive value using
different probability thresholds. For each ROC and PR curve,
we also computed the area under curve (AUC), precision,
recall, specificity, and accuracy. For the 3-label classification
task (LUAD vs. LSCC vs. normal), we also computed the
precision, recall, specificity, and accuracy scores of each class
along with confusion matrices for each fold-level prediction.
The ROC and PR curves were computed for each label. Since
we used 5-fold cross validation, we took all the curves from
different folds and calculated the mean area under curves and
the variance of the curves. Finally, GraphCAMs were used to
generate visualizations and gain a qualitative understanding on
the model performance.

IV. RESULTS

The GTP framework that leveraged contrastive learning
followed by fusion of a graph with a transformer provided
accurate predictions of WSI-level class labels across a range
of classification tasks (Table II). For the normal vs. tumor
classification task, high model performance was consistently
observed on all the computed metrics including precision,
recall, sensitivity, and overall accuracy on both CPTAC test
and TCGA datasets (all > 0.9), indicating a high degree
of generalizability. Similar performance was observed on the
normal vs. LUAD vs. LSCC task on the CPTAC data but
dropped slightly on the TCGA dataset. The drop in the model
performance was observed particularly on the precision scores
for the LUAD and on the recall scores for the LSCC class
labels. High model performance was also confirmed via the
receiver-operating characteristic (ROC) and precision-recall
(PR) curves generated on both the CPTAC and TCGA datasets
for all the classification tasks (Figure 3). On each classification
task, the mean area under the ROC and PR curves was high
(all > 0.9) on the CPTAC test data. For the TCGA dataset,
which served as an external testing cohort, the mean area under

TABLE Il: Performance metrics for each class in the 3-label

and 2-label classification tasks.

(a) 2-label: Normal vs. Tumor (LUAD+LSCC)

CPTAC Precision Recall/Sensitivity Specificity
Normal | 0.953 £ 0.022 0.978 £0.017 0.974 £ 0.012
Tumor | 0.988 =+ 0.009 0.974 £ 0.012 0.978 £0.017
TCGA Precision Recall/Sensitivity Specificity
Normal | 0.902 + 0.020 0.937 £ 0.023 0.952 + 0.011
Tumor | 0.970 £ 0.011 0.952 £ 0.011 0.937 £ 0.023

(b) 3-label: Normal vs. LUAD vs. LSCC

CPTAC Precision Recall/Sensitivity Specificity
Normal | 0.953 £ 0.022 0.978 £0.017 0.974 £ 0.012
LUAD | 0.925 £ 0.032 0.901 £ 0.021 0.965 £ 0.016
LSCC | 0.919 £ 0.022 0.915 £ 0.042 0.959 + 0.011
TCGA Precision Recall/Sensitivity Specificity
Normal | 0.902 £ 0.020 0.937 £ 0.023 0.952 £ 0.011
LUAD | 0.747 £0.022 0.841 £ 0.032 0.854 + 0.021
LSCC | 0.885+0.015 0.741 £ 0.031 0.949 + 0.009
(c) Overall accuracy

CPTAC Accuracy TCGA Accuracy

2-label | 0.975 £ 0.013 2-label | 0.947 £ 0.011

3-label | 0.932 £ 0.019 3-label | 0.838 4 0.009

the ROC and PR curves dropped slightly, especially for the
LUAD and LSCC classification tasks. The confusion matrices
for the 3-label classification problem indicated similar results
(Figure S3), where the model performance was excellent on
the CPTAC test dataset but was slightly lower on the TCGA
dataset. In particular, the model leaned towards incorrectly
classifying a few LSCC cases as LUAD but correctly classified
most of the WSIs with no tumor. However, for the two-label
classification task (i.e., tumor vs. no-tumor), the mean area
under the ROC and PR curves were very high on both the
CPTAC and TCGA datasets (all > 0.95), indicating accurate
model performance and a fair degree of model generalizability
(Figure S4).

The GT-based class activation maps (GraphCAMs) identi-
fied WSI regions that were highly associated with the output
class label of interest (Figure 4). Importantly, the same set
of WSI regions were highlighted by our method across the
various cross-validation folds (Figure S5), thus indicating
consistency of our technique in highlighting salient regions
of interest. Also, the generated GraphCAMs are class-specific,
thus underscoring the superiority of our technique compared to
other state-of-the-art methods such as self-attention maps. In
some cases, we also noticed that the GraphCAMs generated
for each class identified different regions of importance on
the same WSI, raising the possibility that a single image may
contain disease related information relevant to multiple types
of lung cancer. On the other hand, the self-attention map that
combines attention across all the layers of the model resulted
in a single heatmap that may not indicate disease specificity
but rather only an association with the classification task.
Also, since we can generate class-specific probability for each
GraphCAM, our approach allows for better appreciation of
the model performance and its interpretability in predicting
an output class label. We must however note that in certain
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TABLE IlI: Ablation studies. We used different feature extractors for graph construction also explored the effect of using the
transformer by replacing it with a graph classifier. Here, Resnet™ indicates the use of a pre-trained Resnetl18 network without
fine-tuning. Also, Resnet indicates the use of a pre-trained Resnetl8 with fine-tuning. CAE represents convolutional auto
encoder, CL represents contrastive learning used in our method and GT represents the Graph-Transformer. Overall values of
mean accuracy + standard deviation, computed across the five folds, are computed.

(a) Performance metrics

2-]abel 3-label
CPTAC Label Precision Recall/Sensitivity Specificity Label Precision Recall/Sensitivity Specificity
Normal 0.874 £ 0.051 0.912 £ 0.029 0.927 £ 0.035 Normal | 0.874 4+ 0.051 0.912 £ 0.029 0.927 + 0.035
Resnet* + GT LUAD | 0.809 £ 0.082 0.725 £ 0.105 0.910 £ 0.047
Tumor 0.953 £ 0.013 0.927 £ 0.035 0.912 £ 0.029 LSCC | 0.786 + 0.057 0.800 &+ 0.090 0.885 + 0.055
Normal 0.901 £ 0.032 0.915 £ 0.031 0.946 £ 0.019 Normal | 0.901 + 0.032 0.915 £ 0.031 0.946 £ 0.019
Resnet! + GT LUAD | 0.771 £ 0.030 0.756 £ 0.035 0.894 £ 0.013
Tumor 0.955 £ 0.015 0.946 £ 0.019 0.915 £ 0.031 LscC | 0.790 + 0.039 0.788 + 0.022 0.894 + 0.028
Normal 0.893 £ 0.017 0.864 £ 0.042 0.944 £ 0.012 Normal | 0.893 +0.017 0.864 £ 0.042 0.944 + 0.012
CAE + GT LUAD | 0.733 £0.041 0.674 £ 0.058 0.881 £+ 0.031
Tumor 0.930 £ 0.020 0.944 £ 0.012 0.864 £ 0.042 Lscc | 0.753 + 0.028 0.829 + 0.036 0.863 & 0.027
Normal 0.878 £ 0.024 0.902 £ 0.028 0.933 £0.015 Normal | 0.878 4+ 0.024 0.902 £ 0.028 0.933 £0.015
CL + GraphAtt LUAD | 0.791 £ 0.027 0.758 4 0.063 0.905 + 0.017
Tumor | 0.948+£0.014  0.933£0015  0.902£0.028 | ysoc | 083540046 0.841£0.032  0.916 £ 0.029
TCGA Label Precision Recall/Sensitivity Specificity Label Precision Recall/Sensitivity Specificity
Normal 0.639 £ 0.203 0.146 £ 0.116 0.964 £ 0.037 | Normal | 0.639 £ 0.203 0.146 £ 0.116 0.964 + 0.037
Resnet* + GT LUAD | 0.375 =+ 0.009 0.893 £ 0.052 0.244 £ 0.050
Tumor 0.707 £ 0.027 0.964 £ 0.037 0.146 £ 0.116 LSCC | 0.695 + 0.098 0.257 + 0.040 0.941 + 0.019
Normal 0.638 £ 0.036 0.765 £ 0.022 0.794 £0.034 | Normal | 0.638 £ 0.036 0.765 £ 0.022 0.794 £ 0.034
Resnet’ + GT . . LUAD | 0.515+£0.019 0.536 £ 0.039 0.742 £ 0.033
Tumor 0.878 £0.010 0.794 £ 0.034 0.765 £ 0.022 LscC | 0.662 + 0.024 0.509 % 0.060 0.865 + 0.014
Normal 0.620 £ 0.019 0.894 £ 0.027 0.742 £ 0.025 Normal | 0.620 +0.019 0.894 £ 0.027 0.742 £ 0.025
CAE + GT LUAD | 0.501 £ 0.062 0.342 £ 0.067 0.821 £ 0.051
Tumor 0.937 £ 0.014 0.742 £ 0.025 0.894 £ 0.027 Lscc | 0.598 +0.014 0.529 + 0.074 0.813 + 0.034
Normal 0.826 £ 0.016 0.913 £ 0.017 0.909 £ 0.008 Normal | 0.826 +0.016 0.913 £0.017 0.909 £ 0.008
CL + GraphAtt LUAD | 0.718 £ 0.040 0.753 £ 0.035 0.850 £ 0.023
Tumor 0.957 £ 0.008 0.909 £ 0.008 0.913 £0.017 Lscc | 0.858 +0.027 0.732 + 0.026 0.937 + 0.012
(b) Accuracy

Resnet* + GT  Resnet! + GT CAE + GT CL + GraphAtt

CPTAC 2-label | 0.922+0.017 0.935+£0.010 0.917£0.009 0.923 £0.013

3-label | 0.815+0.010 0.822+0.019 0.791+0.011  0.835 + 0.022

TCGA 2-label | 0.703 £0.036 0.785+0.022 0.790£0.015 0.911 £ 0.011

3-label | 0.4354+0.022 0.600 +0.021  0.583 +0.018  0.797 4+ 0.026

cases when the model fails to predict the class label, the
GraphCAMs may not result in interpretable findings (Figure
S6). Nevertheless, we note that the saliency maps reported in
Figure 4 closely match with expert-identified regions of tumor
pathology.

Ablation studies revealed that our GTP framework that uses
contrastive learning and combines a graph with a transformer
served as a superior model for WSI-level classification (Ta-
ble III). For example, when contrastive learning was replaced
with a pre-trained architecture (Resnet18 with and without fine
tuning), the model performance for both the 2- and 3-label
classification tasks dropped. The reduction in performance
was evident on both CPTAC and TCGA datasets. The model
performance also dropped for both 2- and 3-label classification
when we trained a novel convolutional auto-encoder [30]
in lieu of contrastive learning. These results imply that the
feature maps generated via contrastive learning were sufficient
and maybe even better than other frameworks to encode a
large variety of visual information for GT-based classification
with a sufficient degree of generalizability. We also replaced
our proposed mincut pooling with an attention-based pooling
(AttPool) layer that selects the most significant nodes in the
graph and aggregates information via the attention mechanism.

We then used the same graph convolutional layer as GTP
in the ablation study and denoted this method as GraphAtt.
By aggregating the neighborhood node information via self-
attention, GTP outperformed GraphAtt for both the 2- and
3-label classification tasks (Table S1). These findings indicate
that our proposed GTP framework is capable of integrating
information across the entire WSI that is represented as a graph
to accurately predict the output label of interest.

V. DISCUSSION

In this work, we developed a novel deep learning approach
that integrates graphs with vision transformers to generate an
efficient classifier to predict WSI-level presence of lung tu-
mors. Our approach also differentiated WSIs with LUAD from
those with LSCC. Based on the standards of various model
performance metrics, our approach resulted in classification
performance that exceeded other deep learning architectures
that incorporated various state-of-the-art configurations (see
ablation studies). Finally, our novel class activation mapping
technique allowed us to identify salient WSI regions that were
highly associated with the output class label of interest. Thus,
our findings represent novel contributions to the field of in-
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Fig. 3: Model performance on the (a) CPTAC and (b)
TCGA datasets. Mean ROC and PR curves along with

standard deviations for the classification tasks (normal vs.
tumor; LUAD vs. others; LSCC vs. others) are shown.

terpretable deep learning while also simultaneously advancing
the fields of computer vision and digital pathology.

The field of computational pathology has made important
strides in the recent years due to advancements in vision-
based deep learning. Still, owing to the sheer size of pathology
images generated at high resolution, assessment of WSI-level
information that can integrate spatial signatures along with
local, region-specific information for prediction of tumor grade
remains a challenge. The large body of work to date has fo-
cused on patch-level deep neural networks that may accurately
predict tumor grade but fail to capture spatial connectivity
information. As a result, identification of important image-
level features via such techniques may lead to inconsistent re-
sults. Our GT-based deep learning framework precisely tackled
this scenario by integrating WSI-level information via a graph
structure and thus represents an important advancement in the
field.

One of the novel contributions in our work is the generation
of graph-based class activation maps (GraphCAM), which
can highlight the WSI regions that are highly associated
with the output class label. Unlike other saliency mapping
techniques such as self-attention maps, GraphCAMs can gen-
erate class-specific heatmaps. While self-attention maps can
identify image regions (or pixels) that are important for a
specific classification task, GraphCAMs can identify image
regions that trigger the model to associate the image with
a specific class label. This is a major advantage because an
image may contain information pertaining to multiple classes,
and for these scenarios, identification of class-specific feature
maps becomes important. This is especially true in real-world
scenarios such as pathology images containing lung tumors.
Typically, lung cancer subtype on WSIs is determined based
on the most predominant pattern, but different patterns may be
present on the same WSIs. In such cases, training well-known
supervised deep learning classifiers such as convolutional
neural networks that use the overall WSI label for classification
at patch-level or even at the WSI-level may not necessarily
perform well and even misidentify the regions of interest
associated with the class label. By generating class-specific
CAMs learned at the WSI-level, our GTP approach provides
an accurate way by which to identify regions of interest on
WSIs that are highly associated with the corresponding class
label.

Our study has a few limitations. We leveraged contrastive
learning to generate patch-level feature vectors before con-
structing the graph, which turned out to be a computationally
intensive task. However, our ablation studies revealed that
contrastive learning improved model performance when com-
pared to other techniques for feature extraction. Future studies
can explore other possible techniques for feature extraction
that lead to improved model performance. Our graph was
constructed by dividing the WSI into image patches, followed
by creation of nodes using the embedding features from these
patches leading to construction of the graph. Other alternative
ways can be explored to define the nodes and create graphs
that are more congruent and spatially connected. While we
have demonstrated the applicability of GTP to lung tumors,
extension of this framework to other cancers is needed to fully
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Fig. 4: Class-specific GraphCAMs. For each WSI, we generated class-specific GraphCAMs and also compared them with
self-attention maps. The first column contains the original WSIs, the second and third columns contain LUAD-specific and
LSCC-specific GraphCAMs, and the final column contains the self-attention maps. The first row represents an LUAD case
where our model also predicted LUAD, and the second row represents an LSCC case where our model predicted LSCC. The
bold font underneath certain GraphCAMs was used to indicate the model predicted class label for the respective cases. Also,
the model-generated probability values are noted beneath each GraphCAM. Since this is a 3-label classification task (normal
vs. LUAD vs. LSCC), the LUAD and LSCC probability values do not add up to 1. Several patches in the GraphCAM with
the correct prediction show high values (“warm colors”) while the self attention maps mostly miss the relevant patches (except

in the last row).

appreciate its role in terms of assessing WSI-level correlates of
disease. In fact, our method is not specific to cancers and could
be adapted to other computational pathology applications.

In conclusion, our GTP framework produced an accurate,
computationally efficient model by capturing the entire infor-
mation available on an WSI to predict the output class label.
As a supervised learning framework, GTP can tackle large
resolution WSIs and predict multiple class labels, leading to
generation of interpretable findings that are class-specific. Our
GTP framework could be scaled to WSI-level classification
tasks on other organ systems and also to predict response to
therapy, cancer recurrence and patient survival.
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Fig. S1: Graph construction. Whole slide images were divided into patches and each patch that contained more than 50% of
the area covered by tissue was considered for further processing. Each selected patch was represented as a node and a graph
was constructed on the entire WSI using these nodes with an 8-node adjacency matrix. Here, two sets of patches of a WSI
and their corresponding subgraphs are shown. The subgraphs are connected within the graph representing the entire WSI.
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Fig. S2: Contrastive learning to train the feature extractor. We applied two distinct augmentation functions, including
random color distortions, random Gaussian blur, and random cropping followed by resizing back to the original size, on the
same sample in a mini-batch. If the mini-batch size is K, then we ended up with 2 X K augmented observations in the mini-
batch. The ResNet received an augmented image leading to an embedding vector as the output. Subsequently, a projection head
was applied to the embedding vector which produced the inputs to contrastive learning. The projection head is a multilayer
perceptron (MLP) with 2 dense layers. In this example, we considered K = 3 samples in a minibatch (A, B & C). For the
sample A, the positive pairs are (Al, A2) and (A2, Al), and the negative pairs are (Al, B1), (Al, B2), (Al, C1), (Al, C2).
All pairs were used for computing contrastive learning loss to train the Resnet. Once the system was trained, we used the
embedding vectors (straight from the ResNet) for constructing the graph.
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Fig. S3: Model performance on the CPTAC and TCGA datasets. Confusion matrices for the 5-fold cross validation on the
(a) CPTAC and the (b) TCGA datasets are shown. A separate confusion matrix is shown for each fold prediction along with
corresponding accuracies. Note that for CPTAC dataset, the model performance was evaluated only on the held-out test data.
Model performance on the TCGA dataset was evaluated using the CPTAC model that was constructed on each fold.
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Fig. S4: Model performance on the CPTAC and TCGA dataset. Mean ROC and PR curves along with standard deviations
for the binary classification task (normal vs. tumor) are shown.
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Fig. S5: Graph class activation map (GraphCAM) performance. GraphCAMs generated on WSIs across the runs performed
via 5-fold cross validation are shown. The first column shows the original WSI and the other columns show the generated
GraphCAMs along with prediction probabilities on the cross-validated model runs. The first row shows a sample WSI from
the LUAD class and the second row shows an WSI from the LSCC class. The colormap of the GraphCAM represents the
probability by which an WSI region is associated with the output label of interest. The probability values based on each model
prediction are noted beneath each GraphCAM. The models created with the five folds produced GraphCAMs that mostly
highlighted the same set of patches at similar levels, thus underscoring the robustness of our method across the folds.
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Fig. S6: Class-specific GraphCAMs for failure cases. The first row shows a sample WSI from the LUAD class but the
model prediction was LSCC, and the second row shows an WSI from the LSCC class but the model prediction was LUAD.
The first column shows the original WSI, and the second and third columns show the generated GraphCAMs along with
prediction probabilities. The bold font underneath certain GraphCAMs was used to indicate the model predicted class label for
the respective cases. Also, the model-generated probability values are noted beneath each GraphCAM. Since this is a 3-label
classification task (normal vs. LUAD vs. LSCC), the LUAD and LSCC probability values do not add up to 1.
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Resnet* + GT Resnet’ + GT CAE + GT CL + GraphAtt
CPTAC | 3.208 £0.378%F 2995 +0.633%  3.524 + 0.561%  3.503 + 0.607%
TCGA | 10.949 + 3.742%  5.383 £0.373F  5.622+£0.239F  1.256 & 0.492

TABLE S1: Two-tailed DeLong test to compare AUCs. We used the DeLong test to compare the AUC values of the
models used in the ablation studies. For the ablation studies, we used different feature extractors for graph construction also
explored the effect of using the transformer by replacing it with a graph classifier. Here, Resnet* indicates the use of a
pre-trained Resnet18 network without fine-tuning. Also, Resnet! indicates the use of a pre-trained Resnet18 with fine-tuning.
CAE represents convolutional auto encoder, CL represents contrastive learning used in our method and GT represents the
Graph-Transformer. Overall values of mean z-statistic & standard deviation obtained from the DeLong test are reported. The
symbol * indicates p-value< 0.001, and § indicates p-value< 0.005. When the CL + GraphAtt model was compared with our
model, the p-value was 0.209 on the TCGA dataset.
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