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Abstract 25 

Genome-wide association studies (GWAS) have identified thousands of genetic variants linked 26 

to the risk of human disease. However, GWAS have thus far remained largely underpowered 27 

to identify associations in the rare and low frequency allelic spectrum and have lacked the 28 

resolution to trace causal mechanisms to underlying genes. Here, we combined whole exome 29 

sequencing in 392,814 UK Biobank participants with imputed genotypes from 260,405 30 

FinnGen participants (653,219 total individuals) to conduct association meta-analyses for 744 31 

disease endpoints across the protein-coding allelic frequency spectrum, bridging the gap 32 

between common and rare variant studies. We identified 975 associations, with more than one-33 

third of our findings not reported previously. We demonstrate population-level relevance for 34 

mutations previously ascribed to causing single-gene disorders, map GWAS associations to 35 

likely causal genes, explain disease mechanisms, and systematically relate disease associations 36 

to levels of 117 biomarkers and clinical-stage drug targets. Combining sequencing and 37 

genotyping in two population biobanks allowed us to benefit from increased power to detect 38 

and explain disease associations, validate findings through replication and propose medical 39 

actionability for rare genetic variants. Our study provides a compendium of protein-coding 40 

variant associations for future insights into disease biology and drug discovery. 41 

  42 
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Introduction 43 

Inherited protein-coding and non-coding DNA variations play a role in the risk, onset, and 44 

progression of human disease. Traditionally, geneticists have dichotomized diseases as either 45 

caused by coding mutations in single genes that tend to be rare, highly penetrant, and often 46 

compromise survival and reproduction (often termed “Mendelian” diseases), or alternatively 47 

as common diseases that show a complex pattern of inheritance influenced by the joint 48 

contributions of hundreds of low-impact, typically non-coding genetic variants (often termed 49 

“complex” diseases). For both rare and common conditions, large human cohorts 50 

systematically characterized for a respective trait of interest have enabled the identification of 51 

thousands of disease-relevant variants through either sequencing-based approaches or genome-52 

wide association studies (GWAS). Nevertheless, the exact causal alleles and mechanisms that 53 

underlie associations of genetic variants to disease have thus far remained largely elusive1. 54 

 55 

In recent years, population biobanks have been added to the toolkit for disease gene discovery. 56 

Biobanks provide the opportunity to simultaneously investigate multiple traits and diseases at 57 

once and uncover relationships between previously unconnected phenotypes. For instance, the 58 

UK Biobank (UKB) is a resource that captures detailed phenotype information matched to 59 

genetic data for over 500,000 individuals and, since its inception, has facilitated biomedical 60 

discoveries at an unprecedented scale2. We and others have recently reported on the ongoing 61 

efforts to sequence the exomes of all UKB participants and link genetic findings to a broad 62 

range of phenotypes3-5. We also established FinnGen (FG), an academic-industry collaboration 63 

to identify genotype-phenotype correlations in the Finnish founder population with the aim to 64 

better understand how the genome affects health (https://www.finngen.fi). Finland is a well-65 

established genetic isolate and a unique gene pool distinguishes Finns from other Europeans6. 66 

The distinct Finnish haplotype structure is characterized by large blocks of co-inherited DNA 67 
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in linkage disequilibrium and an enrichment for alleles that are rare in other populations, but 68 

can still be confidently imputed from genotyping data even in the rare and ultra-rare allele 69 

frequency spectrum7-9. Through combining imputed genotypes with detailed phenotypes 70 

ascertained through national registries, FG holds the promise to provide particular insights into 71 

the yet little examined allele frequency spectrum between 0.1 and 2% where both sequencing 72 

studies and GWAS have thus far remained largely underpowered to identify associations to 73 

disease. This spectrum includes many coding variants with moderate to large effect sizes that 74 

can help identify causal genes in GWAS loci, provide mechanistic insights into disease 75 

pathologies, and potentially bridge rare and common diseases. 76 

 77 

Here, we have leveraged the combined power of UKB and FG to investigate how rare and low-78 

frequency variants in protein-coding regions of the genome contribute to the risk for human 79 

traits and diseases. Using data from a total of 653,219 individuals, we tested how ~48,000 80 

coding variants identified in both biobanks through either whole-exome sequencing (WES) or 81 

genotype imputation associate with 744 distinct disease endpoints. Disease associations were 82 

compared against information from rare disease, biomarker and drug target resources and 83 

complemented by deep dives into distinct disease mechanisms of individual genes and coding 84 

variants. Our results showcase the benefits of combining large population cohorts to discover 85 

and replicate novel associations, explain disease mechanisms across a range of common and 86 

rare diseases, and shed light on a substantial gap in the allelic spectrum that neither genotyping 87 

nor sequencing studies have previously been able to address. 88 

 89 

Results 90 

An overview of the study design and basic demographics are provided in Extended Data 91 

Figure 1 and Supplementary Table 1. In brief, we systematically harmonised disease 92 
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phenotypes across UKB and FG using Phecode and ICD10 mappings and retained 744 specific 93 

disease endpoints grouped into 580 disease clusters that span a broad range of diseases 94 

(Methods, Supplementary Table 2). Disease case counts relative to cohort size showed good 95 

correlations both, overall between UKB and FG (Spearman’s r=0.65, p<5.3x10-90) and across 96 

distinct disease groups (Extended Data Figure 2). 97 

 98 

Coding-wide association analyses in 653,219 individuals across 744 disease 99 

endpoints identify 975 genetic signals 100 

We performed coding-wide association studies (CWAS) across 744 disease endpoints over a 101 

mean of 48,189 (range: 25,309-89,993, Methods, Supplementary Table 2) post-QC coding 102 

variants across the allele frequency spectrum derived from whole-exome sequencing (WES) of 103 

392,814 European ancestry individuals in UKB and meta-analysed these data with summary 104 

results from up to 260,405 individuals in FG (Methods, Supplementary Table 2).  105 

 106 

We identified 975 associations (534 variants in 301 distinct regions across 148 disease clusters; 107 

620 distinct region-disease cluster associations) meeting genome-wide significance (p<5x10-108 

8), and 717 associations (378 variants in 231 distinct regions across 121 disease clusters; 445 109 

distinct region-disease cluster associations) at a conservative (Bonferroni) multiple testing 110 

threshold of p<2x10-9 (correcting for the number of approximate independent tests) (Methods, 111 

Figure 1a, Supplementary Figure 1 (interactive), Supplementary Table 3). The 112 

distributions of coding variant annotation categories were largely similar for variants with at 113 

least one significant association (p<5x10-8) relative to all variants tested, with missense variants 114 

showing a higher fraction of significant variants than in-frame indel or predicted loss-of-115 

function (pLoF) variants (Extended Data Figure 3). Inflation was well controlled with a mean 116 
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genomic inflation factor of 1.04 (5-95 percentiles: 1.00-1.09, Extended Data Figure 4a). 117 

Effect sizes were generally well aligned between UKB and FG (Spearman’s r=0.90, p<10-300, 118 

Extended Data Figure 4b). MAFs of lead variants correlated well overall between UKB and 119 

FG (Spearman’s r=0.97, p<10-300, Figure 1b), especially for variants with MAF>1%, yet as 120 

expected8 from genetic differences between Finns and non-Finnish Europeans (NFEs) was 121 

reduced for variants with MAF<1% (Spearman’s r=0.32, p=0.023). 122 

 123 

Across all diseases, we found generally larger effect sizes for low frequency and rare variants 124 

(Figure 1c). 387 of the 975 (39.7% at p<5x10-8; 270/717 (37.7%) at p<2x10-9) associations 125 

would not have been detected if analysed in UKB (61.5% at p>5x10-8; 60.1% at p>2x10-9) or 126 

FG (59.6% at p>5x10-8; 58.6% at p>2x10-9) alone. Association testing within UKB and FG 127 

individually would have yielded 318 and 479 associations respectively at p<5x10-8 128 

(Supplementary Tables 4 and 5). Thus our combined approach utilizing both biobanks 129 

increased the number of significant findings by approximately 3- and 2-fold, respectively. Of 130 

the 318 and 479 significant sentinel variants in UKB and FG, 252 (72.6%) and 258 (53.9%) 131 

replicated at p<0.05 in FG and UKB respectively (Supplementary Tables 4 and 5), 132 

highlighting further the strength of our approach to yield results that are more robust through 133 

replication than would be findings derived from just a single biobank. 134 

 135 

Our study benefits from population enrichment of rare alleles in Finns versus NFEs (and vice 136 

versa) that increases the power for association discovery. Using a combination of theoretical 137 

analyses and empirical simulations, we show that by leveraging population-enriched variants 138 

we could increase inverse-variance weighted meta-analysis Z-scores and hence our ability to 139 

detect underlying associations. The gain in power from enriched alleles was present across a 140 

range of rare MAFs (0.01-1%), with the strongest power gain in the rare and ultra-rare minor 141 
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allele frequency (MAF) range of 0.01% to 0.25% (Figure 1d, Supplementary Information, 142 

Extended Data Figure 5, Supplementary Figure 2 (interactive)). Of the sentinel variants, 143 

we found 73 (33 in UKB, 40 in FG) to be enriched by >2-fold and 23 (8 in UKB, 15 in FG) 144 

by >4-fold relative to the respective other biobank (Figure 1b, Supplementary Table 6). The 145 

majority of highly population enriched variants are rare (MAF<1%) or low frequency (MAF 146 

1-5%), whereby 20 of 23 variants with >4-fold population enrichment (13 in FG and 7 in UKB) 147 

had MAF <1% (Table 1, Supplementary Table 6). 148 

 149 

We systematically cross-referenced our results with previously described GWAS associations 150 

(via GWAS Catalog10 and PhenoScanner11) and disease relevance as reported in ClinVar12 151 

(Methods). In total, we found that 216 of 620 (34.8%) distinct region-disease cluster 152 

associations had not previously been reported at p<5x10-8 (130/445 [29.2%] at p<2x10-9). Of 153 

the 216 distinct loci, 177 (104/130 at p<2x10-9) were in genes not previously mapped to the 154 

respective diseases (Supplementary Table 3, Figure 1a, Supplementary Figure 1 155 

(interactive)). Of the novel associations at GWAS significance (p<5x10-8), roughly one third 156 

had MAF<5% in either UKB or FG and 15% had MAF<1% (Supplementary Table 3). 157 

Importantly, 17% of known (UKB; 19% in FG), but 31% of novel (UKB; 28% in FG) 158 

associations had a MAF<5%. Correspondingly, 5% of known (UKB; 6% in FG) and 15% of 159 

novel (UKB; 10% in FG) associations had a MAF<1%, highlighting the power gained through 160 

our approach especially in the low and rare allele frequency spectrum (Figure 1e, 161 

Supplementary Table 3). 162 

 163 

Mapping associations to genes, we found the majority of gene loci (81.2% at p<5x10-8, MHC 164 

region counted as one locus) to be associated with a single disease cluster (Extended Data 165 

Figure 6a). Thirteen loci were associated with ³5 trait clusters (at p<5x10-8), including well 166 
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established pleiotropic regions such as the MHC, APOE, PTPN22, GCKR, SH2B3 and FUT2 167 

(Figure 1a). For instance, in addition to a known association with breast cancer, we found 168 

variants in CHEK2 as associated with the risk of colorectal and thyroid cancers, uterine 169 

leiomyoma, benign meningeal tumours and ovarian cysts. Also, in addition to a known 170 

association with prostate hyperplasia, we found an ODF3 missense variant (rs72878024) to be 171 

associated with risk of uterine leiomyoma, benign meningeal tumour, lipoma and polyps in the 172 

female genital tract (Supplementary Table 3). 173 

 174 

Harnessing the added power of UKB and FG, we were able to detect GWAS associations for 175 

rare variants previously only annotated as causal for single-gene diseases, establishing a 176 

disease relevance for these variants at the population level. Of the 534 distinct variants with 177 

significant disease associations in our study (p<5x10-8), 152 had previously been linked to 178 

diseases in ClinVar. For 45 of these variants, the associated disease cluster matched with a 179 

previously reported phenotype in ClinVar. Notably, only six of these 45 variants (in GJB2, 180 

ABCC6, BRCA1, SERPINA1, FLG, and MYOC) had a previous annotation as either pathogenic 181 

or likely pathogenic (Supplementary Table 7), with 15 others annotated as benign. Of the 182 

novel trait cluster associations, 17 had been reported in ClinVar for the same/similar diseases, 183 

with 4 being classified as pathogenic/likely pathogenic and 13 classified either as benign or 184 

having “conflicting interpretation of pathogenicity” for the associated trait (Supplementary 185 

Table 3, Supplementary Table 7). For instance, we found a rare missense variant annotated 186 

as showing conflicting pathogenicity in ClinVar in VWF (rs1800386:C; Tyr1584Cys; 187 

MAF=0.44% [UKB], 0.47% [FG]) to be associated with the risk of von Willebrand disease12 188 

(log[OR]=2.09, p=8.7x10-9); or a missense variant in SPINK1 (rs17107315:C; Asn34Ser; 189 

MAF=1.3% [UKB], 1.6% [FG]) annotated as showing conflicting pathogenicity in ClinVar for 190 

chronic pancreatitis to be associated with chronic pancreatitis risk12 (log[OR]=1.16, p=6.9x10-191 
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25) and acute pancreatitis risk (log[OR]=0.69, p=2.3x10-18). These examples highlight that 192 

population-scale analyses like ours can help refine pathogenicity assignments through 193 

contributing quantitative information on relative disease risks for variant carriers. Likewise, 17 194 

of the 23 genes with highly population-enriched sentinel variants (Table 1) were OMIM listed 195 

disease genes. Of these, 10 (CHEK2, DBH, SCL24A5, CFI, FLG, XPA, F10, BRCA1, SCN5A, 196 

CACNA1D) showed associations with conditions identical or related to the respective 197 

Mendelian disease, unveiling a relevance of the associated variants on the population level. For 198 

instance, we found the missense variant rs77273740 in DBH (enriched by >50x in FG), a gene 199 

associated with orthostatic hypotension, to be associated with reduced risk of hypertension 200 

(log[OR]=-0.19, p=1.3x10-23), whilst an in-frame deletion (rs1250342280) in CACNA1D 201 

(enriched by 4.3x in UKB), a gene associated with primary aldosteronism, was associated with 202 

increased risk of hypertension (log[OR]= 0.19, p=2.0x10-8) (Table 1). 203 

 204 

Biomedical insights from coding variant associations 205 

We leveraged the coding variant associations identified in our study to generate biological 206 

insights for a range of distinct genes, pathways and diseases and in the following exemplify 207 

the broad utility of our resource through a set of selected use cases. 208 

 209 

New roles of coagulation pathway proteins in conferring pulmonary embolism risk 210 

We found known and novel associations with pulmonary embolism (PE) risk, including two 211 

rare variant associations (average MAF<1%) in genes encoding components of the coagulation 212 

cascade at the convergent common pathway (Figure 2a). For instance, we discovered a rare 213 

missense mutation in F10, enriched by ~5-fold in FG (rs61753266:A; Glu142Lys; MAF=0.33% 214 

[UKB], 1.85% [FG]), to be protective against PE (log[OR]=-0.44, p=2.9x10-9). This variant 215 

has been associated with reduced plasma coagulation factor X (beta=-1.12, p=2.0x10-8) and 216 
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factor Xa (beta=-1.54, p=7.9x10-15) levels previously13, as well as clinical factor X deficiency14. 217 

Deficiencies in coagulation factors, including factor X, are associated with increased bleeding 218 

liability and reduced thrombotic risk. In a similar fashion, we found a previously reported 219 

venous thromboembolism risk-reducing variant (rs4525:C; His865Arg; MAF=27.2% [UKB], 220 

22.3% [FG]) in F5 that is also protective for PE (log[OR]=-0.14, p=1.2x10-15) and associated 221 

with reduced plasma F5 levels15 (beta=-0.25, p=6.0x10-7). This variant acts opposite to the 222 

well-established risk promoting F5 Leiden missense mutation, which leads to increased 223 

resistance to activated protein C cleavage16 and thromboembolism liability, thus unravelling 224 

that coding variants in F5 can have opposite effects on PE risk at the population level (Figure 225 

2b). We performed Mendelian randomisation (MR) using rs4525 and rs61753266 as 226 

instruments to estimate the relative reduction in PE risk due to reduced F5 (betaMR=0.57, 227 

p=1.0x10-15) and F10 levels (F10: betaMR=0.40, p=2.9x10-9; F10a: betaMR=0.28, p=2.9x10-9) 228 

respectively (Figure 2b). MR results support the expected clinical indication of factor X 229 

inhibitors in thromboembolic diseases and the hypothesis that developing drugs inhibiting 230 

factor V will also likely be beneficial for PE. We also found a rare variant in fibrinogen (FGB 231 

rs2227434:T; Pro100Ser; MAF=0.13% [UKB], 0.15% [FG], Figure 2a, Supplementary 232 

Table 3) that associated with increased PE risk at nominal GWAS significance (log[OR]=1.03, 233 

p=1.5x10-8). Missense mutations in FGB have previously been linked to both elevated and 234 

reduced fibrinogen levels through GWAS17,18, as well as congenital afibrinogenemia19. 235 

 236 

Rare variant biomarker associations yield insights into disease mechanisms 237 

We interrogated the sentinel variants identified in this study for associations with 117 238 

quantitative biomarkers spanning eight categories in UKB (Supplementary Table 8). At a 239 

multiple testing adjusted threshold of p<1x10-6, we found 108 of the biomarkers to be 240 

associated with at least one of 417 sentinel variants across 239 regions (Figure 3a, 241 
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Supplementary Table 9). 47 of the regions were associated with 5 or more biomarker 242 

categories (Extended Data Figure 6b, Supplementary Table 9), including pleiotropic 243 

disease loci such as MHC, APOE, GCKR, SH2B3, FUT2, MC1R, ABCG5.  244 

 245 

Many of the newly discovered associations with biomarkers are biologically plausible. For 246 

example, a low-frequency missense variant in ADH1B (rs1229984:T; Arg48His; MAF=2.2% 247 

[UKB], 0.5% [FG]) that is associated with increased enzymatic activity of alcohol 248 

dehydrogenase and reduced alcohol tolerance, is also associated with reduced risk of alcohol-249 

related disorders (alcoholic liver disease: log[OR]=-1.08, p=1.5x10-9; mental and behavioural 250 

disorders due to alcohol: log[OR]=-0.82, p=1.2x10-33) and increased risk of gout 251 

(log[OR]=0.39, p=3.3x10-10). Notably, the alcohol dependence disorder-promoting ADH1B 252 

allele (C) is also associated with reduced IGF-1 (beta=-0.11, p=1.5x10-51) and vitamin D levels 253 

(beta=-0.049, p=2.6x10-10), increased levels of liver enzymes (alkaline phosphatase: 254 

beta=0.087, p=3.1x10-37; gamma-glutamyl transferase: beta=0.041, p=1.62x10-9) and total 255 

bilirubin (beta=0.031, p=5.1x10-7), macrocytosis with increased mean corpuscular volume 256 

(beta=0.047, p=4.2x10-12) and mean corpuscular haemoglobin (beta=0.048, p=1.4x10-12), as 257 

well as reduced erythrocyte count (beta=-0.034, p=3.2x10-8). The gout risk reducing C allele 258 

is associated with reduced urate levels (beta=-0.061, p=1.4x10-21). 259 

 260 

A deletion in SLC34A1 is associated with multiple blood and urinary abnormalities 261 

Cross-referencing with biomarkers provided mechanistic insights into novel findings. For 262 

instance, we discovered a novel association between a low frequency in-frame deletion in 263 

SLC34A1 (rs1460573878, also known as rs876661296; MAF=2.6% [UKB], 2.7% [FG]; 264 

p.Val91_Ala97del) coding for the type II sodium phosphate cotransporter, NPT2a, which is 265 

expressed specifically in renal proximal tubular cells, to be associated with increased risk of 266 
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renal (log[OR]=0.24, p=4.0x10-9) and urinary tract stones (log[OR]=0.21, p=6.8x10-9). The 267 

deletion has previously been implicated in hypercalciuric renal stones20,21 and autosomal 268 

recessive idiopathic infantile hypercalcaemia22 in family studies. The variant is also associated 269 

with increased serum calcium (beta=0.047, p=5.4x10-11) and reduced phosphate (beta=-0.075, 270 

p=3.3x10-26), consistent with a disrupted function/cell surface expression of the transporter22 271 

(Figure 3b). We further find associations with increased levels of serum urate (beta=0.048, 272 

p=4.5x10-17), suggesting an increased risk also of uric acid stones. Additionally, we found 273 

associations with increased erythrocyte count (beta=0.035, p=4.7x10-10), haemoglobin 274 

concentration (beta=0.033, p=7.7x10-10) and haematocrit percentage (beta=0.036, p=9.9x10-11), 275 

suggesting increased renal-driven erythropoiesis (Figure 3b). Serum creatinine was not 276 

increased in carriers of the deletion (beta=-0.07, p=3.6x10-33), suggesting renal function is not 277 

adversely affected in deletion carriers. Amongst 11,114 renal/ureteric and 13,319 urinary tract 278 

stone cases, we identified 735 (renal/ureteric) and 863 (urinary tract) carriers of the deletion 279 

who may benefit from clinical interventions targeting NPT2a related pathways and monitoring 280 

for deranged biochemical and haematological biomarkers. 281 

 282 

A CHEK2 deletion is associated with blood cell counts and haematological malignancies 283 

A frameshift deletion in CHEK2 (rs555607708; MAF=0.64% [FG], 0.24% [UKB]) that 284 

increases breast cancer risk has been previously implicated also in myeloproliferative 285 

neoplasms through GWAS23 and lymphoid leukaemia in a candidate variant study24. 286 

Consistently, we found nominally significant associations with risks of both, myeloid 287 

(log[OR]=1.52, p=9.5x10-8) and lymphoid (log[OR]=1.38, p=3.1x10-7) leukaemia, but also 288 

multiple myeloma (log[OR]=1.07, p=5.1x10-5) and non-Hodgkin lymphoma (log[OR]=0.81, 289 

p=4.7x10-4). Association of rs555607708 with clinical haematology traits showed statistically 290 

significant associations with increased blood cell counts for both, myeloid (leukocytes, 291 
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neutrophils, platelets at p<1x10-6; monocyte and erythrocytes at p<1x10-3) and lymphoid 292 

(lymphocytes, p=5.7x10-17) lineages (Figure 3c). Furthermore, we found associations with 293 

increased mean platelet volume (MPV, p=1.3x10-16) and platelet distribution width (PDW, 294 

p=5.2x10-13), consistent with increased platelet activation and previous associations of MPV 295 

and PDW with chronic myeloid leukaemia25. We also found associations with decreased mean 296 

corpuscular haemoglobin (p=7.8x10-12) and mean corpuscular volume (p=5.3x10-10), 297 

suggesting predisposition to haematological cancers by loss-of CHEK2 function is 298 

accompanied by a microcytic red blood cell phenotype (Figure 3c). 299 

 300 

Coding variant associations inform drug discovery and development 301 

We cross-referenced genes with significant coding variant associations with drug targets using 302 

the therapeutic targets database26. We found 66 genes with trait cluster associations that are the 303 

targets of either approved drugs (26 genes) or drugs currently being tested in clinical trials (40 304 

genes), among these, 14 in phase 3 trials (Supplementary Table 10). We found a statistical 305 

enrichment for significant genes in our study to also be approved drug targets (26/482; 306 

compared with a background of 569 approved targets/19,955 genes, OR=1.9, p=0.0024), which 307 

is in line with previous estimates of a higher success rate for drug targets supported by 308 

genetics27,28. Sensitivity analyses using more stringent association p-value thresholds further 309 

increased these probability estimates (p=5x10-9 [OR 2.3, p=0.00070]; p=5x10-10 [OR 2.5, 310 

p=0.00037], supporting previous observations that the stronger the genetic association, the 311 

higher the likelihood of therapeutic success (Supplementary Table 11). In addition to 312 

providing further support for well-established drug target associations such as between PCSK9 313 

loss-of-function and hypercholesterolaemia, or F10 loss-of-function and venous 314 

thromboembolism, we also found an association between a common missense variant 315 

(rs231775:G) in CTLA4 with increased risk of thyrotoxicosis (log[OR]=0.12, p=8.5x10-13). 316 
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Since this variant is also a blood eQTL for decreased CTLA4 expression29 (Z-score=-6.91, 317 

p=5.0x10-12), the association between genetic CTLA4 reduction and thyroid dysfunction might 318 

contribute to the adverse event of hyperthyroidism in cancer patients treated with CTLA4 319 

inhibitors30.  320 

 321 

Genetics can inform drug discovery also on alternative indications for repurposing. For 322 

example, TYK2 inhibitors are being tested in clinical trials for various autoimmune and 323 

psoriatic diseases31. Consistent with previous GWAS10, we found a missense variant in TYK2 324 

(rs34536443:C) to be associated with reduced risk of rheumatoid arthritis and psoriatic diseases 325 

(Supplementary Table 3). Our analyses establish this variant to also be associated with 326 

sarcoidosis (log[OR]=-0.41, p=3.6x10-8), proposing sarcoidosis as a new indication for TYK2 327 

inhibitors. Similarly, while the pleiotropy of CHEK2 provides support for exploring CHEK2 328 

inhibitors against a broader spectrum of malignancies, our analyses also highlight a risk for 329 

potential haematological perturbations upon CHEK2 inhibitor treatment. 330 

  331 

Genetic insights into atrial fibrillation 332 

Atrial fibrillation (AF) GWAS have yielded a sizeable number of loci32,33. We chose AF to 333 

exemplify how results from our study can further elucidate the genetics and biological basis of 334 

one distinct human trait, with a particular emphasis on how our results might help to 335 

disambiguate AF loci to causal genes and explain the functional significance of coding variant 336 

associations. Indeed, we report several coding variant associations (Supplementary Table 3) 337 

where prior GWAS 32,33 had fallen short to resolve GWAS loci to coding genes and explain 338 

disease mechanisms. 339 

 340 
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A binding motif disrupting missense variant reveals a role for METTL11B methylase in AF 341 

The AF GWAS sentinel variant rs72700114 is an intergenic variant located between 342 

METTL11B and LINC0114232-34. Our study unveiled a low frequency missense variant in 343 

METTL11B (rs41272485:G; Ile127Met; MAF=3.9% [UKB], 3.8% [FG]) as associated with 344 

increased AF risk (log[OR]=0.14, p=4.0x10-11). METTL11B is a N-terminal monomethylase 345 

that methylates target proteins containing an N-terminal [Ala/Pro/Ser]-Pro-Lys motif35. The 346 

missense variant Ile127Met (SIFT=0, PolyPhen=1.0) falls within a conserved motif in the 347 

enzyme’s S-adenosylmethionine/S-adenosyl-l-homocysteine ligand binding site36. METTL11B 348 

expression is enriched in heart and skeletal muscles with highest expression in heart muscle, 349 

in particular cardiomyocytes37,38. We scanned protein sequences for a presence of the 350 

[Ala/Pro/Ser]-Pro-Lys motif and elevated expression in cardiomyocytes (Methods, 351 

Supplementary Table 12). We found statistically significant enrichment of genes encoding 352 

[Ala/Pro/Ser]-Pro-Lys motif containing proteins amongst genes with elevated expression in 353 

cardiomyocytes (OR=1.34, 95% CI=[1.16, 1.54], p=3.2x10-5), many of which show N-354 

terminal [Ala/Pro/Ser]-Pro-Lys motifs (OR=1.24, 95% CI=[1.06, 1.44], p=5.6x10-3). This 355 

group included several well-established AF genes39 such as potassium channels (KCNA5, 356 

KCNE4, KCNN3), sodium channels (SCN5A, SCN10A), NPPA, and TTN. Our data support 357 

METTL11B as the causal gene in this GWAS locus and a relevance for N-terminal 358 

[Ala/Pro/Ser]-Pro-Lys methylation in cardiomyocytes for AF. 359 

 360 

Rare variants unveil causal mechanisms in SCN5A-SCN10A and HCN4-REC114 AF loci 361 

Within the SCN5A-SCN10A locus, we replicated a common missense variant in SCN10A 362 

(rs6795970:A; Ala1073Val; MAF=40.0% [UKB], 44.6% [FG]) that was previously described 363 

to prolong cardiac conduction40. Additionally, we found associations with reduced AF risk 364 

(log[OR]=-0.06, p=2.1x10-12), reduced pulse rate (beta=-0.02, p=4.8x10-18), and a suggestive 365 
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signal for increased risk of atrioventricular block (log[OR]=0.10, p=1.9x10-7). On top of this, 366 

we discovered a rare, FG enriched missense variant (rs45620037:A; Thr220Ile; MAF=0.11% 367 

[UKB], 0.47% [FG]; SIFT=0.03, PolyPhen=0.96) in SCN5A, encoding the cardiac sodium 368 

channel NaV1.5, as associated with decreased risk of AF (log[OR]=-0.65, p=1.3x10-12). The 369 

variant lies in the S4 voltage sensing segment of the first transmembrane domain of SCN5A41 370 

and leads to a substitution of the polar Thr to a non-polar Ile residue, most probably causing 371 

loss of function and electrophysiological changes42,43. The Thr220Ile variant has been 372 

associated with dilated cardiomyopathy44 and conduction defects including sick sinus 373 

syndrome and atrial standstill45 in family studies with bradycardic changes. Consistently, we 374 

found a nominal association with reduced pulse rate (beta=-0.078, p=0.023), suggesting that 375 

protective effects of the variant will be most beneficial for the common tachycardic form of 376 

AF through reducing pulse rate. Notably, our results identify both, SCN5A and SCN10A as 377 

likely causal genes at this AF locus. 378 

 379 

Another AF GWAS locus is tagged by the common intergenic sentinel variant rs74022964 380 

between HCN4 and REC11432,33. We identified a rare, FG enriched variant in HCN4 381 

(rs151004999:T; Asp364Asn; MAF=0.045% [UKB], 0.17% [FG]; SIFT=0.05, PolyPhen=0.41) 382 

as associated with increased AF risk (log[OR]=0.72, p=2.8x10-8). HCN4 is a 383 

hyperpolarization-activated ion channel contributing to cardiac pacemaker (funny) currents (If). 384 

Mutations in HCN4 have been associated with familial bradycardia (also known as sick sinus 385 

syndrome 2) and Brugada syndrome 8 in family studies46. Consistently, in our study we also 386 

found an association with decreased heart rate (beta=-0.49, p=3.8x10-21).  387 

 388 
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Genetic variants underlying AF risk differentially modulate pulse rate 389 

To further evaluate the hypothesis that distinct genetic mechanisms underlying AF risk 390 

inversely modulate pulse rate, we applied clustered Mendelian randomization (MR-Clust)47 391 

with a slight modification to the mixture-model to better accommodate rare-variants. 392 

Specifically, we related expectation maximization clustering of AF associated variants with 393 

homogenous directional effects on pulse rate (Methods). Among the AF sentinel variants from 394 

our coding variant association analyses, we found the two above described clusters of variants 395 

in SCN10A (rs6795970) and HCN4 (rs151004999), suggestive of two genetic components of 396 

AF that can increase and decrease pulse rate, respectively (Figure 4a, left). Identifying 397 

components of AF with diverging directionality on pulse rate is not surprising given clinically 398 

AF can be driven by both tachycardia and bradycardia through distinct mechanisms48. As 399 

sensitivity analyses, we used sentinel variants from a recent AF GWAS32 where the candidate 400 

gene sets overlapped those in our study and found concordant patterns (Figure 4a, left-middle, 401 

Supplementary Table 13). We also included all sentinel variants in the AF GWAS loci32 and 402 

found additional clusters with differing impact on pulse rate (Figure 4a, right-middle). 403 

Conversely, as expected, permuting pulse rate led to no clustering and null associations 404 

between AF and pulse (Figure 4a, right). Expectedly, within the AF GWAS loci32 the two 405 

rare missense alleles in HCN4 (rs151004999:T, log[OR]=0.72) and SCN5A (rs45620037:A, 406 

log[OR]=-0.65) identified in our study had much larger effect sizes on AF risk than the 407 

respective non-coding sentinel GWAS variants (rs74022964:T [HCN4 locus], log[OR]=0.12; 408 

rs6790396:C [SCN5A, SCN10A locus], log[OR]=-0.058) (Figure 4a). 409 

 410 

PITX2c Pro41Ser increases AF risk through a gain-of-function mechanism  411 

Lastly, we found a rare missense variant in PITX2 as associated with increased risk of AF 412 

(log[OR]=0.38, p=1.1x10-9). This variant is enriched nearly 50-fold in FG (rs143452464:A; 413 
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Pro41Ser; MAF=0.023% [UKB], 1.1% [FG]) and was independently identified in a French 414 

family with AF (Supplementary Information, Supplementary Figure Pro41Ser 1), whilst  415 

GWAS had linked intergenic variants between PITX2 and FAM241A to AF risk. PITX2 is a 416 

bicoid type homeobox transcription factor previously assumed to play a role in cardiac rhythm 417 

control49. The Pro41Ser variant lies in the N-terminal domain that is only present in the PITX2c 418 

isoform expressed in cardiac muscle (Figure 4b left). We performed reporter assays comparing 419 

the ability of Xpress-PITX2c constructs to transactivate a luciferase reporter plasmid 420 

containing a putative PITX2c binding element (Supplementary Information). A construct 421 

containing the Pro41Ser variant showed a ~2.4-fold higher activation of the reporter than the 422 

wild-type construct (p=0.006, Figure 4b middle). This effect was abrogated upon deletion of 423 

the putative PITX2c binding site (Figure 4b middle; see also Supplementary Information, 424 

Supplementary Figure Pro41Ser 2 and Supplementary Figure Pro41Ser 3). In cultured 425 

cardiac muscle HL-1 cells, Pro41Ser increased the transcription of several presumed PITX2c 426 

target genes, specifically GJA1 (Cx40, 1.76-fold, p=0.012), GJA5 (Cx43, 1.85-fold, p=0.005) 427 

and KCNH2 (1.81-fold, p=0.009), while the transcription of other selected genes with putative 428 

roles in AF was not substantially altered (Figure 4b right, Supplementary Table 14, see also 429 

Supplementary Information). Together, these results are consistent with a putative gain-of-430 

function mechanism of Pro41Ser on PITX2c transactivation potential and AF risk. 431 

 432 

Discussion 433 

Here, we have conducted the to date largest association study of protein-coding genetic variants 434 

against hundreds of disease endpoints ascertained from two massive population biobanks, UK 435 

Biobank and FinnGen. We report novel disease associations, most notably in the rare and low 436 

allelic frequency spectrum, replicate and assign putative causalities to many previously 437 

reported GWAS associations, and leverage the insights gained to elucidate disease 438 
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mechanisms. In addition to a substantial gain in power over previous studies, our analyses 439 

benefit from replication between two population cohorts, increasing the robustness of our 440 

findings and setting the stage for future similar studies in ethnically more diverse populations.  441 

 442 

Importantly, our study identifies both, pathogenic variants residing in monogenic disease genes 443 

to impact the risk for related complex conditions, as well as new, likely causal sentinel variants 444 

within GWAS loci in genes with known and novel biological roles in the respective GWAS 445 

trait. With this, our study is one of the first to help bridge the gap between common and rare 446 

disease genetics across a broad range of conditions and provides support for the hypothesis that 447 

the genetic architecture of many diseases is continuous1. As reflected in a recent schizophrenia 448 

study50, GWAS tend to identify association signals primarily for variants with MAF>2%, while 449 

most variants identified through exome sequencing are ultra-rare (MAF<0.01%). Of the 975 450 

associations identified in our study, 145 are driven by unique variants in the yet little 451 

interrogated rare and low allelic frequency spectrum that is hypothesized to contribute 452 

substantially to the “missing heritability” of many human diseases51. 453 

 454 

Our approach benefits considerably from the Finnish genetic background where, consistent 455 

with previous observations6-8, certain alleles are stochastically enriched to unusually high allele 456 

frequencies, at times exceeding population frequencies in the UK Biobank by >50-fold (such 457 

as for instance the PITX2-Pro41Ser variant). Our theoretical and empirical results suggest the 458 

increasing utility of enriched variants for identifying associations quantitatively towards lower 459 

allelic frequencies. Notably, we identify the most prominent relative power gain in the rarest 460 

variant frequency spectrum, highlighting a role for sequencing studies and integrating 461 

additional population cohorts with enriched variants for identifying novel disease associations 462 

at scale. In our study, we identify several alleles with comparatively high effect sizes and a 463 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.14.21265023doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.14.21265023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

prevalence in the population that warrants follow-up, both experimentally as well as potentially 464 

directly in clinical settings to help improve disease outcomes. For instance, our data propose 465 

that 6.5% of UKB and FG participants with kidney or urinary tract stones, conditions 466 

debilitating >15% of men and 5% of women by 70 years of age52, carry a deletion in SLC34A1. 467 

Monitoring patients for the clinical biomarkers identified here as associated with this deletion 468 

might help to differentiate aetiologies and guide individualized treatments. Likewise, coding 469 

variant associations identified in our study may serve as an attractive source to generate 470 

hypotheses for drug discovery programs. Our results support previous studies27,28 that drug 471 

targets supported by human genetics have an increased likelihood of success, which can be 472 

considered particularly high when the genetic effect on a drug target closely mimics that of a 473 

pharmacological intervention53. 474 

 475 

We demonstrate the broad utility of our results through numerous examples. For instance, in 476 

the case of AF we show how coding variants can help disambiguate GWAS loci to likely causal 477 

genes and in some cases predict specific changes in a protein’s function; how integration of 478 

genetics with intermediate traits (such as slow versus fast heart rate) can unravel different 479 

biological mechanisms underlying a disease entity; or how a putative function of sentinel 480 

coding variants can be further validated through experiments. Our examples highlight that the 481 

step from association to biological insight may be considerably shorter for coding variant 482 

association studies than it has traditionally been for GWAS. 483 

 484 

The results of our study foreshadow the discovery of many additional coding and non-coding 485 

associations from cross-biobank analyses at even larger sample sizes. With the continued 486 

growth of population biobanks with comprehensive health data also in non-European 487 

populations, the emergence of more and more cost-effective technologies for sequencing and 488 
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genotyping, and computational advances to analyse genetic and non-genetic data at scale, 489 

future studies will be able to assess the genetic contribution to health and disease at even finer 490 

resolution. 491 

  492 
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Methods 493 

Samples and participants 494 

UK biobank (UKB) is a UK population study of approximately 500,000 participants aged 40-495 

69 years at recruitment2. Participant data include genomic, electronic health record linkage, 496 

blood, urine and infection biomarkers, physical and anthropometric measurements, imaging 497 

data and various other intermediate phenotypes that are constantly being updated. Further 498 

details are available at https://biobank.ndph.ox.ac.uk/showcase/. Analyses in this study were 499 

conducted under UK Biobank Approved Project number 26041. 500 

 501 

FinnGen (FG) is a public-private partnership project combining electronic health record and 502 

registry data from six regional and three Finnish biobanks. Participant data include genomics 503 

and health records linked to disease endpoints. Further details are available at 504 

https://www.finngen.fi/. More details on FG and ethics protocols are provided in 505 

Supplementary Information. We used data from FG participants with completed genetic 506 

measurements (R5 data release) and imputation (R6 data release). FinnGen participants 507 

provided informed consent for biobank research. Recruitment protocols followed the biobank 508 

protocols approved by Fimea, the National Supervisory Authority for Welfare and Health. The 509 

Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) 510 

approved the FinnGen study protocol Nr HUS/990/2017. The FinnGen study is approved by 511 

Finnish Institute for Health and Welfare. 512 

 513 

Disease phenotypes 514 

FG phenotypes were automatically mapped to those used in the Pan UKBB 515 

(https://pan.ukbb.broadinstitute.org/) project. Pan UKBB phenotypes are a combination of 516 
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Phecodes54 and ICD10 codes. Phecodes were translated to ICD10 517 

(https://phewascatalog.org/phecodes_icd10, v.2.1) and mapping was based on ICD-10 518 

definitions for FG endpoints obtained from cause of death, hospital discharge and cancer 519 

registries. For disease definition consistency, we reproduced the same Phecode maps using the 520 

same ICD-10 definitions in UKB. In particular, we expertly curated 15 neurological 521 

phenotypes using ICD10 codes. We retained phenotypes where the similarity score (Jaccard 522 

index: ICD10FG Ç ICD10UKB / ICD10FG È ICD10UKB) was >0.7 and additionally excluded 523 

spontaneous deliveries and abortions. 524 

 525 

Phecodes and ICD10 coded phenotypes were first mapped to unified disease names and disease 526 

groups using mappings from Phecode, “PheWAS” and “icd” R packages followed by manual 527 

curation of unmapped traits and diseases groups, mismatched and duplicate entries. Disease 528 

endpoints were mapped to Experimental Factor Ontology (EFO) terms using mappings from 529 

EMBL-EBI and Open Targets based on exact disease entry matches followed by manual 530 

curation of unmapped traits. 531 

 532 

Disease trait clusters were determined through first calculating the phenotypic similarity via 533 

the cosine similarity, then determining clusters via hierarchical clustering on the distance 534 

matrix (1-similarity) using the Ward algorithm and cutting the hierarchical tree, after inspection, 535 

at height 0.8 to provide the most semantically meaningful clusters. 536 

 537 

Genetic data processing 538 

UKB genetic QC 539 

UKB genotyping and imputation were performed as described previously2. WES data for UKB 540 

participants were generated at the Regeneron Genetics Center (RGC) as part of a collaboration 541 
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between AbbVie, Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol-Myers Squibb, 542 

Pfizer, Regeneron and Takeda with the UK Biobank. WES data were processed using the RGC 543 

SBP pipeline as described in 3,55. RGC generated a QC-passing “Goldilocks” set of genetic 544 

variants from a total of 454,803 sequenced UK Biobank participants for analysis. Additional 545 

QC were performed prior to association analyses as detailed below.  546 

 547 

FG genetic QC 548 

Samples were genotyped with Illumina (Illumina Inc., San Diego, CA, USA) and Affymetrix 549 

arrays (Thermo Fisher Scientific, Santa Clara, CA, USA). Genotype calls were made with 550 

GenCall and zCall algorithms for Illumina and AxiomGT1 algorithm for Affymetrix data. 551 

Sample, genotyping as well as imputation procedures and QC are detailed in Supplementary 552 

Information. 553 

 554 

Coding variant selection 555 

GnomAD v.2.0 variant annotations were used for FinnGen variants56. The following gnomAD 556 

annotation categories are included: predicted loss-of-function (pLoF), low-confidence loss-of-557 

function (LC), in-frame indel, missense, start lost, stop lost, stop gained. Variants have been 558 

filtered to imputation INFO score > 0.6. Additional variant annotations were performed using 559 

variant effect predictor (VEP)57 with SIFT and PolyPhen scores averaged across the canonical 560 

annotations. 561 

 562 

Disease endpoint association analyses 563 

For optimized meta-analyses with FG, analyses in UKB were performed in the subset of 564 

exome-sequence UKB participants with white European ancestry for consistency with FG 565 

(n=392,814). We used REGENIE v1.0.6.7 for association analyses via a two-step procedure as 566 
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detailed in58. In brief, the first step fits a whole genome regression model for individual trait 567 

predictions based on genetic data using the leave one chromosome out (LOCO) scheme. We 568 

used a set of high-quality genotyped variants: minor allele frequency (MAF)>5%, minor allele 569 

count (MAC)>100, genotyping rate >99%, Hardy-Weinberg equilibrium (HWE) test p>10−15, 570 

<5% missingness and linkage-disequilibrium (LD) pruning (1000 variant windows, 100 sliding 571 

windows and r2<0.8). Traits where the step 1 regression failed to converge due to case 572 

imbalances were subsequently excluded from subsequent analyses. The LOCO phenotypic 573 

predictions were used as offsets in step 2 which performs variant association analyses using 574 

the approximate Firth regression detailed in58 when the p-value from the standard logistic 575 

regression score test is below 0.01. Standard errors (SEs) were computed from the effect size 576 

estimate and the likelihood ratio test p-value. To avoid issues related to severe case imbalance 577 

and extremely rare variants, we limited association test to phenotypes with >100 cases and for 578 

variants with MAC³5 in total samples and MAC³3 in cases and controls. The number of 579 

variants used for analyses varies for different diseases as a result of the MAC cut-off for 580 

different disease prevalence. The association models in both steps also included the following 581 

covariates: age, age2, sex, age*sex, age2*sex, first 10 genetic principle components (PCs).  582 

 583 

Association analyses in FG were performed using mixed model logistic regression method 584 

SAIGE v0.3959. Age, sex, 10 PCs and genotyping batches were used as covariates. For null 585 

model computation for each endpoint each genotyping batch was included as a covariate for 586 

an endpoint if there were at least 10 cases and 10 controls in that batch to avoid convergence 587 

issues. One genotyping batch need be excluded from covariates to not have them saturated. We 588 

excluded Thermo Fisher batch 16 as it was not enriched for any particular endpoints. For 589 

calculating the genetic relationship matrix, only variants imputed with an INFO score >0.95 in 590 

all batches were used. Variants with >3% missing genotypes were excluded as well as variants 591 
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with MAF<1%. The remaining variants were LD pruned with a 1Mb window and r2 threshold 592 

of 0.1. This resulted in a set of 59,037 well-imputed not rare variants for GRM calculation. 593 

SAIGE options for null computation were: “LOCO=false, numMarkers=30, 594 

traceCVcutoff=0.0025, ratioCVcutoff=0.001”. Association tests were performed phenotypes 595 

with case counts >100 and for variants with minimum allele count of 3 and imputation info >0.6 596 

were used. 597 

 598 

We additionally performed sex-specific associations for a subset of gender-specific diseases 599 

(60 female diseases and in 50 disease clusters, 14 male diseases and in 13 disease clusters) in 600 

both FG and UKB using the same approach without inclusion of sex-related covariates 601 

(Supplementary Table 2) 602 

 603 

We performed fixed-effect inverse-variance meta-analysis combining summary effect sizes 604 

and standard errors for overlapping variants with matched alleles across FG and UKB using 605 

METAL60.  606 

 607 

Definition and refinement of significant regions 608 

To define significance, we used a combination of (1) multiple testing corrected threshold of 609 

p<2x10-9, 0.05/(~26.8x106) [sum (mean number of variants tested per disease cluster)], to 610 

account for the fact that some traits are highly correlated disease subtypes, (2) concordant 611 

direction of effect between UKB and FG associations, and (3) p<0.05 in both UKB and FG. 612 

 613 

We defined independent trait associations through LD-based (r2=0.1) clumping ±500Kb 614 

around the lead variants using PLINK61, excluding the HLA region (chr6:25.5-34.0Mb) which 615 

is treated as one region due to complex and extensive LD patterns. We then merged overlapping 616 
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independent regions (±500Kb) and further restricted each independent variant (r2=0.1) to the 617 

most significant sentinel variant for each unique gene. For defining region associations across 618 

traits, we merged overlapping independent regions for each individual trait. 619 

 620 

Cross reference with known genetic associations 621 

We cross-referenced the sentinel variants and their proxies (r2>0.2) for significant associations 622 

(p<5x10-8) of mapped Experimental Factor Ontology (EFO) terms and their descendants in 623 

GWAS Catalog10 and PhenoScanner11. To be more conservative with reporting of novel 624 

associations, we also considered whether the most-severe associated gene in our analyses were 625 

reported in GWAS Catalog and PhenoScanner. In addition, we also queried our sentinel 626 

variants in ClinVar12 to define known associations with rarer genetic diseases and further 627 

manually curated novel associations for previous genome-wide significant (p<5x10-8) 628 

associations. 629 

 630 

Biomarker associations of lead variants  631 

For the lead sentinel variants, we performed association analyses using the two-step REGENIE 632 

approach described above with 117 biomarkers including anthropometric traits, physical 633 

measurements, clinical haematology measurements, blood and urine biomarkers available in 634 

UKB (detailed in Supplementary Table 8). 635 

 636 

Drug target mapping and enrichment 637 

We mapped the annotated gene for each sentinel variant to drugs using the therapeutic target 638 

database (TTD)26. We retained only drugs which have been approved or are in clinical trial 639 

stages. For enrichment analysis of approved drugs with genetic associations, we used Fisher’s 640 

exact test on the proportion of significant genes targeted by approved drug against a 641 
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background of all approved drugs in TTD26 (n=595) and 20,437 protein coding genes from 642 

Ensembl annotations62. 643 

 644 

Mendelian randomization (MR) analyses 645 

F5 and F10 effect on pulmonary embolism (PE) risk  646 

The missense variants rs4525 and rs61753266 in F5 and F10 genes were taken as genetic 647 

instruments for MR analyses. To assess potential that each factor level is causally associated 648 

with PE we employed two-sample MR using summary statistics, with effect of the variants on 649 

their respective factor levels obtained from previous large scale (protein quantitative trait loci) 650 

pQTL studies13,15. Let 𝛽!" denote the estimated causal effect of a factor level on PE risk and	𝛽!, 651 

𝛽" be the genetic association with a factor level (FV, FX or FXa) and PE risk respectively. 652 

Then, the MR ratio-estimate of 𝛽!" is given by:  653 

𝛽!" =
𝛽"
𝛽!

 654 

where the corresponding standard error se(𝛽!"), computed to leading order, is: 655 

se(𝛽!") =
se(𝛽")
|𝛽!|

 656 

 657 

Clustered MR 658 

To assess evidence of several distinct causal mechanisms by which atrial fibrillation (AF) may 659 

influence pulse rate (PR) we used MR-Clust47. In brief, MR-Clust is a purpose-built clustering 660 

algorithm for use in univariate MR analyses. It extends the typical MR assumption that a risk 661 

factor can influence an outcome via a single causal mechanism63 to a framework that allows 662 

one or more mechanisms to be detected. When a risk-factor affects an outcome via several 663 

mechanisms, the set of two-stage ratio-estimates can be divided into clusters, such that variants 664 

within each cluster have similar ratio-estimates. As shown in47, two or more variants are 665 
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members of the same cluster if and only if they affect the outcome via the same distinct causal 666 

pathway. Moreover, the estimated causal effect from a cluster is proportional to the total causal 667 

effect of the mechanism on the outcome. We included variants within clusters where the 668 

probability of inclusion >0.7. We used MR-Clust algorithm allowing for singletons/outlier 669 

variants to be identified as their own “clusters” to reflect the large but biologically plausible 670 

effect sizes seen with rare and low frequency variants. 671 

 672 

Bioinformatic analyses of motif and expression for METTL11B 673 

We searched [Ala/Pro/Ser]-Pro-Lys motif containing proteins using the “peptide search” 674 

function on UniProt64, filtering for reviewed Swiss-Prot proteins and proteins listed in Human 675 

Protein Atlas (HPA)38 (n=7,656). We obtained genes with elevated expression in 676 

cardiomyocytes (n=880) from HPA based on the criteria: “cell_type_category_rna: 677 

cardiomyocytes; cell type enriched, group enriched, cell type enhanced” as defined by HPA in 678 

(https://www.proteinatlas.org/humanproteome/celltype/Muscle+cells#cardiomyocytes 679 

[accessed 20/03/2021]) with filtering for those with valid UniProt IDs (Swiss-Prot, n=863). 680 

Enrichment test was performed using Fisher’s exact test. Additionally, we performed 681 

enrichment analyses using any Ala/Pro/Ser]-Pro-Lys motif positioned within the N-terminal 682 

half of the protein (n=4,786). 683 

  684 
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Figures and Tables 716 

Figure 1. Coding genetic associations with disease. Manhattan plot for novel associations and 717 
allelic enrichment surface plots are provided as Interactive Supplementary Figures 1 and 2. (a) 718 
Summary of sentinel variant associations. Size of the point is proportional to effect size. -log10(p) 719 
capped at -log10(10-50). Labels highlight pleiotropic associations (³5 trait clusters). Colours indicate 720 
disease groups. Shape indicate novel/known (grey circles) associations. Dotted horizontal lines: -721 
log10(2x10-9) [brown] and -log10(5x10-8) [grey]. (b). Comparison of sentinel variant MAF between 722 
UKB and FG. (c) Effect size against MAF of sentinel variants. Dashed lines indicate MAF of 0.1% 723 
(left) and 1% (right). (d) Surface plot of effects of cohort specific allele enrichment on inverse 724 
variant weighted meta-analysis z-scores (IVW uplift) across MAFs (up to MAF 1%). Uplift is 725 
defined as the ratio of meta-analysed IVW Z-score to the Z-score of an individual study (details in 726 
Supplementary Information). (e) Density plot of MAF for sentinel variants for known vs novel 727 
associations. 728 
 729 
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Figure 2. (a) Simplified diagram of the coagulation cascade. Factors (in roman numerals, “a” 733 
represents activated) with genetic association with PE highlighted in orange. Blue line (round end) 734 
indicates inhibitory effect of APC on VIIIa and Va. (b) Schematic of potential pathway from 735 
missense variants in F5 and F10 to PE risk. Factor V Leiden variant had null associations with F5 736 
levels (bF5 levels=0.21, p=0.091). Dashed blue lines suggest effect of the variants on PE risk which we 737 
assume under MR framework acts through factor levels (solid blue lines). Grey box and arrows 738 
represent known pathway for Factor V Leiden mutation. 739 
GOF: Gain of function, APC: Activated protein C, MR: Mendelian randomisation, PE: Pulmonary 740 
embolism. 741 
 742 

 743 
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Figure 3. Biomarker associations with sentinel variants. (a) Heatmap of sentinel associations with 745 
biomarkers. Only significant associations (p<10-6) displayed. Left side indicates chromosome with 746 
cyan indicating MHC region. Right-side: sentinel association with disease by group (colours). Top 747 
colours: category of biomarkers. (b) Forest plot of associations between SLC34A1 deletion 748 
(rs1460573878) with haematological and biochemistry biomarkers. P<0.05 displayed. (c) Forest 749 
plot of associations between CHEK2 deletion (rs555607708) with haematological biomarkers. 750 

 751 
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Figure 4. Genetic and functional insights into AF. 752 
(a) Clustered MR plot of AF loci on pulse rate. Only variants with cluster inclusion probability>0.7 753 
are included. Left to right: CWAS loci (sentinels), Overlapping CWAS and AF GWAS loci, All AF 754 
GWAS loci from Nielsen et al. (with zoomed inset), All AF GWAS loci with permuted pulse (null, 755 
with zoomed inset). (b) Functional effect of PITX2c Pro41Ser variant (rs143452464) in vitro. Left: 756 
schematic of the location of the Pro41Ser variant in PITX2c as compared to the PITX2a splicing 757 
alternative. AD1: common sequence, HD: homeodomain, ID1: transcriptional inhibitory domain 1, 758 
AD2: second common sequence, ID2: transcriptional inhibitory domain 2. Pro41Ser is within the N-759 
terminal domain (grey), near to the 5-AA sequence (33 to 37 red, LAMAS) important for transcriptional 760 
activity of the N-terminal of PITX2c. Middle: Reporter gene assays in TM-1 cells. Luciferase values 761 
from activation of the SLC13A3-reporter plasmids (n=3) were normalized to β-galactosidase 762 
(expressed from the transfection control plasmid), relative to the ratio for empty expression vector plus 763 
non-deleted SLC13A3 reporter ("-163/+165"). The reporter plasmid designated as "-163/+165Δ" 764 
contains a deletion of 8bp corresponding to the predicted PITX2 binding site. Right: qRT-PCR 765 
analysis of HL-1 cells transfected with PITX2c recombinant plasmids. Effect of Pro41Ser PITX2c 766 
variant expression on Cx40, Cx43, KCNQ1, KCNH2, SCN1B and SCN5A. *p<0.05, **p<0.01. 767 
 768 
 769 
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Table 1. Genes with sentinel variants enriched >4 fold in either UKB or FG. All 773 
enrichment p<5x10-5. 774 

 775 
1Other sentinel variants in the gene with <4 FE 776 
2Sudden infant death syndrome; atrial fibrillation; Brugada syndrome; progressive and non-progressive heart block; long QT 777 
syndrome, sick sinus syndrome; ventricular fibrillation 778 
FE: fold enrichment; IA: inverse association; PCOS: polycystic ovarian syndrome; PE: pulmonary embolism; AF: atrial 779 
fibrillation  780 
  781 
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