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Abstract 
 
Background: Fatigue is a common and burdensome symptom in Rheumatoid Arthritis 
(RA), yet is poorly understood. Currently, clinicians rely solely on fatigue 
questionnaires, which are inherently subjective measures. For the effective 
development of future therapies and stratification, it is of vital importance to identify 
biomarkers of fatigue. In this study, we identify brain differences between RA patients 
who improved and did not improve their levels of fatigue, and we compared the 
performance of different classifiers to distinguish between these samples at baseline. 
Methods: Fifty-four fatigued RA patients underwent a magnetic resonance (MR) scan 
at baseline and 6 months later. At 6 months we identified those whose fatigue levels 
improved and those for whom it did not. More than 900 brain features across three 
data sets were assessed as potential predictors of fatigue improvement. These data 
sets included clinical, structural MRI (sMRI) and diffusion tensor imaging (DTI) data. 
A genetic algorithm was used for feature selection. Three classifiers were employed 
in the discrimination of improvers and non-improvers of fatigue: a Least Square 
Linear Discriminant (LSLD), a linear Support Vector Machine (SVM) and a SVM with 
Radial Basis Function kernel. Results: The highest accuracy (67.9%) was achieved 
with the sMRI set, followed by the DTI set (63.8%), whereas classification 
performance using clinical features was at the chance level. The mean curvature of 
the left superior temporal sulcus was most strongly selected during the feature 
selection step, followed by the surface are of the right frontal pole and the surface 
area of the left banks of the superior temporal sulcus. Conclusions: The results 
presented in this study evidence a superiority of brain metrics over clinical metrics 
in predicting fatigue changes. Further exploration of these methods may enable 
clinicians to triage patients towards the most appropriate fatigue alleviating 
therapies. 
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Introduction 
Fatigue is a highly complex symptom, which is challenging to measure and study. 
There are around 690,000 RA patients in UK, 80% of whom report suffering from 
relevant fatigue(1). This symptom is described as a principal burden of the disease 
(2), with an impact over the quality of life even greater than pain(3). Consequences 
of fatigue include an impact upon daily activities, general health, mental health, work 
and relationships among others (3). 
 
Therapeutic options do exist. In particular, exercise, cognitive behavioural therapy 
(CBT) and education are recommended; moreover, we have recently evidenced a 
fatigue alleviating effect of anti-TNF pharmacological therapy(4). However, in 
practice, these interventions only provide clinically meaningful gains in subgroups of 
patients (5,6). Unfortunately, clinical characteristics inadequately distinguish these 
subgroups, knowledge which would otherwise inform therapeutic decision making. 
Consequently, patients and clinicians are frustrated by the considerable challenge of 
selecting the correct therapy for the correct patient. 
 
Given that central symptoms appear prominently associated with fatigue (7), 
neuroimaging may be a valuable tool to study fatigue and potentially identify 
biomarkers which may guide clinician's therapeutic decision making. In spite of this 
possibility, few studies have employed these techniques to investigate fatigue in the 
field of chronic inflammatory diseases (8). Yet, these studies are restricted to 
traditional univariate analysis (for instance t-test, chi-square or Wilcoxon test) to test 
for differences between groups. Therefore, these findings are group-based and hence 
of limited clinical application. In addition, no studies have employed neuroimaging to 
predict fatigue outcome. This information would be a vital asset in stratification of 
therapy, currently undoable as clinicians rely only on clinical measures.  
 
Machine learning (ML) methods integrated with neuroimaging are gaining 
importance to support clinical diagnosis. As opposed to group level comparison 
analysis, machine learning methods enable identification of fine-grained patterns, 
which are key for single subject diagnosis (9). This work is the first study to apply 
machine learning techniques in the search for brain indicators which may predict 
longitudinal changes in fatigue and so aid patient stratification in patients with RA. 
 

Methods 

Participants 
The data used in this work was acquired in Aberdeen Biomedical Imaging Centre. The 
main eligibility criteria for enrolment include: a) patients diagnosed with RA, 
according to the 2010 American College of Rheumatology/European League Against 
Rheumatism (ACR/EULAR) criteria (10) and b) patients suffering from clinically 
relevant fatigue, defined as a score above 3 on the Chalder Fatigue Scale (CFS)(11) 
and reported fatigue for more than 3 months. Those patients with contraindications 
to MRI scanning (e.g. pacemakers, artificial eyes, artificial joints), claustrophobia, 
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alternative medical justifications for their fatigue (e.g. beta-blocker treatment, a 
recent history of cancer) and left-handed patients were excluded. Finally, 60 patients 
met eligibility criteria and thus, underwent a full clinical assessment, before going 
through the MR scan. The whole procedure was repeated after 6 months, with no 
fatigue specific intervention in the meanwhile, in 54 out of the 60 initial patients who 
returned for a second visit. In the second visit, patients were stratified based on 
Chalder Fatigue Scale score variation (∆CFS) into improvers (∆CFS ≥ 2; n = 22; mean 
age 54.9 ± 13.5; 15 female) and non-improvers of fatigue (∆CFS < 2; n = 32; mean age 
55 ± 10.0; 26 female). Standard clinical characteristics are provided in table 1. Blood 
and questionnaire-related measures are summarized in Table S1. 
 
Table 1. Clinical characteristics for the total number of subjects (n=54) and improvers (n=22) and 
non-improvers (n=32) of fatigue subgroups. 

 
RA (n = 54) 

Improvers 
(n = 22) 

Non-improvers 
(n = 32) 

Age (years), mean ± std 55 ± 11.4 54.9 ± 13.5 55 ± 10.1 

Male/Female 13/41 7/15 6/26 

Disease duration (years), mean ± std 11.5 ± 9.4 10.2 ± 6.6 12.5 ± 11 

Weight (kg), mean ± std 74.2 ± 16.6 75.8 ± 15.9 73 ± 17.3 

DAS: Disease Activity Score. VAS: Visual Analogue Scale. CFS: Chalder Fatigue Scale 

 

Data acquisition 
Patients were asked to lie supine in a 3 Tesla Philips Achieva X-series MRI scanner for 
a brain scan. Structural MRI data was acquired by a T1-weighted fast-field echo 3D 
structural scan with the next parameters: repetition time (TR) = 8.2 ms, echo time 
(TE) = 3.8 ms, inversion time (TI) = 1018 ms, flip angle (FA) = 8°, field of view (FOV) 
= 240 mm, matrix size = 240 x 240 with 160 slices, voxel size = 0.94 x 0.94 x 1 mm3. 
 
Diffusion tensor images (DTI) were acquired along 16 gradients directions (b = 800 
s/mm2, number of excitations = 2) along with an unweighted (b = 0) image with an 
overall of 17 volumes. DTI images were recorded as a series of 66 axial slices, using a 
single-shot spin echo planar imaging (EPI) sequence with the next parameters: TR = 
7151 ms, TE = 55 ms, FA = 90°, FOV = 224 x 224 mm2, slice thickness = 2.0 mm with 
no gap, voxel size = 2 x 2 x 2 mm3, matrix size = 224 x 224 x 132. 

Preprocessing 
T1-weighted images were pre-processed using FreeSurfer. Some of the processing 
steps include: 1) motion correction and averaging, 2) registration to the Talairach 
coordinates, 3) intensity normalization, 4) skull stripping using a hybrid 
watershed/surface deformation algorithm to remove brain tissue from non-brain 
tissue such as skull, eyeballs and skin, 5) automatic volume labelling to assign each 
voxel to one of 57 regions of interest, 6) intensity normalization using just the brain 
volume as the input, 7) white matter segmentation to separate white matter from 
anything else, 8) fill and cut subcortical mass to fill in any holes, remove any islands 
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and brain stem and separate hemispheres, 9) surface between grey and white matter, 
and the pial surface are generated and refined. 
 
DTI data were pre-processed using a Tract-Based Automatic Analysis (TBAA). First, 
diffusion tensor imaging (DTI) data were registered to create a single study specific 
template (SST). This SST tackles the bias from group differences. Then, the SST was 
registered to the NTU-DSI-122 template, which gathers a total of 76 fiber tracts. After 
that, sampling coordinates were transformed by reversing the process, from the NTU-
DSI-122 template to each individual DTI dataset. Finally, the generalized FA (GFA), a 
measure of the microstructural differences of the 76 fiber tracts, is sampled according 
to the transformed coordinates in native space. 

Feature extraction 
As a result of the pre-processing step, 52 subcortical measures and 68 cortical 
parcellations (34 per hemisphere) were extracted (Table S2). For each of the 
subcortical segmentations, volume in mm3 were calculated. In addition, eight statistic 
measures were calculated for each of the cortical parcellations, including: 1) total 
surface area (mm2), 2) total gray matter volume (mm3), 3) average cortical thickness 
(mm), 4) standard deviation of cortical thickness (mm), 5) integrated rectified mean 
curvature (mm-1), 6) integrated rectified gaussian curvature (mm-2), 7) folding index 
(unitless) and 8) intrinsic curvature index (unitless). An overall of 596 structural 
features (52 subcortical and 544 cortical) were calculated. 
 
Each of 76 fiber tracts or diffusion tensors extracted in the pre-processing step can 
be described by 3 eigenvalues, expressing magnitude, degree and orientation of 
diffusion anisotropy. For each diffusion tensor, 4 parameters were calculated based 
on the eigenvalues: fractional anisotropy, mean diffusivity, longitudinal diffusivity 
and radial diffusivity. As a result of the 4 aforementioned measures for each of the 76 
diffusion tensors (Table S3), 304 diffusion features were gathered. 

Feature selection 
As the dimensionality of the data grows, data analysis and prediction algorithms 
become increasingly complex or even incorrect (12). The final aim of feature selection 
is to select the best subset of features in a certain prediction problem, reducing 
dimensionality, improving the learning performance and decreasing the 
computational cost. A genetic algorithm (GA)(13) was employed to identify a subset 
of features able to distinguish between improvers and non-improvers of fatigue. GAs 
are inspired by Charles Darwin's theory of natural evolution, where the fittest 
individuals from a population survive, having more chances to reproduce and then, 
transmit their genetic material to their offspring. This process is repeated until 
reaching a generation with the fittest individuals. 
 
This process can be extrapolated to a feature selection problem. Here, an individual 
of the population represents a possible solution to the prediction problem (optimal 
subset of features). Each individual is characterized by a set of genes (features). Genes 
are gathered in a string known as chromosome (possible solution). A GA conceives 
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new generations of the population, where individuals offer a better solution to the 
problem each time. The algorithm performs the following steps (Figure 1, B):  

(1) Initial population. The process starts selecting a set of chromosomes that 
defines the initial population. A population size of 10 times the number of 
dimensions was stablished(14). 

(2) Fitness function. This function is defined to evaluate the probability of the 
individual to be chosen for reproduction. Fitter chromosomes will have a 
higher fitness value. A Least Squared Linear Discriminant (LSLD) was 
employed in this work. Then, in each iteration, the GA selects the feature 
combination which minimizes the mean squared error of the LSLD over the 
training data. 

(3) Selection operator. During the selection step, m individuals (parents) are 
chosen for reproduction based on their fitness scores. There are several 
selection methods (15). Here, a ranking-based approach is employed, where 
chromosomes are arranged according to their fitness values. A subset of 10% 
of the population is selected.  

(4) Crossover operator. The aim is to transfer the genetic material from 
generation to generation (16). The new offspring inherits genes from both 
“parents”. A random crossover approach is the selected method in this work 
(17).  

(5) Mutation operator. This operator allows a wide search space by changing 
randomly a certain number of bits. In this work, 1% of the genes were 
randomly mutated. 

(6) Termination criterion: The whole process is repeated until a certain 
termination criterion is reached. Here, the process terminates after 100 
generations, where the optimal combination of features is returned. 

Classification 
Classification was performed using three different classifiers to distinguish between 
improvers and non-improvers of fatigue: a least square linear discriminant (LSLD), a 
soft-margin SVM and a Gaussian SVM. 
 
Least Square Linear Discriminant 
The aim of a Linear Discriminant Analysis (LDA) is to combine L features of a dataset 
of N instances, to distinguish effectively between C classes. The decision function can 
be expressed as follows: 

𝑦 =  ∑ 𝑤𝑛𝑥𝑛 + 𝑏

𝐿

𝑛=1

 

Where x is the input vector, b is a bias term and w is a feature weight vector, which 
represents the contribution of each feature to the prediction. The Least Squares 
Linear Discriminant (LSLD) is optimized by minimizing the mean square error (18). 
 
Support Vector Machines 
A support vector machine (SVM) classifier seeks to find a hyperplane with the 
maximum distance between the closest points to the hyperplane itself (19). Then, this 
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hyperplane is just defined by the training instances, which fall just in the frontier of 
the margin, known as support vectors. Originally, SVM was a linear algorithm, but 
modifications to deal with non-linearly separable classes have been introduced. 
These modifications are the ones employed in this work and include the soft-margin 
formulation, which allows certain errors; and the Radial Basis Function (RBF) kernel, 
which builds nonlinear classifiers(20).  

Model performance 
Each model was validated following a 5-fold cross-validation (CV) strategy given the 
size of the dataset. In the case of the SVM classifiers, a nested-CV was implemented 
consisting of a 5-fold inner CV to select the optimal parameters of the SVM. This inner 
loop follows a grid search for the regularization constant C ranging from 2-4 to 24 both 
for soft-margin and RBF SVMs and a gamma γ ranging from 2-4 to 24 for the RBF SVM. 
Once the optimal SVM model is selected during the inner CV, the outer CV is used to 
evaluate the classification performance. This nested CV offers an unbiased 
assessment of the model and prevents overestimation. Figure 1 illustrates the 
followed procedure. Furthermore, this whole procedure was repeated 100 times, to 
avoid bias and increase robustness. 
 
For each model, we report the following measures of predictive performance: 
balanced accuracy (referred as accuracy (Acc) for the remainder of this work), 
sensitivity (Sens), specificity (Spec), positive (PPV) and negative predictive value 
(NPV), mean receiver operating characteristic (ROC) curves with 95% confidence 
intervals (CI) and area under the curve (AUC). 
 
An important parameter of the GA is the length of each chromosome, that is, the 
length of the desired feature set. This parameter was set to 8 features. In practice, the 
selection of this parameter ought to be identified during the training step to avoid 
overfitting. Nonetheless, this step increases significantly the computational time of 
our proposed method. Regarding this computational time, a large initial population 
size to avoid premature convergence was prioritized, since it provides a better chance 
of significantly improving the feature selection process(21) and a high number of 
generations. Even so, the performance of our framework (Figure 1) for different 
combinations of this parameter was additionally explored to evaluate most selected 
features. 
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Figure 1. (A) Nested CV procedure for model development and evaluation. The outer 
loop consists of a 5-fold CV, used to evaluate the final model on the held out test set. 
This CV procedure is repeated 100 times. (B) The feature selection step consists of a 
genetic algorithm to select the optimal features in the classification problem. (C) The 
inner loop, consists of a 5-fold CV, employed to tune the parameters of the SVM. 

Results 

Classification performance 
Fifty four fatigued RA patients attended both visits. According to the fatigue scores at 
the second visit, 22 patients improved their fatigue levels and 32 remained with the 
same fatigue levels. Three different classifiers (LSLD, linear SVM and RBF SVM) were 
applied to each modality (sMRI, DTI and clinical) in order to distinguish between 
fatigue improvers and non-improvers. Figure 2, A) shows the ROC curves and 
corresponding AUC values for each classifier and modality during the CV step. All 
three classifiers performed similarly (< 3% difference), yet LSLD reached the highest 
accuracy in all cases. Classification performance using the sMRI features resulted in 
an accuracy of 64.3%, with 67.3% sensitivity and 61.2% specificity. DTI features 
reached 59.1% accuracy with 60% sensitivity and 58.3% specificity. The set of clinical 
features achieved 46.8% accuracy, 41.9% sensitivity and 51.8% specificity. Table S4 
provides detailed information of the classification performance for each algorithm 
and modality. 

Predictive features 
The most selected features during the CV procedure across 100 iterations and thus, 
those features with the greatest predictive power between improvers and non-
improvers of fatigue were extracted for each modality. Figure 2 displays these 
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features, along with the percentage of selection during the CV and trend according to 
a 2 sample t-test analysis. 
 
Structural MRI 
Three features stood up for the 100 iterations of the CV process (Figure 2, sMRI, B-C), 
including the mean curvature of the left superior temporal sulcus (selected 83.4% of 
the times), the surface area of the right frontal pole (59.6%) and the surface area of 
the left banks of superior temporal sulcus (46%). 
 
Diffusion Tensor Imaging 
Two DTI features were consistently selected during the CV process (Figure 2, DTI, B-
C). These are the fractional anisotropy of the left arcuate fasciculus (selected 78% of 
the times) and the radial diffusivity of the corpus callosum of the dorsal lateral 
prefrontal cortex (45%). Associated ROIs for each WM tract bundle according to the 
list of 76 WM tracts defined by Chen and colleagues(22) are listed in Table S3. 
 
Clinical 
Although no clinical feature clearly stood up in the CV process (Figure 2, Clinical, B), 
gender (76.8%), Chalder Fatigue Scale (73.6%) and daily pain (66.6%) measured 
during the first visit were the most selected ones. 
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Figure 2. A) ROC curves and AUC values for three classifiers for 100 iterations of the 
CV procedure. B) Number of times each feature is selected during the feature 
selection for 100 iterations of the 5-fold CV procedure. C) Group: type of measure. 
Rate: frequency of repetition. Trend: +/- according to if the feature is 
increased/decreased in non-improvers compared to improvers of fatigue. Fa: 
fractional anisotropy. Rd: radial diffusivity. CFS: Chalder Fatigue Scale. 
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Varying the length of the “chromosome” 
Figure 3, A) shows the classification accuracy at 95% CI during CV for three classifiers 
for each modality (sMRI, DTI and clinical) with the length of the chromosome during 
the feature selection step ranging from 1 to 20 features. Further measures of 
predictive performance and results for subgroups of features are summarized in 
supplementary material. 
 
Best performance for sMRI was achieved using 10 features as length of chromosome 
(Acc: 67.9%; Sens: 73.4%; Spec: 62.4%). The performance of the model decreased 
with chromosome lengths smaller than 8 features. Best performance for DTI modality 
was reached using 3 features (Acc: 63.8%; Sens: 66.5%; Spec: 61.1%). Highest 
accuracies for DTI were achieved with small chromosome lengths, ranging between 
3 and 8 features. For clinical features, highest accuracy was reached using one feature 
(Acc: 47.9%; 47.4%; 48.3%). All results were in the chance level. LSLD was the 
classifier performing best for all modalities. 
 
Number of times that each feature is selected during the 100 iterations of the 5-fold 
CV for each value of chromosome length was extracted (Figure 3, B). For the case of 
sMRI, the mean curvature of the left superior temporal sulcus was exceedingly the 
most selected in all cases, followed by the surface are of the right frontal pole and the 
surface area of the left banks of the superior temporal sulcus. For the DTI, the left 
arcuate fasciculus was clearly the most selected feature for all cases of chromosome 
length, followed by the corpus callosum of the dorsolateral prefrontal cortex (DLPFC) 
and the left frontal-striatum of the DLPFC. In the case of clinical features, the disease 
duration, visual analog scale and depression score as measured by the Hospital 
Anxiety and Depression Scale (HADS) were the most selected, although all features 
were selected at least once in different iterations. 
 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.15.21265049doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.15.21265049
http://creativecommons.org/licenses/by-nd/4.0/


 
Figure 3. A) Accuracy with 95% CI for each classifier for different chromosome length 
(no. of features). B) Number of times (0-500) that a feature is selected during the 100 
iterations of the 5-fold CV for different chromosome lengths for the LSLD (best 
performing classifier). For summarizing purposes, the ten most selected features for 
each modality are displayed. CC: corpus callosum. DLPFC: dorsolateral prefrontal 
cortex. HADS: Hospital Anxiety and Depression Scale. Lh: left hemisphere. Rh: right 
hemisphere. 

Discussion 
The discovery of objective biomarkers of fatigue is critical to successful development 
of therapies. To date, current measures of fatigue are based on questionnaires which 
are after all, subjective measures. In addition, a prediction model of fatigue may 
support stratification of patients, saving time and frustration to both the clinician and 
patients, as being cost-effective for health services by a priori selecting therapeutic 
strategies which might be preferentially responsive for individual patients. Our 
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results show the superiority of MR metrics in the prediction of fatigue changes, 
compared with commonly used clinical measures. This is the first study employing 
neuroimaging to predict fatigue outcome in rheumatoid arthritis subjects. In addition, 
it is the largest neuroimaging database in RA to date. 
 
A machine learning approach was employed to predict improvement in fatigue in 
patients with RA and to identify those brain features with most discriminative power. 
Clinical, structural and diffusion brain features from MRI at baseline and 6 months 
apart, from 54 RA patients were assessed. Features based on ROI were used to reduce 
dimensionality and facilitate clinical interpretation. A classification procedure was 
performed to distinguish between improvers and non-improvers at baseline. 

Prediction of fatigue changes 
All three classifiers performed very similarly in the discrimination of improvers and 
non-improvers of fatigue (<3% of difference), with LSLD performing best in all cases. 
Best prediction accuracy (64.3%) was reached using sMRI features, with 67.3% 
sensitivity and 61.2% specificity. Since sensitivity is greater than specificity, sMRI 
features seem to work better when predicting improvers than non-improvers of 
fatigue. With regard to DTI features, a modest accuracy of 59.1% was achieved, with 
60% sensitivity and 58.3% specificity. Performance accuracy for the clinical set was 
in the chance level (46.8%), with 49.1% sensitivity and 51.8% specificity. Therefore, 
clinical features are not useful in this predictive problem, independently of the 
selection frequency during the feature selection step. Given that the clinician relies 
just on clinical data when prescribing a treatment for fatigue, and clinical data showed 
no predictive power, these results indicate a future asset in terms of therapeutic 
decision making support.  
 
Whereas a chromosome length of 8 features was set during the feature selection step 
using the genetic algorithm, we also evaluated how variation of this parameter can 
modify the classification performance. For the sMRI set, accuracy increased from 
64.3% to 67.9% when choosing 10 features. In the case of DTI features, accuracy 
raised from 59.1% to 63.8% when using 3 features instead of 8 features. Performance 
for the clinical set were all in the chance level.  

Identification of brain regions related to fatigue changes 
Structural MRI 
The following regions were highlighted in the discrimination between improvers and 
non-improvers of fatigue: curvature of the left superior temporal sulcus, the surface 
area of the right frontal pole and the surface area of the left bank superior temporal 
sulcus. It is worth noting that the frequency of these features was exceedingly high 
compared with the rest of the features. This may point out to a high relation between 
these brain regions and the fatigue pathology. 
 
There is little work related to the investigation of the brain contributions to fatigue in 
RA patients using MRI. However, brain regions have been found to be related to 
fatigue in other chronic inflammatory diseases. Fatigue reduction was found to be 
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correlated with cortical thinning of the superior temporal polysensory area in 
ankylosing spondylitis(23). In Chronic Fatigue Syndrome (CFS), a disorder which 
causes prominent fatigue, fatigue was significantly related with brain activity and 
superior temporal cortices (24). The frontal lobe has been associated with 
performance on a wide variety of tasks including multi-tasking and prospective 
memory. The only fatigue related RA study to date found greater levels of functional 
connectivity between the medial prefrontal gyri and Dorsal Attention Network (DAN) 
in those patients with higher levels of fatigue (25). Frontal lobe has also been 
reported in many studies of fatigue in other chronic diseases. Studies in Chronic 
Fatigue Syndrome reported correlations of fatigue with medial prefrontal regions 
(26), dorsolateral prefrontal and dorsomedial prefrontal cortex (26,27), lateral 
prefrontal cortex (27), right prefrontal cortex (28), right inferior frontal cortex(24) 
and superior frontal gyrus (29). Several studies in Multiple Sclerosis (MS) have linked 
fatigue with abnormalities in the frontal pole. Fatigued MS patients showed a 
significant atrophy of superior frontal gyrus compared with non-fatigued MS patients 
(31). Fatigue-related behavioural abnormalities in MS has also been associated with 
increased activation in frontal areas including superior, medial, middle and inferior 
regions (31). Furthermore, cognitive fatigue was related to right frontal lobe lesions 
in traumatic brain injury (33). The high number of reports related to this region 
suggests a strong link of the frontal lobe with cognitive fatigue in chronic 
inflammatory diseases. 
 
Diffusion Tensor Imaging 
Brain regions of greater structural integrity, as measured by increased FA, were 
identified within the fatigue improver group, concretely the left arcuate fasciculus. 
Reduced RD was found in corpus callosum of DLPFC within the non-improvers group. 
 
Although few studies have employed DTI to study cognitive fatigue, there is still some 
evidence supporting our findings. Arcuate fasciculus has not been directly reported 
as related with fatigue in other studies. Nevertheless, it has been associated with 
symptoms which might have relation with fatigue, such as disease severity in CFS (34) 
or depression in MS (35). Dorsolateral prefrontal cortex (DLPFC) is related to 
executive functions such as working memory, cognitive flexibility, planning and 
reasoning. Decreased diffusivity in the DLPFC was found in traumatic brain injury 
(TBI) patients, another disease characterized by fatigue (36). Primary fatigued MS 
subjects showed regional atrophy in the DLPFC in an MRI study (37). 

Limitations and further research 
Our predictive model has proven to identify fatigue changes and revealed those 
features consistently selected across different values of chromosome length. 
However, a limitation of our work is that we predefined this parameter. In future 
work, we will learn to identify the best value for the chromosome length as part of the 
training step. This is particularly important since as demonstrated, the classification 
performance vary according to the chromosome length. 
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An inherent limitation of this work lies in using the Chalder Fatigue Scale (CFS) to 
stratify subjects into improvers and non-improvers of fatigue, which is a self-rated 
score questionnaire. This tool gathers both physical and mental scores. Nonetheless, 
it may give a general overview rather than capturing the severity of fatigue in depth. 
Additionally, since CFS is a self-assessment questionnaire, the final fatigue score may 
be biased for the subjective individual perception of fatigue. Still, CFS has been the 
chosen tool in this work as it has been widely applied and validated in the current 
literature. 
 
Whereas all patients were taking usual care (no interventions for fatigue), medication 
was different between them. Nonetheless, none of the patients were taking 
antidepressants, which are known to induce neurological changes. However, a slight 
variability might be included due to different types of medication. Other limitation is 
that although patients were stratified between improvers and non-improvers of 
fatigue, changes of fatigue were different between subjects. Whereas those patients 
reporting better scores in the CFS during the second visit were classified as fatigue 
improvers, some patients reported slight changes compared to others with greater 
changes. A regression strategy instead of a classification approach might provide 
greater clinically relevant information about the progression of each patient. 
 
Given the complexity of collecting and scanning patients, imaging datasets are 
generally quite small. Several tens of scans cost thousands of pounds and require 
months to collect. Still, this is the biggest neuroimaging database of RA patients to 
date. 
 
Our model of fatigue would strongly benefit from replication prior to use in different 
fatigue interventions. For example, it has been demonstrated that some patients 
experience a substantial improvement of fatigue following anti-TNF treatment(4). 
Other non-pharmacological fatigue interventions include Cognitive Behavioural 
Therapy (CBT) and physical exercise (38). This could be an approach to test our 
model or even to improve it.  
 
During a fatigue intervention, greater changes of fatigue can be expected with the 
time, as opposed to the modest spontaneously fatigue changes of the current 
database. Since the methods followed in this work can be extended to other dataset, 
the resulting model after a fatigue intervention would be expected to be more robust 
and reliable. 
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