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Abstract

The global crisis triggered by the COVID-19 pandemic has highlighted the
need for a proper risk assessment of respiratory pathogens in indoor settings.
This paper documents the COVID Airborne Risk Assessment (CARA) method-
ology, to assess the potential exposure of airborne SARS-CoV-2 viruses, with
an emphasis on the effect of certain virological and immunological factors in
the quantification of the risk. The proposed model is the result of a multidiscip-
linary approach linking physical, mechanical and biological domains, bench-
marked with clinical and experimental data, enabling decision makers or facil-
ity managers to perform risk assessments against airborne transmission. The
model was tested against two benchmark outbreaks, showing good agreement.
The tool was also applied to several everyday-life settings, in particular for the
cases of a shared office, classroom and ski cabin. We found that 20% of infec-
ted hosts can emit approximately 2 orders of magnitude more viral-containing
particles, suggesting the importance of super-emitters in airborne transmission.
The use of surgical-type masks provides a 5-fold reduction in viral emissions.
Natural ventilation through the opening of windows at all times are effective
strategies to decrease the concentration of virions and slightly opening a win-
dow in the winter has approximately the same effect as a full window opening
during the summer. Although vaccination is an effective protection measure,
non-pharmaceutical interventions, which significantly reduce the viral density
in the air (ventilation, masks), should be actively supported and included early
in the risk assessment process. We propose a critical threshold value approach
which could be used to define an acceptable risk level in a given indoor setting.
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1 Introduction

Currently, the existing public health measures point to the importance of proper building and environmental
engineering control measures, such as proper Indoor Air Quality (IAQ). The COVID-19 pandemic has
raised increased awareness on airborne transmission of respiratory viruses in indoor settings. Of the main
modes of viral transmission, the airborne route of SARS-CoV-2 seems to have a significant importance to
the spread of COVID-19 infections world-wide [1]. Furthermore, infection through aerosol inhalation
could lead to more severe disease than infection from fomites [2]. The potential for presymptomatic
and asymptomatic transmission is also reported, with evidence suggesting that 30- 70% of transmission
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contrasts with other coronaviruses which peak at around 7-14 days after symptom onset [4]. The high
viral loads around symptom onset suggest that SARS-CoV-2 could be easily transmissible at an early
stage of infection.

Facility managers are facing a new paradigm where the need for a concrete, quick and simplified
tool to prevent airborne transmission in buildings and other enclosed spaces is becoming an essential part
of any occupational health and safety risk assessment.

In occupational health and safety, the best way to ensure proper protection is to fully understand
i) what are the causes of a given hazardous event and how to prevent it; ii) what are consequences
arising from the hazardous event and how to protect from it. For any given risk, in order to consider the
appropriate mitigation and risk control measures for indoor spaces (e.g. workplaces, household, public
spaces), a multidisciplinary risk-based approach is essential.

In this paper, a physical model is proposed, adapted from previous implementations of other
infectious models such as the Wells-Riley approach [5, 6], to simulate the concentration of infectious
viruses in an enclosed indoor volume, wherein infectious occupants with COVID-19 are shedding SARS-
CoV-2 viruses. The present study focuses on the so-called ‘long-range’ airborne transmission route,
assuming a well-mixed box model with a homogeneous viral concentration in the entire volume and that
occupants in the room are physically distant from each other. The model follows a probabilistic approach
to deal with the uncertainties tied to the concerned variables, such as the characteristics of this novel
virus, including the properties of the emerging Variants of Concern (VOC). Various aspects of the medical,
biological, mechanical and physical characteristics of the respiratory airborne pathogens are taken into
account, in particular the mechanistic process of respiratory droplet nuclei emission, the effectiveness
of face covering, the dilution with outdoor air, the impact of particulate filtration, the inactivation of
infectious viruses, host immunity and dispersion models in indoor environments.

Human presence is the generation source of expiratory droplets and droplet nuclei potentially
containing virions, when performing vocal or pure respiratory activities [7,8]. The droplets and droplet
nuclei which are sufficiently small to be aerodynamically suspended in the air may be inhaled by the
exposed occupants in the same indoor setting. Particular attention is given to the winter period as a result
of increased indoor gatherings with limited air renewal, resulting in increased exposure duration [9], and
the low relative humidity of the indoor ambient air, mainly due to the effect of central heating (e.g. via
superheated water radiators). Low humidity air increases the evaporation of droplets and consequently
the number of airborne droplet nuclei [10]. This increases the virus survival in air and reduces immune
defenses of the exposed hosts [11].

The methodology presented in this paper exhibits five main aspects: 1) the generation (or emission)
rate of viruses coming from the infected host(s), which is a result of the respiratory activity combined
with the possible use of face covering (source control); 2) the indoor viral removal rate resulting from
ventilation or air filtration, viability decay and gravitational settlement; 3) the indoor viral concentration
profile over time resulting from the balance of the two previous quantities; 4) the accumulated viral dose
absorbed by an exposed host and deposited in the respiratory tract; and 5) the probability of infection (or
transmission) resulting from such a dose.

To estimate the generation rate, a probabilistic approach is considered by parameterising the viral
load distributions in the respiratory tract and the volumetric concentration of droplets emitted, measured
for different activities [12]. By convention, droplets and droplet nuclei will be discussed in this paper
as “airborne particles’. Once an infected occupant is emitting viruses into the volume, the physical and
mechanical behavior of the floating virus-containing particles is simulated, based on the assumption of a
homogeneous mixture in a finite volume. With a realistic set of inputs, including a complex ventilation
algorithm with openable windows and a flexible occupancy profile, the model allows for a combination and
comparison of various mitigation measures, aimed at properly assessing the situation tailored to common
practices in indoor settings. The main goal of this paper is to improve the common understanding in the
modelling of airborne transmission and identify the pivotal parameters, in order to develop a quantitative
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action plan to help building engineers, facility managers and household individuals, in identifying which
measures or combination of measures are most suitable, allowing for a tailored risk assessment and
targeted investment. The results are compared with similar studies from literature.

The model, its assumptions and data used will be presented in Section 2. The set of possible
occupation and activity profiles taken into account in the model are listed in Section 3, and simulation
results in various situations follow in Section 4. These are then discussed in Section 5, and our conclusions
are finally presented in Section 6.

2 Methods

The infection model presented in this paper, is computed using an Open Source software called the COVID
Airborne Risk Assessment (CARA). The availability statement of the software and associated data is
mentioned in Section 6. The methodology behind the infection model is split into five modules: Source
(emission), Dispersion (removal rate), Exposure (concentration), Dose (inhalation) and Risk (infection).

Several risk assessment tools have opted to adapt the notion of ’quantum of infection’, introduced
in the 1950’s by W. F. Wells, suggesting a hypothetical infectious dose unit for a certain pathogen [13].
The guanta is generally estimated from epidemiological data following an outbreak investigation, using
a reverse engineering approach predicting the environmental conditions at the time of the outbreak. In
the framework of a risk management and risk prevention approach, we opted to study the projection of
possible new infections before the potential outbreak takes place. Thus, we decided to adopt an approach
by relating the physiological mechanism of respiratory particle emissions, introduced by Nicas et al. [5]
for Tuberculosis and adapted by Buonanno et al. [12] for COVID-19, while integrating the virological
and pathological characteristics of such respiratory pathogens. The model assumes a homogeneous viral
distribution in the respiratory tract [14] and that the number of virions in a given particle is proportional
to its size, as well as a homogeneous mixture of airborne particles in a given room volume (i.e. well-
mixed box model). Several authors have characterized the amount of respiratory particles and their size
distribution, during different vocal activities [7, 15—17]. The underlying question relates to the relationship
between a mechanistic approach and the virological aspects, which we propose to address in this paper.
Since typical coronaviruses seem to require more than one pathogen to initiate infection [18,19], this study
includes the concept of an equivalent infectious dose ID. According to Sze et al. [20], the dose-response
models for such risk assessment are more precise, as many influencing factors can be determined explicitly,
allowing for fewer implicit errors in general. On the other hand, such models are not yet available for
SARS-CoV-2, hence a solution is described in this paper, taking into account the effect of host immunity.

Many of the model variables (such as emission rate, removal rate, and concentration) are considered
for a given aerosol diameter D, as the dynamics in the room and the deposition efficiency in the respiratory
tract, depends on the particle size. The resulting dose is then computed over a distribution of particle
diameters, which is then followed by a Monte Carlo integration. Furthermore, some other variables (such
as viral load, infectious dose, mask inward efficiency, breathing rate) are treated as random to account for
their aleatory uncertainties; the related distribution descriptors are defined by data available in the literature.
Finally, the probability of infection is estimated by using plain Monte Carlo sampling algorithms.

2.1 Emission rate (vR)

The emission rate of virus per unit diameter, vR (in virion h! pm'l), is estimated by considering the
volumetric emissions of respiratory particles of a given diameter D by the infected host(s), and the
virological characteristics”. The former properties are evaluated for three different expiratory activities: i)
Breathing (index 'b’); ii) Speaking (index ’sp’), iii) Shouting/Singing (index ’sh’). While performing the
expiratory activities, the particle emissions are known to be affected by the physical activity and loudness
of the infected host’s vocalisation, since the faster one breathes or the louder one speaks, the more particles

“The total emission rate, vR** in virionh™", can be obtained by integrating the emission rate over the diameter D.
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per unit volume are being emitted [7, 16]. Subsequently the emission rate includes the contribution of tidal
volumes and amplitude of the voice. The virological characteristics include the density of viral copies from
nasopharyngeal (NP) swabs. The viral emission rate can be calculated using the following formulation:

VR(‘D)j = Vlin : Ec,j(Da fampa nout(‘D)) ’ BRka (1)

where vl;, is the viral load inside the infected host’s respiratory tract (in RNA copies per mL); E ;

represents the volumetric particle emission concentration per unit diameter (in mL m> pm'l), for a given
expiratory activity j and as a function of the vocalisation amplification factor f,,,, and the outward

mask efficiency 7, (D) (which also depends on the particle size); BRy, (in m’ h_l) is the breathing flow
rate for a given physical activity k. For the purposes of this model, we will assume a 1:1 ratio between
RNA copies and virions when interpreting PCR viral load results, though for PCR assays targeting the N
(nucleocapsid) gene, this ratio may far exceed 1. The volume of the respiratory particles are calculated
assuming each is a perfect sphere. In the present model, vR is assumed to be piecewise constant over
time, for each type of vocalisation/respiratory activity, and is considered constant when the infected host
is present (VR = 0 when the infected host is absent).

Due to the large variability of the different variables discussed in this paper, a probabilistic approach
is used to determine vR. The methods and variables are described in Sections 2.1.1 - 2.1.4 and summarized
in Section 2.5.2.

Note that in the following subsections, for the purpose of simplification, we will omit the index j
for vR and the quantities that depend on it, as each type of expiratory activity will be computed separately.

2.1.1 Viral Load (v])

In this paper, we describe the viral load as two separate parameters: the viral load inside the infected
host, vl;,,, determined by RT-PCR assays from nasopharyngeal (NP) swabs, and the viral load outside the
infected host, v, defined as the number of respiratory particles emitted from the mouth or nose during
a given time ¢ (in hours):

Vlgw = vR L (2)

For vl;,,, data shows a large variability, ranging from 10%-10" RNA copies per mL, covering
symptomatic, presymptomatic and asymptomatic persons [21-23]. The large variability in these viral
load values are related to the high dynamic range over the course of the infection and would largely
impact vR. This aspect is particularly relevant when the uncertainty lies on the virological conditions
of the infected host during transmission. Hence, here we considered statistical distributions where the
baseline descriptors correspond respectively to a mean (SD) of 6.6 (1.7) log;q RNA copies per mL. These
values were determined from the available dataset of approximately 20000 RT-PCR assays, sampled from
February to April 2020 [23]. This parameter is a variable in our model, which could be adjusted to take
into account new datasets.

In December 2020, an increasing portion of cases caused by a more transmissible new variant
(Alpha) was observed in the United Kingdom. This has since been superseded by several other ‘Variants Of
Concern’ (VOC) reported to have a significant effect on the risk of transmitting SARS-CoV-2. The precise
mechanism(s) for increased transmissibility are not yet definitively understood at the time of writing.
While preliminary laboratory results indicated evidence for higher viral load in infected individuals [24], it
now appears that these elevated values were not substantiated by more recent studies [25]. This observation
is consistent with the dynamics of cycle threshold (Ct) scores seen during rapid growth phases of the
epidemic, as reported in Ref. [26]. There is now emerging evidence to indicate that the Delta VOC may
combine both increased infectiousness and observably higher average viral loads compared to the wild
type strains or the Alpha VOC, although the statistical significance of increases in viral load remains to be
conclusively demonstrated.
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2.1.2  Expiratory particle emissions (E ;)

During different vocalisation activities, or by simply breathing, a large amount of particles are emitted
from the mouth and/or nose, originating from the respiratory tract [27,28]. Particles of diameter smaller
than 100 pm are likely to become airborne and can remain suspended in the air from seconds to hours,
because of their reduced size and settling velocity compared to larger droplets [29]. Data on experimental
studies measured the aerosolized particle concentration and size distribution [7,30], although the aerosol
sampling mechanisms employed, e.g. aerodynamic particle sizer (APS) or optical particle counter (OPC),
are generally not capable of measuring the diameter of the respiratory droplets prior to evaporation [15],
which occurs quasi-instantaneously after leaving the mouth or nose [31]. Understanding the initial
diameter of the particle, prior to evaporation, is crucial for the quantification of the volumetric emissions
[12] and consequently the emission rate (vR).

The particle emissions and their size distribution vary depending on the vocalisation activity.
Johnson et al. [15] studied the size distributions of particle emissions for different expiratory activities and
found three distinct modes associated with different anatomical processes in the respiratory tract: one
originating from the bronchial region while breathing, another near the larynx (housing the vocal cords)
which is highly active while speaking and singing; and one from the oral cavity (i.e. mouth) which is active
during any vocalisation. The volumetric particle emission concentration (E ;) is, therefore, modeled
according to the aforementioned paper using a tri-modal log-normal distribution model (BLO model) [15],
weighted by the particle size distribution multiplied by the volume at a given diameter (assuming each
particle is a perfect sphere). In the same reference, the author included an evaporation factor (fey,p) of
0.5 to take into account the ratio between desiccated and saturated particles. Here, we propose to use
an evaporation factor of 0.3, based on more recent studies [32], considering an average protein content
between 3 and 76 mg per mL of nasal fluid.

The particle emissions of the larynx (L) and oral (O) modes are equally affected by the amplitude
of the vocalisation (i.e. loudness) and this relationship is found to scale linearly, while maintaining a
constant size distribution [16]. An amplification factor (f,,,) is used to scale the emission concentration
relative to ’Speaking’, which is used during vocalisation. The bronchial (B) mode, on the other hand, is
not affected by the amplitude of vocalisation, hence the emission concentration during ’Breathing’ is not
impacted by this effect since only the B mode is active.

To make use of this data for the purpose of our study, we need to compute the volume of respiratory
fluid emitted by the host, per volume of exhaled air, per unit diameter, £, ;(D), in mL m> pm'l, and for a
given diameter D. This is given by

E.;(D)=N,

(D) - V(D) - (1 = nout (D)), 3)
where N,,(D) is the number of particles of this size (depending on the expiratory activity through f,.,,, see
below), V(D) is their individual volume and 75, (D) is the outward mask efficiency (cf. Section 2.1.3)
for this diameter. Based on the BLO model, the number of emitted particles of a given size can be obtained

from

c?j

1 Cni- famp,j,i (ln D — :U'DZ-)2 )]
N,(D) = —= ——— exp | ——5"— || -, 4

P Diezf:(j) [ V2m-op, p( 2(0p,)° @
where 1(j) is a subset of {B, L, O} determined by the expiratory activity j: for breathing I(b) = {B}, for
speaking or shouting (sp) = I(sh) = {B, L, O}; uup, and o, are the mean and standard deviation of the
natural logarithm of the diameter for each mode (in In um); ¢, ; is the total particle emission concentration
for each mode. The amplification factor f,,, ;(i) follows [16]:

1if ¢ =B,
Jamp,ji = 4 1 Breathing and Speaking) ... .
5 Shouting ifi € {L, O}.
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Table 1 provides the list of variables and the related distribution descriptors adopted to compute E. ;
from Eqgs. (3) and (4) (the size distribution particle emission concentrations can be found in Supplementary
Fig S.1). Particle emission concentration have been extensively reported by Bourouiba [33] with values
ranging from approximately 0.01 to 4 particles cm” for breathing and 0.01 to 1 particles cm” for speaking.
A parametric study was conducted to produce a fit with experimental data for viral emission rates (cf.
Section 4).

To obtain the total expiratory emission in mL m™, one has to integrate Eq. (3) over all particle
diameters:

Dmax
B = /0 E,;(D)dD. &)

Since this paper is focused on airborne transmission, the limits of integration are set from 0 to D, ,, =
30 um, which correspond to a desiccated particle diameter up to roughly 10 pm. This assumption is
reasoned knowing that respiratory aerosols up to 10 um (i.e. PM10) represent 99% of the total emission

concentration while speaking [15].

Note that the integral in Eq. (5), used to compute the total emission, is performed using a Monte
Carlo sampling of the particle diameters which follow the distribution given by N, (D) in Eq. (4). In the
model, the integral is actually not performed at this stage but later when computing the dose, since other
parameters also depends on D (see Section 2.4).

Table 1: Parameters of the BLO model used in the volumetric particle emission concentration in Eq. (3). The geometric mean (GM) and
geometric standard deviation (GSD) of the log-normal distributions for the particle diameters are also shown. Values for c,, ; are taken from
Ref. [7] and particle diameter distribution parameters are extracted from Ref. [15], applying an evaporation correction factor fq,, = 0.3.

Tri-modal parameters for E_ ;

Mode (i) ¢, [ecm™] pp [Inpm] GM[um] op [Inpm] GSD [um]

B 0.06" 0.99 2.69 0.26 1.30
L 0.2° 1.39 4.01 0.51 1.67
O 0.001 4.98 145.5 0.59 1.80

a . . .
Unit conversion will be necessary to compute E.. ;

b Obtained following a parametric study (see Section 4).

2.1.3 Outward effect of face covering (ng,+)

Face coverings are reported to be a very efficient source control measure against infection prevention and
disease control [34-39]. According to the basic prevention principle of risk assessments, reducing the
hazard at the source is at the top of the priority list in terms of mitigation measures. The so-called surgical
masks are widely used and recognised as appropriate face covering devices for source control. These masks
are manufactured following strict performance and quality requirements and are certified by the applicable
national authorities. The minimum material filtration efficiency accepted in, e.g., the USA and European
Union is 95 %, using the test standards ASTM F2101 and EN 14683 [40], respectively. It is important to
note that these results are the filtration efficiencies of the material and do not consider the losses due to
the actual positioning on the wearer’s face, namely leakage. Since surgical masks are not meant to act
as personal protective equipment (PPE) such as N95 or FFP2 masks, there are no requirements for leak-
tightness in the test standards mentioned above. Both standards use a mean particle size of 3.0 + 0.3 um
for the measurements, although, when breathing, the majority of the emitted particles are smaller than
3 um [7], even when considering a saturated particle size with a geometrical mean of 2.7 um (cf. Table 1).
Reducing the particles size will have an effect on the filtration efficiency. Recent studies measured the
outward filtration efficiency for surgical masks of 80% while breathing [38] and 60 —75% in the 0.7 —2 um
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size range [41]. The result of these measurements include the effect of leaks, without performing any fit-
test or fit-check procedure. The certification requirement of 95% efficiency may be used for particle sizes
> 3 um, corrected to take into account the leakages. We assume a total leakage of 15% through the sides,
nose and chin [42], which would yield an equivalent outward efficiency of 82% at sizes larger than 3 pm,
comparable to the same measurements [38,41]. In this paper, we use the values for outward efficiency
(Mouy) Of surgical masks, as a function of the particle diameter (Supplementary Fig. S.2).

The use of Personnel Protective Equipment - PPE (e.g. respirators), such as N95 and FFP2, are
found to have a similar effect in terms of source control [38] and thus are assumed here to have an
equivalent outward efficiency. 7, is equal to zero if the occupants are not wearing masks.

2.1.4 Breathing rate (BRy)

A wide variation in breathing rate is observed in numerous studies. We have chosen to base our values
on data originally reported by Ref. [43] as incorporated into the EPA Exposure Factors Handbook [44].
The estimation of breathing rate is critical to both the emission of infectious particles and exposure due
to inhalation for an airborne pathogen. We have taken published tables from the handbook and adapted
them to provide estimations of breathing rates for a variety of activities. With the available data, we have
assumed an evenly distributed population from ages 16 to 61, with a male:female ratio of 1:1. Drawing
on handbook values from Tables 6-17, 6-19, 6-40, 6-42, we created profiles for a number of different
physical activities:

sitting (office activity),
— standing (without moving),

light intensity activity (walking, lectures, singing),

moderate intensity activity (jogging, manual work in a laboratory or workshop),

high intensity activity (running, exercising, heavy duty equipment manipulation, manual material
transport).

The data for each activity level (Supplementary Table S.2) has been fitted to a log-normal distri-
bution model (cf. Supplementary Fig. S.3), having one set of distribution descriptors per activity type
(incorporating the variability of the population) instead of single point deterministic values.

2.2 Viral removal rate (VRR)

Once viruses are expelled from the exposed host, they are subject to environmental and biological effects
which would reduce the viral concentration in air. The effects of air exchange, aerosol settlement, viral
inactivation (biological decay) and filtering through an air cleaning systems may be considered in a
simplified form by combining the contributions from these four effects into one property A ,gr [10],
representing the viral removal rate per hour, by means of the summation:

AVRR = AACH T Adep T Abio + AHEPA» (6)

where AAcH, Adep> Abio a0d Aggpa (all in h'l) are the removal rates related to ventilation, gravitational
settlement, biological decay and particulate filtration, respectively.

2.2.1 Effect of ventilation

Effective ventilation is a known preventive measure to mitigate airborne transmission [1]. The supply of
clean outdoor air, referred to as ’fresh air’, is important to locally dilute the airborne virus and remove the
pathogens by exchanging them with virus-free air.
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The removal rate due to ventilation (Apcp) via mechanical or natural means, is obtained from the
amount of fresh air supplied to the space and the volume of the room:

QacH
A = 7
ACH v (N

in which Q) p oy represents the volumetric flow rate of fresh air supplied to the room (in m’h™') and V its
volume (in m3). Q acy Will depend on the type of ventilation used.

Mechanical ventilation is considered when the indoor space benefits from active means to supply
fresh air, powered by equipment such as motor-driven fans and blowers normally installed in air handling
units (AHU) of Heating, Ventilation and Air Conditioning (HVAC) systems. The fresh air flow rate for
mechanical ventilation is considered at the level of the supply grilles or diffusers. For energy efficiency
reasons, some air handling units may be equipped with a mixing chamber to recycle part of the return air
extracted from the indoor space. In this specific case, it is proposed to evaluate () oqy by including only
the portion of fresh air supplied in the space (i.e. total supply flow of the AHU minus the recycled air
flow). If the AHU is fitted with an HEPA filter, the portion of recycled air shall be included in Aggpy (cf.
Section 2.2.4).

Although the use of mechanical systems in Europe is increasing, the greatest share of ventilation
systems employ natural ventilation [45], which generates a flow of fresh air coming directly from outdoors,
created by a pressure differential through permanent or temporary openings in the building’s facade. This
pressure differential is caused either by: 1) outdoor and indoor temperature difference, where the buoyancy
force arising from gravity and the difference in air densities can be used to drive the flow, or ii) wind
contouring the building structure, where the velocity profile, on both facades, creates a windward and
leeward exposure. To establish a wind-driven flow, the indoor space in question shall have openings on
opposite facades (windward and leeward exposure). In addition, the pressure difference depends on the
mean wind boundary velocity, which fluctuates during the course of the day, ranging in intensity and
geographical direction. With this said, and in view of simplifying the model, this paper will only consider
a buoyancy-driven flow arising from natural ventilation.

To streamline the estimation of ) 5y, additional simplifications and assumptions are proposed.
We consider single-sided natural ventilation, i.e. openings on one facade, although in reality occupants
generally open windows and doors connecting to corridors or other volumes (i.e. cross ventilation). The
later form of natural ventilation might extend the pressure gradient beyond the volume of the room yielding
potentially higher flow rates that would reduce the risk, hence our choice is conservative. The limiting
depth for effective single-sided ventilation is typically 5.5 m or up to 2.5 times the room height [46],
therefore this limitation is a boundary condition for model validity.

The fresh air flow Q ¢y for single-sided natural ventilation is derived from a combination of
Bernoulli’s equation and the ideal gas law [47]:

Ci-A [g-h-AT
= 8
Qach 3 Tog ®)

where Cj is the discharge coefficient; A is the area of the opening (in mz); g is the gravitational acceleration
(in m s'2); h is the height of the opening (in m); A" is the indoor/outdoor temperature difference and 7T,
is the average indoor/outdoor air temperature (in K). Equation (8) is valid when AT is positive and not
too large (< 20 K). The CARA model incorporates a large meteorological data set of averaged hourly
temperature, by month and location. These temperature profiles are based upon historical data from the
HADISD.3.1.1 [48] data set. The hourly averages are computed from the past 20 years for each weather
station with complete and valid data within this time range. For simplification, in this study we consider
only data for Geneva, Switzerland during the months of June and December (replicating summer and

winter conditions, Supplementary Fig S.4).



https://doi.org/10.1101/2021.10.14.21264988
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.10.14.21264988; this version posted October 14, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

The discharge coefficient C represents the fraction of the opening area that is effectively used by
the flow - it is smaller than the actual area of the opening because of e.g. viscous losses [47]. For sliding
or side-hung windows, C}; is estimated at 0.6 [46,47]. For top- or bottom- hung windows, Cy depends on
the opening angle ¢ (in deg) and the ratio 7 (with w the width of the window), according to the following
rule [46]:

C(d = Cd,max [1 - exp(—M : ¢)] ) (9)
where M and Cy ,,x are given for different values of 7~ in Supplementary Table S.3. The opening angle
¢ can be obtained via: sin (%) = % , with L the size of the opening (i.e. such that A = h - L).

In this paper, we consider events in the winter period with a constant temperature difference AT of
10 K and in the summer with a constant AT of 2 K. The indoor temperature is also assumed constant during
the exposure. As for the openings, we considered a standard sliding-type window with a height & of 1.6 m
and an opening length L of 0.6 m. Examples of other window opening types can be found in Supplementary
Fig.S.5. In the absence of natural and mechanical ventilation, the removal rate A, ¢y Will be governed by
the air infiltration of typical buildings. In this study we assume a constant average value of 0.25 h' [49].

2.2.2 Biological decay

The environmental conditions have an impact on the stability and viability of the virus in air. The half life
of SARS-CoV-2 in aerosols was initially measured with a median of 1.1 hours, equivalent to SARS-CoV
[50]. However, in this reference the measurements were performed at room temperature (23°C) and with
a relative humidity (RH) of 65%, which is not the nominal humidity level one would assume for indoor
spaces in specific seasons of the year, e.g. during the winter period. The humidity of the air in the room
plays a decisive role in the capacity of the viruses to survive [51-53]. Air with a low relative humidity
(typically under 40%) allows smaller particles to desiccate quickly and, while the water is completely
removed, the salt content of the droplet nuclei might crystallize, ending up preserving the viruses by
forming a sort of protection cover. This mechanism explains why flu epidemics frequently occur during
the winter period with the effect of central heating, which desiccates the air by adding sensible heat and
increasing its enthalpy at a constant specific humidity. It is also apparent that the ambient humidity may
play a role in the effectiveness of the bodies natural defense mechanisms against airborne viruses, with
low humidity increasing susceptibility to infection [53].

However, a comprehensive model of the interplay between temperature, humidity and viral infec-
tiousness remains a topic for further study. In this paper, we do not consider the effect of temperature on
half life, although we acknowledge that there is significant data linking increases in temperature with a
reported decrease in half life. We apply a simplification of the three-regime model proposed by Yang et
al. [52] for seasonal influenza, with only two humidity regimes considered (RH < 40% and RH > 40%).
In each humidity regime, we use values consistent with Figure 3A in [51] for the extrapolation of the half
life of the virus. In the low humidity regime (RH < 40%, 20°C), virus viability after 1 hour is 70%, com-
pared to 20% in the high humidity regime (RH > 40%, 20°C). We use the ratio of these two values to
scale the half life for the low humidity regime as follows:

— In the mid/high humidity regime, we consider a half life of 1.1, based directly on Ref. [50], such
that Apo = 22 ~ 0.63 ™.

— In the low humidity regime, we apply the extrapolation based on the data from Ref. [52], and obtain
a half life of 3.8 such that \y;, ~ 0.18 h'.

The ratio of the half lives in our low humidity and high humidity regimes is 3.5, similar to that
reported in the literature, notably in Ref. [54], where median half lives of 6.4 hours (RH = 40% at 22°C)
and 2.4 hours (RH = 65% at 22°C) are reported in Figure 1b, giving a ratio of 2.6. The method employed
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in the aforementioned study, namely capture on polypropylene surfaces, is consistent with reports of
longer viral half lives. We therefore consider this to be a conservative figure for the regime RH < 40%,
since the reference is taken at the start of the low humidity region.

In the model, we differentiate between the two regimes on the basis of the corresponding average

seasonal indoor humidity, due to the effect of central heating. Unless specified otherwise, the default
humidity regime discussed in Section 4 is RH > 40%.

2.2.3 Gravitational settlement

Once particles are airborne, they are subject to aerodynamic forces which tend to balance with the force
of gravity (dead weight), with the absence of additional momentum. Using the Stokes law, one can
analytically calculate the settling velocity of a certain particle, corresponding to equilibrium between the
sum of the drag and buoyancy forces and the downward force due to gravity:

(,Op - pair)(Devap ’ 10_6)2 g

D) =
U( ) 18 Kair

) (10)

where, p, and p,; (in kg m_3) are the mass densities of the particle and air, respectively; ¢ is the
gravitational acceleration (in m 5'2); Dyayp, 1s the diameter (in pm) of the desiccated particle, following
evaporation (Deyap, = D+ foyap With foap, = 0.3), and iy, ~ 1.8 - 10°° kg m™ s is the dynamic
viscosity of air (at room temperature and atmospheric pressure).

Assuming the composition of a given airborne particle is dominated by water and/or organic solutes
of similar density, the proposed mass density for p,, is 1000 kg m> [15]. The mass density of air (p,;;) is
taken at 1.2 kg m>. Assuming that the droplets are falling from the mouth or nose of a person standing, the
height at which the terminal velocity (obtained from Eq. (10)) is reached, is considered at approximately
h = 1.5 m from the floor, which yields A4, = v/h. Thus, particles with a diameter D < 3 um have a
settling time higher than one hour and a half (and it even reaches more than 13 hours for D = 1 um),
whereas larger droplets with D > 10 pm are only able to maintain airborne for approximately 8 minutes
and less (cf. Supplementary Fig. S.6). Therefore, the phenomenon of particle evaporation introduced in
Section 2.1.2, which reduces the particles’ size, has a significant effect on the total amount of airborne
particles which could potentially be inhaled by exposed hosts.

As visible from Eq. (10), the setting velocity v(D), and hence A,gg, depends on the diameter of
the emitted particle D. The concentration in the air of particles of different diameters evolves therefore
differently with time (see Section 2.3). Using plain Monte Carlo sampling algorithms for the particle
diameters, we can also compute for Age, (D) the mean (standard deviation) values, obtaining 0.054
(0.031), 0.146 (0.208) and 0.167 (0.225) for breathing, talking and shouting, respectively (all in h_l). The
mean values are in agreement with the range adopted in other studies [55] for particles with D, in
between 0.7 and 2 pym.

2.2.4 Air filtration

The removal of airborne particles in a closed volume can be achieved by cleaning the air using High-
Efficiency Particulate Air (HEPA) fibre-based mechanical filters. HEPA filters are the most efficient
mechanical filters in the submicron range, increasing the probability of capturing viral-containing droplet
nuclei in the air [56,57]. The effect of this mechanism on the removal rate is determined by the volumetric
flow rate of the air passing though the filter, multiplied by its efficiency (7;) and taking into account
the effectiveness of the system in reducing a certain percentage of the particle load within 20 minutes
(PRyg) (Supplementary Fig. S.7). The effect of increasing the air exchange rate of the HEPA device on
the particle removal efficiency can be determined by:

Auepa (PRyg) = @ Mgy (11)
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in which Qggpa (in m’ h'') is the effective flow rate through the device; V. is the room volume; PRy,
is the particle removal objective; 7 is the filter efficiency. For HEPA filters certified according to EN
1822 standard [58], n¢ is 99.95 % and 99.995 %, for the corresponding H13 and H14 classes, respectively.
Due to the high efficiency of both filter classes, this term can be neglected. The commercial filtering
device should be selected to ensure a nominal flow rate that is able to reduce sufficiently the particle
load. The effectiveness of the system determines how fast the particle load is reduced in a volume. This
approach is frequently used in industry, namely in the design of clean rooms [59], although this parameter
is determined in the decay zone of the concentration profile (C(t) = C ¢ MRR t) where the generating
source is not present (i.e. vR = 0). In reality, the effect of a constant vR > 0 in the presence of an HEPA
filter will be included in the solution of Eq. (13), therefore we use the effectiveness of the filter as an input
for Aggpa When selecting the device. Hence, we opted to consider a particle removal objective (PRy), of
at least 80% that would yield a clean air exchange rate > 5 air changes per hour (ACH): Aggpa (0.8) =
5 k™!, which is comparable with other design values for biological safety labs and hospital wards [60].

2.3 Viral concentration (C(t))

The concentration of virus depends, not only on the emission source but also on the dynamic effects linked
to any potential removal mechanisms (cf. Section 2.2.1) and occupation profile (cf. Section 3), as well as
possible preventive measures (e.g. face covering). This study proposes a solution of the mass-balance
differential equation to simulate these effects.

The concentration of viruses in aerosols of a given size D, is derived from the following differential
equation, determining the time evolution of the number of virions per unit volume per unit diameter, in a
single-zone model:

0C  vR(D): Ny
= (D) C(D), (12)

where vR has been defined in Section 2.1.2 and A gg in Section 2.2, and both depends on the particle
diameter D; V. (in m3) is the room volume; N, is the number of infected hosts emitting the viruses at
the same time and in equal quantities.

Solving the differential equation, we get:

VR(D) - Ny (VR(D) - Nine ) Aern(D)t
C(t,D) = - — Cy(D) | e MvrrP (13)
D) =@V, @)y, ~ O
where Cy(D) = C(t = 0, D), and the quantity Ceqyilibrium = % represents the equilibrium value

that is reached in the steady-state regime, in which all quantities therein are diameter-dependent.

Equation (13) is valid when all variables are constant over the full time range. In our model, vR
and A\ g may also be piecewise constant functions of time; a new value is assigned to each variable
every time a condition changes in the room, in particular when an infected person(s) enters or leaves the
room, or when the ventilation rates changes (which leads to a modification of A, rR, see next Section). In-
between such transition times, e.g. t,, and ,, 1, all variables are constant and Eq. (13) is valid provided
C) is replaced by C(t,,, D), and t by t — t,,. C(t,,, D) is in turn computed from the knowledge of the
previous regime between ¢,,_; and ?,,; in practice all these computations are done recursively, using an
efficient caching mechanism to avoid computing the same concentration twice.

2.4 Dose (vD)

The term *dose’ in this study defines the number of viable virions that will contribute to a potential infection,
therefore we need to disassociate RNA copies from infectious (viable) viruses. Virus isolation from NP
and throat has been largely reported, although it varies with the viral load and the number of days post
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symptoms onset [21,61], which indicates a clear relation between seroconversion and viral culture, as well
as the amount of RNA copies in a given sample. In addition, any existing antibodies wrapped around RNA
viruses will be extracted during PCR-assayed samples. This will "hide’ the effect of pre-existing antibody
titre in the infected host’s viral load. Hence, the proportion of virions which are viable (infectious) can be
substantially lower than the measured count of RNA copies, e.g. in previously vaccinated sources [62],
even though their viral loads have been reported to be similar to those in unvaccinated sources [63].

Here we estimate the receiving dose, vD (in infectious virions per unit diameter), which is inhaled
by the exposed host, by first integrating the viral concentration profile (for a given particle diameter) over
the exposure time and multiplying by a scaling factor to determine the proportion of virions which are
infectious. Afterwards, these terms are further multiplied by the breathing (inhalation) flow rate, the
fraction of viral-containing particles that deposit in the respiratory tract and the inward filtration efficiency
of a face mask, if worn:

t2
VD(D) = C<t7D) dt'finf'BRk'fdep(D) ' (1—77111): (14)
t1
where t; and t, are the start and end exposure times (in h), respectively; f;,¢ is the fraction of infectious
virus; fqep(D) is the (diameter-dependent) deposition fraction in the respiratory tract; and 7, is the
inward efficiency of the face mask (values between 0 and 1).

Note that the breathing rate is directly proportional to the dose, hence the physical activity plays an
important role in airborne transmission. Eq. (14) is valid for a single exposure from ¢; to ¢,.

If during the simulated event, the susceptible hosts are exposed to multiple independent exposure
scenarios (e.g. they leave the enclosed volume for a lunch break) or in every state-change (e.g. windows
open, outdoor temperature change), the dose is given by:

n tit1
VD(D) :Z/t : C(tvD) dtflnfBkadep(D>(1_771n)7 (15)
=1 Z

where t; and t;,, are the start and end times (in h) of each sub-exposure, respectively; n is the total
amount of independent exposures in the same event (i.e. subject to the same concentration profile).

The total dose (in infectious virions) then results from the sum of all the doses accumulated for
each particle size; it is given by an integral of the form

Dmax
vDrral — / vD(D) dD. (16)
0

The above is computed using a Monte Carlo integration: many different diameter samples are generated
using the probability distribution from Eq. (4), the dose from each of them is then computed, and their
average value over all samples represents a good approximation of yDtotal (provided the number of
samples is large enough).

2.4.1 Infectious virus fraction (fi,¢)

The aforementioned studies in the section above show the probability of isolating infectious SARS-CoV-
2 viruses in serum samples increasing with viral loads larger than 10° RNA copies mL’, reaching a
probability of approximately 90% at 10" RNA copies mL”’ [21,61]. For airborne samples, data also
shows that only a fraction of viral RNA copies are found to give positive culture. Past studies with
Influenza virus have found positive cultures in 30 % of 140 aerosol samples using a Gesundheit-1I (G-II)
human source bioaerosol sampler [64], corresponding to a mean swab viral load of 8.9 log; RNA copies.
Recent studies for SARS-CoV-2 showed successful virus isolation in 15%, 45% and 82% of samples
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collected from outpatients, inpatients and ICU patients, respectively [65] and 3 %, out of the 66 aerosol
samples in another setting, were cultured while wearing masks, 2-3 days post symptom onset [66]. This
provides evidence on the presence of infectious virus in aerosolized particles which depends on the initial
viral load vl;,,, although the exact ratio between RNA copies and infectious virus is extremely difficult to
determine with precision, especially when translating between in vivo and in vitro which may include
other influencing factors such as post-illness onset day, the presence of antibody titre, which differ from
the symptom onset, and host immunity or even the air sampling mechanism used. In absence of a simpler
way of modeling these complex effects, we propose a novel approach to this parameter which can take
into account the current population’s host immunity (HI), which evolves over time and requires a regular
update. The higher the host immunity of the infected person, the larger is the expected antibody titre
gained either from natural exposure or vaccines. The fraction of infectious virus can be estimated by:

finf = Tinf * (1 - HIinf)a (17

where 7;,¢ is the viable-to-RNA virus ratio as a function of the viral load inside the infected host, with
values ranging between 0 and 1; HI;,; represents the percentage of the infected host immunity which can
be tuned to respect the up-to-date situation in any given population.

Values for ry,; are determined analysing the aforementioned data [64—66], assuming transmission
in indoor settings occur up to mild/moderate illness not needing hospitalisation, we derive the following
uniform distribution ranging from 0.15 to 0.45.

Increasing HI;, ¢, would skew 7;,¢ to lower values, reducing the amount of viable viruses within
the count of aerosolized viral copies, since more RNA viruses are likely to be bound to antibodies. As
an example, the Pfizer—BioNTech and Oxford—AstraZeneca vaccines offered a 79% and 60% protection
against the S gene-positive samples (covering VOCs like Delta) [67] and, at the time of writing , 55%
of the population in Geneva, Switzerland have had their second dose, exclusively from mRNA vaccine
technologies. Hence, in this case: HI; ; = 0.79 - 0.55 ~ 0.43. If HI is unknown or strapped with large
uncertainties, we suggest to apply a conservative approach and assume no existing host immunity, i.e.
HI=0.

2.4.2 Inward effect of face covering (1);,,)

In case the occupants are wearing PPE (e.g. respirators), such as N95 and FFP2, both the filtration
efficiency and leak-tightness requirements are defined in the concerned test standards in the USA or
European Union, i.e. NIOSH-42 CFR Part 84 [68] and EN 149 [69], respectively. Both standards use
a mean particle size of a factor 10 smaller compared to those of surgical masks: 0.3 um. According to
EN 149, the material filtration efficiency and inward leakage requirements for FFP2 are 94% and 8%,
respectively, providing an overall inward efficiency 7;,, of 87 (£5) %. Despite knowing that source control
measures, e.g. surgical masks, are not meant as PPE, they are still found to have an inward efficiency
between 30% and 80% [41,70]. Other studies suggest values in between 25% and 75% [71]. This
variability might be linked to how well the mask is fitted to the wearer’s face. Similar to Section 2.1.3, we
profit from empirical data [38,41,42,71] to derive the inward efficiency of surgical masks and use the
standard certification values for PPE, which include fitting requirements. Hence we propose to model 7,
with uniform distributions having the following ranges of variation:

~ J[0.25—-0.80] surgical masks,
T = [0.83 —0.91] PPE (respirators).

In the proposed model, a constant value of 7, is equally applied to all susceptible hosts; n;,, = 0 if
no masks are worn.
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2.4.3 Effect of particle deposition in respiratory tract (f ep)

From a pure physical point of view, the respiratory tract acts as a filter where particle deposition is
distributed along its depth [27]. Similar to a mechanical filter, the three main mechanisms are i) inertial
impact: large particles (> 2.5 um) generally deposit in the nasopharyngeal region down to the bronchi; ii)
diffusion: very small particles (< 0.3 um) diffuse and deposit randomly on the surfaces of the airways
and iii) sedimentation: intermediate-size particles (between 0.3 um and 2.5 um) - that are small enough
to go into bronchioles and alveoli but big enough to avoid the Brownian motion effect - penetrate deep
into the lower respiratory tract [72]. COVID-19 infections can occur from SARS-CoV-2 virus binding
to ACE2 receptors which are abundant in nasal and bronchial epithelium and alveolar epithelial cells,
covering both upper and lower bounds of the tract [73]. The virus can start replicating in the nose/mouth,
migrating down to the airways and entering the alveolar region of the lungs to induce acute respiratory
distress [14]. Therefore, it is not prudent to consider that only the smallest particles that reach the lungs
contribute to the infection and we assume the total deposition in the respiratory tract, independently on the
precise location. With this said, one can conclude that the fraction of inhaled particles that are absorbed
in the respiratory tract (fg.p) is greater than zero, however, the respiratory tract does not absorb all the
infectious aerosols which are inhaled. Even if all the particles penetrate into the pulmonary region, not all
are absorbed by a susceptible host since a fraction of these particles will be re-ejected once again from the
airways, while exhaling, therefore 0 < fq., < 1. A suitable practical illustration is the observation that
individuals can inhale and exhale smoke particles.

In this paper, we use the well established aerosol deposition model by Hinds [72](Supplementary
Eq S.1 & Fig. S.8), which is based on data from the International Commission on Radiological Protection
(ICRP), averaged for males and females and at different physical activities (seated, light and heavy). In
this model, fge, depends on the aerosol particle diameter (after evaporation). One can also compute
average values using plain Monte Carlo sampling for the diameter (with the BLO model introduced in
Section 2.1.2), thus obtaining a mean (SD) of 0.33, (0.116), 0.484 (0.224) and 0.519 (0.228) for breathing,
talking and shouting, respectively.

2.5 Estimation of the probability of airborne transmission

As discussed above and at the time of writing, a dose-response model for SARS-CoV-2 has yet to be
developed. In this study we’ve adopted the findings by Watanabe et al. [18] for the SARS-CoV virus,
where an exponential fit to a dose-response for SARS has been derived, and most recently a similar
approach was adopted for a SARS-CoV-2 exposure to primates [19]. Assuming a human dose-response
for SARS-CoV-2 also fits an exponential model, the probability of a COVID-19 infection is represented by

thotal

total . %'Tvoc(ﬁ)
P(IVD** IDsy) =1 —e v/, (18)

where P([ ]thOtal, IDs;) denotes the conditional probability of event

I' (infection) for given values of the absorbed and infection doses .11 5. Recommended values for T
total . . . . . LYo

vD and IDsg, respectively. T, is the reported increase of trans- based on reported increase in transmissibil-

missibility of a VOC, given by the ratio of basic reproductions num- % 74}

bers (Ry) between non-VOC strains and the VOC itself (Table 2). Variants Thooe
HI,yp, is the host immunity of the exposed occupants. The infectious Original strain 1
dose D5 corresponds to a dose required to cause infection in 50% of Alpha 078
those exposed, and the constant In(2) ensures that setting vD = D5, Beta 0.80
(with Ty = 1 and Hl,, = 0) yields a probability of 50%. Note that Gamma 0.72
the inhaled viruses may find a source of resistance caused by either a Delta 051

pre-existing immunological condition, due to past exposure (natural or
vaccine), or due to environmental conditions, such as indoor air humid-
ity [53], which would decrease the probability of transmission for the same absorbed dose. Such effect
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can be considered in HI,,, which effectively shifts the P(/ \thOtal) curve to the right. For a hypothetical
100% immunity (HI,,, = 1), the infectious dose will tend to infinity. Similar to Section 2.4.1, the authors
recommend a conservative approach in case the host immunity parameter is unknown, i.e. Hl.,, = 0. On
the other hand, the presence of new emerging VOCs are found to result in increased transmissibility in the
population [74], which would, in turn, increase the probability of infection for a given dose.

The probability of infection P(I) can be determined by integrating Eq. (18):

—+00 “+o00
P(I) = / / P(IVD® D) £(vD) £(IDs) d vD'd IDy, (19)
0 0

in which f(vD™"!) and f(IDs,) represent respectively the Probability Density Function (PDF) of v ™!

and IDx,. The variability of the simulated dose is accounted for by means of a probabilistic approach
using Monte Carlo sampling of the model variables (Section 2.5.2). By neglecting the effects of such a
variability, P(I) would be underestimated [6]. P(I) can also be considered as the attack rate, where the
number of new infections (V) is the product of P(I) by the number of exposed individuals in the room
which, in turn, is equivalent to Ry, if only a single individual (I = 1) is infected during transmission.

The exponential term of Eq. (18) considers a constant emission rate with a homogeneous mixture
and a steady-state viral concentration, which varies with the ventilation rate. This study will cover the
transient effects of the evolution of concentration over time, since a steady-state assumption is a limitation
compared to the dynamics of real-world indoor outbreaks. Another limitation relates to the deterministic
implementation of exponential relations, such as the Wells-Riley model, which is adapted to a well-known
pathogen and large populations [6]. For volume-specific risk assessments, where a small population size
is foreseen, a probabilistic approach is necessary.

The ratio between the number of new infections and susceptible hosts corresponds to the attack rate
(i.e. infection probability) of a certain hypothetical outbreak.

The infection model only predicts transmission of secondary cases with the assumption that the
incubation period is longer than the time scale of the simulation. Since the incubation period of COVID-
19 is 1-2 weeks [75], the evaluation should be within this timeframe. This assumption is acceptable since
He et al. [3] which found less than 0.1% of transmission to secondary cases 7 days prior to symptom
onset. It is important to note that the results of infection probabilities only take into consideration the
airborne transmission of the virus. It does not include short-range aerosol exposure (where the physical
distance of 1-2 meters plays a critical role), nor the other known modes of transmission such as fomites.
Hence, the results from this study are only valid when the other recommended public health & safety
instructions are observed, such as adequate physical distancing, good hand hygiene and other infection
prevention measures.

2.5.1 Infectious Dose (1Dg5;)

The number of infectious viral particles needed to cause an infection of a disease defines the infectious
dose of the pathogen. Such a dose depends on various factors, such as; the type of exposure (aerosol;
intranasal; fomite) causing infection and how the immune response reacts once exposed [76]. In virology,
the infectious dose is normally defined using a dose-response model expressed as ID5, (median dose)
that causes infection in 50% of the exposed individuals, in vivo; or, in vitro, when inoculating cell
culture, expressed as TCID5q (median tissue culture dose). The precise dose-response for human hosts
via airborne transmission of COVID-19 is not yet determined, hence we have opted for data reported
for other coronaviruses [18]. Based on dose-response measurements of other known coronaviruses, e.g.
SARS-CoV, the ID5( via airborne transmission was modeled at the equivalent of 280 plaque-forming
units (PFU) (95% Confidence Interval (CI) from 130 to 530 PFU) [18]. Even lower values were found for
other respiratory viruses like influenza, with an inhalation of TCIDg, between 0.7 and 3 PFU that was
enough to cause seroconversion, as well as prolonged wheezing and vomiting [77]. For SARS-CoV-2,
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a more recent study with nonhuman primates showed an exposure of 52 TCID5, was enough to cause
seroconversion and 256 TCIDs5 for the presence of fever [19], with a dose-response curve likely to
equally fit an exponential model.

Based on a preliminary collection of experimental studies and modeling estimates, the median
infectious dose for SARS-CoV-2 is likely to be between 10 and 1000 infectious virions [78]. Nonetheless,
in the absence of relevant statistical data, we have opted to use a probabilistic approach with values
ranging from 10 - 100 infectious virions, which the authors deem reasonable for a novel agent in a
fully susceptible population. This might also be a safe assumption without knowing the heterogeneous
infectivity distribution of the respiratory tract such as for the influenza virus, for example, where ID5
is about two orders of magnitude higher by intranasal inoculation compared to aerosol inhalation [20],
hence a range of values is acceptable in the absence of such data. The infectious dose is considered as a
constant parameter in the model.

2.5.2 Probabilistic approach to the estimation of vDtotal

In this paper, the dose vD™* i calculated solving the integrals in Eqs. (15) and (16) for some given time

intervals, plugging-in the concentration function from Eq. (13), where the presented variables (e.g. feps
BRy, etc.) are considered as time invariant. To account for the aleatory uncertainties, most variables are
treated as random, with the result that vR, calculated by Eq. (1), is considered random as well. Concerning
the viral load vl;,,, a distribution function has been obtained using the Kernel Density Estimation (KDE)
technique. Table 3 summarizes the adopted distribution models and the related statistics.

In the paper, we refer to f(vD"*) and F(vD™") respectively as the PDF and the CDF of vD"**!,
The values of such PDFs and CDFs are estimated by applying Eqgs. (1), (13), (15) and (16) for each value
BRy and vl;, obtained by plain Monte Carlo Simulations (MCS) from the distribution models described
in Table 3.

Table 3: Summary of random variables for the infection model

Random (stochastic) variables

Expirato . Mean or . Fittin
Alc):tivit;y Variable Symbol [Range] SD Unit DistributiongModel
Breathing flowrate BR,
Seated BR,, 0.51 0.053
Standing BRg; 0.57 0.053
Light activity BR; 1.24 0.12 m>h! Log-Normal
Moderate activity BR,, 1.77 0.34
Heavy activity BR;, 3.28 0.72
All -
' log;o RNA Gau.ssmn I.(ern.el
Viral load vl 6.6 1.7 ) .1 Density Estimation
copies mL from dataset [23]
. Min,surgical [025 - 0.80] .
Mask efficiency nin,Pi . [0.83-091] - - Uniform
viable-to-RNA rme [015-045] - . Uniform
virus ratio
Infectious dose D5 [10 - 100] - PFU“ Uniform

a . . . . . .
The dose can simply be expressed as infectious viruses or viable viruses

16


https://doi.org/10.1101/2021.10.14.21264988
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.10.14.21264988; this version posted October 14, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

3 Occupation and activity profiles

The model supports a piecewise occupation profile where both the infected or exposed hosts can migrate
in and out of the room at a given time, representing a close to real-life occupancy. In addition, we included
a set of default activity profiles in terms of vocalisation activity and physical effort, which provide a
weighted average of viral emissions, depending on the type of activities performed in each scenario.

The scenarios chosen in this study, and their respective baseline activities, adopted measures
and geometric parameters, are summarized in Table 4. The baseline preventive measures are not a
representation of any particular real-life scenario, and shall not be used as a comparison with actual
settings or to local public health related measures. We consider that during the breaks, the occupants leave
the room and do not gather together in another indoor space, i.e. it considers a lapse of time where the
occupants are not exposed to any airborne viruses.

Table 4: Baseline scenarios used to generate results. By default, no masks are used. The preventive measures are not a representation of any
particular real-life scenario, and shall not be used as a 1:1 comparison with actual settings or to local public health related measures.

i Vol
Baselm‘e Activity Occupation Ventilation 2 u3m ¢ VOC. &
Scenario (m”) Vaccine
Office-type: T ?:f(; l:ft) jf_tS; Natural:
Shared i Spéakmg 1/3 of - 8h workday 1'.6 X 02 >,
the time, seated (partial) window 50
office o exposure '
Indoor humidity: ~1h lunch opening, summer
40 <RH < 60 % season
break
Training-type: 20 occupants; Natural: Delta
- Teacher: speaking, 1 infector Periodic opening VOC
light activity (teacher): 1.6x0.2m & non
Classroom -Students: breathing, - 8h class (partial) window 160 vaccinated
seated - 1h Lunch + opening, winter occupants
Indoor RH < 40 % 2 yard breaks season
_C(S)Hggrllkei-typ 3 4 occupants;
Ski cabin p & 1 infector: - 10
moderate activity - 90 min ride
Indoor RH <40 %
Benchmark . 4
. Singing-type: 61 occupants;
scenario: . . .
Skaoit valley Shouting, 1 infector: Mechanical: 210 Oricinal
£ Y light activity - 2h30min 0.7 ACH &
chorale Indoor 40 < RH <60 % exposure Strain
outbreak [79] ? P & non
Benchmark Seden'tary—type: 68 occupants: vaccinated
. - Talking, . . occupants
scenario: Bus seated 1 infector: Infiltration: 45
ride outbreak Indoor humiditv- - 1h40min 1.25 ACH
[80,81] Y exposure

40 <RH < 60 %

To benchmark our model we used a case study of the epidemiological investigation into the Skagit
valley chorale outbreak by Miller at al. [79] and the investigation among bus riders in Eastern China by
Shen et al. [80]. The Skagit valley chorale outbreak recorded an attack rate between 53% and 87%, and
34% in the case of the bus ride outbreak.
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4 Results
total

To assess the accuracy of the model, the viral emission rate vR was benchmarked against experimental
data and tuned to the datasets for SARS-CoV-2 [64, 82, 83] (Supplementary Fig. S.9), with a particle
concentration of 0.06 and 0.2 cm™ for the B and L modes, respectively. The mean NP(swab)-to-aerosol
RNA copy number ratio (vl;, /vl,,) ranges between 2.4 - 10° for breathing and 7.5 - 10° for shouting.

As aresult of the probabilistic approach from a MCS of 250 000 samples, the Mean (SD) of vRo!
for breathing, speaking and shouting was 0.2 (1.7), 1.6 (1.7), 2.3 (1.7) log; virion h', respectively (Fig. 1).

Note that the absolute values of the emission rates differ mathematically when computing the mean:

total
10400810 VBT 4 (wR%Y) For visualization purpose we opt to show p(log;ovR*®). The emission

rate was dependent on the expiratory and physical (metabolistic) activities (Supplementary Fig. S.10).
Standard vocal (speaking) activities increased the emission rate by one order of magnitude compared to
tidal breathing, while louder vocalisation activities (shouting/singing) yielded an increase of two orders of
magnitude. The physical activity also increased the emission rate, yet with a smaller weight compared to
the activity (2.5-fold for speaking and 6.5-fold for shouting, compared to tidal breathing).

Viral Load
Breathing
Speaking
Shouting
=== Mean

2 3 4 5 6 7 8 9 10 -4 -2 0 2 4 6
Vlin (log1o RNA copies mL™1) VR (log virions h~1)

Figure 1: Results of the MCS of the viral emission rate distribution for an infected host breathing, speaking and shouting, while undertaking
sedentary physical activity (seated) and comparing with the viral load distribution. Dashed lines correspond to the mean of the log values.

The vertical axis of the histograms corresponds to the estimation of distribution PDFs. Median vR™"! values: 3, 67 and 349 virion ! for
breathing, speaking and shouting, respectively. The values are without the effect of face covering (1, = 0).

The distribution of vR"" ranges 7 orders of magnitude from the 1% to the 99 percentile. This is
due to the large variability of the viral load in assessing the emission rate (Fig.1, Supplementary Fig. S.10).

Simulations where the infected host is wearing a surgical-type mask shows an average 5.3-fold
reduction in the emission rate. This ratio seems to be maintained through different physical activities
(5.2-, 5.4-, 5.2- fold for seated, light and heavy activities, respectively).

The successive application of Egs. (1) and (13), generated by MCS on the distributions in Table 3,
allows corresponding samples of the viral concentration C'(¢) (integrated over all aerosol particle diamet-
ers) to be calculated and, therefore, the estimation of its mean and significant percentiles at any given
time. Following this approach for the baseline scenarios we obtain a peak mean concentration of 3 [90%
CL: 1-107° - 10], 14 [90% CI: 5 - 10~° = 47] and 220 [90% CI: 6 - 10~* — 710] virionm™ for the shared
office, classroom and ski cabin scenarios. As for the mean cumulative dose absorbed by the exposed host
(vD'**™), we obtained 3 [90% CI: 3 - 10" - 15], 10 [90% CI: 1-10~* = 50] and 17 [90% CI 2 - 10~
— 86] infectious viruses, for the exact same scenarios. Once again the wide confidence interval is gov-
erned by the viral load distribution, as previously discussed. We also compared the effectiveness of dif-
ferent measures deviating from the baseline, in order to understand their effectiveness. The results from
the shared office scenario show that combining mask mandates induce a 11-fold decrease in the cumu-
lative dose, while closing the window accounts for a 3-fold increase (Supplementary Fig S.11). In the
classroom scenario, we tested different natural ventilation regimes, as well as face covering and air fil-
tration measures. The results are plotted in Fig. 2 with source control (masks) being the most effective
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- Baseline (20cm window, winter) —— Baseline (20cm window, winter)

40 Window closed : HEPA filter (5 ACH)

—— 60cm window open during breaks (winter) :
60cm window open (summer)

~12

L25 15.0 1 —— Surgical-type masks (20cm window, winter)

30

-
o
o

Mean concentration exposure
(virions m~3)
N~
S
Mean cumulative dose
(infectious virus)
Mean concentration exposure
(virions m~3)
~
&
Mean cumulative dose
(infectious virus)

0.0

0 2 2 6 8 0 2 2 6 8
Exposure time (h) Exposure time (h)

(a) Natural ventilation scenarios (b) HEPA filtration and face covering scenarios

Figure 2: Results of the viral concentration profile over the exposure time and the cumulative absorbed dose, in the classroom scenario, for
different combination of measures. The solid lines represent the concentration (left y-axis) and the dotted lines represent the cumulative dose
(right y-axis). The horizontal section of the dotted lines correspond to the breaks (starting =2 and #=7 h for 30min in the playground and =4
h for 1h lunch), where the infected and exposed hosts leave the room and are not in contact for the its duration. a) illustrates the scenarios
with different natural ventilation scenarios and b) the effect of HEPA filtration and masks. Note that the scale of both y-axes differ from
the two subplots a) and b). For visualization purposes, the confidence interval is not represented in the figure, these values can be found in
Supplementary Table S.4.

measure with a 12-fold decrease in cumulative dose. Closing the window or choosing to open it only dur-
ing playground (yard) and lunch breaks increases the absorbed dose by a factor 2.2 and 1.6 (compared
to the baseline). The effect of proper HEPA filtration is comparable with a full opening of the window
during summer, between 1.6- and 2.1-fold decrease in the dose. In this study, opting to fully open a win-
dow (60 cm) in the summer is slightly more effective than partially opening the window (20 cm) in the
summer, vD'% =10 [90% CI: 1-10™* — 50]; vD%% =6 [90% CI: 7- 10" — 30] virions.

Out of the three baseline scenarios, ski cabin provides the largest cumulative dose figures, yet again
yielding a 12-fold decrease in the case of the occupants wearing masks (Supplementary Fig S.12).

Solving Egs. (18) and (19), we estimate the chances of secondary infections in each of the scenarios
in the study, as well as for the two benchmark scenarios. Assuming the occupants are exposed to an equal
amount of viruses performing similar physical activities, we can also estimate the number of potential
secondary (new) cases, [V, arising from an index host, by multiplying the infection probability with the
number of exposed hosts. The probability of disease transmission is 0.06 [90% CI: 8 - 107" - 0.37],0.13
[90% CI: 3 - 107° - 0.78] and 0.17 [90% CI: 5 - 107° - 0.93] for the three baseline scenarios assuming the
index host was infected with the Delta VOC and none of the occupants were vaccinated (Supplementary
Table S.5).

Fig.3 illustrates the importance of the viral load during the potential transmission event where, e.g.
in the ski cabin scenario, the wearing of masks reduces the total probability of infection (i.e. including
all the random variables) from 16.9 to 3.7%. Supposing the index host is a super-emitter, at peak viral
load of about 10° copies per mL, by prescribing masks, we reduce the mean probability from 83 to 20%
and can reduce even further to 6% by ensuring such rides are below 10 minutes of duration. The results
without masks should be taken with caution as it may underestimate the transmission probability in this
particular setting, due to potential short-range airborne exposure.
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Figure 3: Probability of infection in the ski cabin scenario, and related dependency on the viral load. Results assume the index host was
infected with the Delta VOC and none of the occupants were vaccinated. (i) Expected probability of infection for a given viral load value,
with mean (solid line) and 90% CI (shaded area). Comparison between the baseline scenario (blue curve) and situations with stricter set of
measures. The x markers denote the critical viral load vl.,.;; ,<0.05 in each situation. The dotted line correspond to the hypothetical viral load
of the infected (index) host. (ii) Histogram of the viral load data from [23]. The vertical axis corresponds to the probability density function
of the adopted distribution. The dotted line indicate the the hypothetical viral load of the infected (index) host. (iii) Set of histograms of the
conditional probability of infection P(I|v1), one for each scenario, showing the results of the MCS, including the integration on the full range
of viral load data in [23]. The P(I) values shown in the middle of each histogram plot indicate the full probability (as per Eq. 19).

Our model can compare the risk with different VOCs in circulation, as well as the effect of
vaccinated occupants. Fig.6 shows this comparison using as example the chorale outbreak, which had a
confirmed attack rate in between 53 and 87% [79] and our model result is 72% [90% CI: 45 — 89]. If the
event would have happened today, one could question what the impact of emerging VOCs and vaccination
roll-out would be. Assuming the index host was infected with the Delta variant, the mean transmission
probability would increase from 72 to 92% and the outbreak would have recorded 12 additional secondary
infections (55 [90% CI: 41 — 59] in total). On the other hand, if all the occupants were fully vaccinated
with, e.g., an mRINA vaccine offering 92 and 79% protection against S gene-negative and -positive samples,
respectively [67], this would have reduced the transmission probability from 72 to 41% in the case of
Delta, and to 12% in the case of Alpha. Other risk mitigation measures such as improving ventilation
from 0.75 to 4 air changes per hour (ACH) are far more effective, reducing the risk from 72 to 4%.

5 Discussion

Modelling the emission and concentration of pollutants or harmful airborne agents in a room has been
used extensively in occupational health & safety, namely for carbon dioxide and other chemicals [84].
The same fundamental physical approach was used for airborne viruses.

With this study we were able to develop a methodology and algorithm to assess the risk of airborne
transmission, which can be used by facility managers, occupational health experts or interested individuals.
Building on existing research done by aerosol scientists [12], we have extended the tool to include
important epidemiological, virological and immunological parameters. Using this COVID Airborne Risk
Assessment (CARA) modeling tool, our main findings are: 20% of infected hosts can emit approximately
2 orders of magnitude more viral-containing particles, suggesting the importance of super-emitters in
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airborne transmission; the use of surgical-type masks provide a 5-fold reduction in viral emissions; air
filtration and natural ventilation through the opening of windows at all times are effective strategies to
decrease the concentration of virions; slightly opening the window in the winter has approximately the
same effect as a full window opening during the summer; a critical value of vl;; o o5 = 10° RNA copies

mL" could be used as the concentration threshold limit for definitions of an acceptable risk level; and
pharmaceutical interventions can be included in the model to study the impact of host immunity in a given
population.

Every model should be benchmarked with real-life experimental data. However, human clinical
in vivo trial data studying the infection probability and dose response for SARS-CoV-2 is unknown
to the authors. Nonetheless, we proceeded with a step-by-step validation of the model with available
experimental findings and high level epidemiological investigation data for the main methods in the
algorithm.

One of the major parameters in modelling airborne pollutants is the generation source term of the
hazardous aerosols. Understanding this important aspect, we were cautious to analyse the model results
for viral emission rate against those found in literature, across two separate domains: 1) the physiological
aspects linked to the particle concentrations and size distribution and 2) the virological aspects linked to
the viral load of the exhaled particles. For the former parameters, the values in Table 1 match the extensive
literature review of about 20 publications by Bourouiba (Fig. 6, 7 in [33]). As for the virological aspects,
the published data available is scarce [64, 82, 83], although the results of the model were still compared
to studies using an human source bioaerosol sampler capable of reproducing the wanted measurements
(Supplementary Fig. S.9). For breathing our model was tuned to fit experimental data on SARS-Co V-
2 (measured average ratio in the order of 10%; model results: 2.4 - 106), although the swab-to-aerosol
viral load ratio is likely to be host-virus-specific (i.e. differing between humans and animal models)
as the results in humans for influenza show higher values compared to SARS-CoV-2 (Supplementary
Fig. S.9a), suggesting 1) different viruses react uniquely to the respiratory fluid properties, their location
and the physical process of fluid fragmentation from mucosa to a particle spray. Since the majority of the
volumetric particle emissions, while breathing come from the bronchial region, the viral abundance in
that location, of the influenza patients would justify higher ratios; 2) the natural immunological control
in the population, for viruses that have been in circulation for decades (such as influenza), which would
correspond to higher levels of specific and cross-protective antibodies, yielding a lower amount of viable
virus per RNA sample.

Comparing the emission rate results with the expiratory activities, we found one order of magnitude
increase from breathing to speaking and a further order of magnitude increase from speaking to shouting,
which confirms the importance of vocalisation in indoor risk assessments. In fact, the expiratory activity
has a overall higher effect on viral emissions increase than the physical activity, since someone shouting
while seated yields larger emission rates than breathing under heavy physical activity (e.g. while at the
gym). As expected, the distribution of VR g highly governed by the range of viral load data used in the
simulation, visually illustrated by the shape of the PDFs in Fig. 1. Although one could define boundaries
to reduce the variability of the data, we would lose the real-life effects of the particular dynamics of this
disease.

Comparing these results with the Skagit Valley Chorale superspreading event [79], where the authors
used the Wells-Riley formulation to derive the so-called quanta of infection using reverse engineering from
the outbreak investigation. The quanta (q) can be considered as a cluster of inhaled pathogens (SARS-
CoV-2 virions in our case) required to cause infection in 63% of those exposed [85]. In other words, q
can be interpreted as the number of inhaled virions divided by the infectious dose at 63% probability
(IDg3): q = Idf)’:i, where IDg3 = ID5q / In (2). For the chorale outbreak, a mean quanta was estimated
total

at 970 q h !, assuming an infectious dose between 10 and 100 infectious virions we get vR from
1.4-10* to 1.4 - 10° virion h™". This would correlate for our results in the range of the 75" and 95"
percentiles for someone shouting undergoing light activity (Supplementary Fig. S.10), which would be
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consistent with a superspreading scenario reported by the authors and the findings by Endo et al [86]
which modelled about 10% of infectious individuals (i.e. 90" per.) are responsible for the majority
of secondary infections. These results could also indicate that the index host of the chorale outbreak
had a viral load in between 10° and 10° copies mL™". Such findings also support the notion of super-
emitters in airborne transmission where a small subset of infected hosts (>80" per.) emit approximately 2
orders of magnitude more viral-containing particles, compared to the median, for any given expiratory
activity. In part, it may correlate to a few individuals which are found to emit much more particles than
others [16] and also shed much more viruses [23]). Another outbreak during a bus ride to a worship event
in eastern China, with a potential for airborne spread, was reported [80] and a quantum rate of 45 q h!
([6.5 - 10> — 6.5 - 103] virion h‘l) was derived based on the epidemiological study [81]. In our results,
this value would correspond to an index host speaking while seated, in the 70" t0 90" percentile range
and could indicate a viral load during transmission in between 5 - 10" and 5 - 10° copies mL™. Speaking
during the voyage could well be considered as an accurate assumption since the occupants of the bus
where all attending the same worship event [80], having similar interests and a common topic, leading to
a sustained conversation during the duration of the bus ride. Such assumption might not be extrapolated to
similar exposures in public metropolitan transpiration, where the occupants are generally not speaking to
each other. Furthermore, the results of VR are also cross checked against literature data gathered by
Mikszewski et al [87] (with the Wells-Riley approach), converted into virions to compare with vRrot!
(Fig. 4). Note that the literature values used in Fig. 4 were normalized to the same infection coefficient,
independent on the type of virus. Knowing that viruses might differ in terms of virulence, this assumption
is deemed acceptable since the original reverse engineering application of the Wells-Riley equation from
epidemiological data does not include any viral infection dose [13].

SV Chorale
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Figure 4: Comparison of the viral emission rate from this study with those reported in outbreaks. SARS-CoV-2 (model) reflects the result from
the MCS for a light physical activity and different expiratory activities (Breathing, Speaking, Shouting). The violin plots denote the histograms

of vRtOtal, with the bottom and top bars indicating the 5" and 95" percentiles and the larger bar in-between indicating the mean. Literature
Data (recorded outbreaks) is a collection of emission rate values published by Mikszewski et al [87], with values in infectious quanta
(following the Wells-Riley approach adopted by the authors), converted into virions, normalized with an infection coefficient by multiplying

the values in Table 3 of Ref. [87] with the infectious dose distribution used in this study (VRtoml = quanta * ID5q / In(2)). The boxplots
illustrate the result of this quanta-to-virion conversion, denoting the mean (IQR), minimum and maximum values of each distribution.

The results for the use of face masks in the model is in agreement with Asadi et al., where the effect
of particle emissions with surgical masks was studied and measured a factor 6 reduction [38], compared
to a 5.3 reduction factor given by our model.
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We assume a homogeneous dispersion of virions in the room, hence potentially underestimating
the infection risk for the occupants in close proximity to the infectious source [6]. In epidemic model-
ing, adopting the homogeneous mixture assumption is generally more reasonable than theoretically re-
constructing the layout, airflows or interpersonal distances of the precise event where the transmission
took place [20]. This assumption implies that: 1) a proper interpersonal distance of at least 1.5 — 2 m
is ensured; 2) a single-zone ventilation mode; and 3) occupants are not in the same ventilation stream-
flow. These conditions (in particular the interpersonal distance) imply a slight overestimation of the risk
of the long-range airborne transmission for short-term exposures, due to the time needed for the viruses
to disperse and mix within the volume. The assumptions could be relieved by performing case-specific
Computational Fluid Dynamics (CFD) simulations at the extra cost of a dramatic increase in complexity
and computational time, thus hindering the benefits of a quick and easy risk assessment. Nonetheless, the
authors are investigating on an analytical approach to include short-range airborne transmission in this
infection model, as a potential future upgrade.

The simulations for typical shared offices show that exposure to airborne viruses is almost negligible
when the occupants are wearing masks and slightly opening the windows ensuring a minimum amount of
air exchange (maximum ACH: 3.8 h!in this case).

Recent guidance has emerged to encourage natural ventilation in classrooms [88], hence we focused
on the different possible modalities adapted to a typical school routine. The absence of ventilation in
the classroom is clearly a situation to avoid and simply fully opening the window during playground
and lunch breaks (ideally to avoid the fresh air intake when the room is occupied) is not very efficient,
resulting in a slight reduction (1.4-fold in exposure). Whereas, keeping a slight window opening during
the winter is 60% better, yielding a 2.2-fold decrease in the dose. This suggests natural ventilation through
the opening of windows at all times is an effective strategy to decrease the concentration of virions in the
air, contradicting published guidance in Europe [89]. We also tested the comparison between summer
and winter seasons and found that slightly opening the window in the winter has approximately the same
effect as a full window opening during the summer. This result was expected since the fresh air flow for
single-sided natural ventilation is proportional to v/AT - representing the difference between outdoor and
indoor temperature. This finding could be of high importance in settings where the occupants may argue
against this particular measure.

In practice the use of natural ventilation via open windows might be found to be either i) uncom-
fortable for children due to low outdoor temperatures during the winter; ii) highly polluted outdoor air
or iii) a source a distraction from external nuances. The best solution would be to equip schools with
properly sized mechanical HVAC systems, although it is sometimes complicated to perform retrofitting
works within existing installations. A quick, easy, affordable and effective solution would be the use of
HEPA filters. Installing HEPA filters ensuring, as a minimum, Ay zp(0.8) = 5 h™ ', would reduce the
mean absorbed dose by a factor of 5 compared to having the windows closed without further measures.
Measurements performed in classrooms reported a similar result showing that inhaled dose is reduced by
a factor of 6 when using air purifiers at 5.7 h'! [90].

To summarise, natural ventilation is less effective during the summer period, although still more
effective than the most conservative periodic venting scenario in Ref. [89]. Natural ventilation is,
nonetheless, very important and our study would suggest leaving the windows open at all times for
maximum viral removal efficiency. Analysing the effect of natural ventilation from a slightly different
angle, a study has shown that higher airborne pollen concentrations might have an effect on increased
infection rates [91]. Hence, opening the windows during the local pollen season may also induce a second
order, detrimental effect on the infection probability which is not included in this study. However, it is
safe to say that HEPA filtration will also help in reducing the pollen load in a given volume providing an
extra mitigation measure against this effect. A further study could aim at including the seasonal pollen
load as a variable in the model.

The model also exposes the relationship between viral load (vl;,,) and transmission probability. The
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conditional probability of transmitting the disease to other occupants for a given viral load value in a
defined indoor environment can be evaluated by analysing 3 different zones in Fig. 5. For viral loads
below a critical threshold value vl.,;; ,, the probability of infection is close to 0%, whereas above vl ;,
the probability is close to 100%. This demonstrates the aforementioned importance of the viral load of the
infected host at the time of transmission, showing how to maximise the chances of breaking the chain of
transmission - i.e. reaching P(I|vl) = 0.

By defining the critical limits at 5 and
95%, the threshold values can be annotated as
Vlerit p<0.05 and vle,is ,>0.95- They depend on
the effectiveness of the prevention measures; by
adding stricter measures the graph would move
to the right, whereas relaxing the measures would
shift the values to the left. Therefore, a less conser-
vative approach in terms of preventive measures
would increase the likelihood of infectious hosts
with lower viral loads transmitting the disease, as T T T o T T e o
shown in Fig. 3. NP viral load, vlin

o
©
!
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Some countries opted to keep ski resorts
. . _ P Figure 5: Conditional probability of infection P(I|vl), with a 90% CI
open durmg the w1despread COVID-19 restrictions. (blue shaded area). vl.,.;; , and vl.,;; 5 are the critical threshold values

For a typical 10 IIl3 ski lift cabin, the recommended  up to which the probability of infection is close to 0 and 1, respectively,
maximum travel time is approximately 10 minutes dividing the range of viral loads into three shaded regions (in green,
. . . . orange and red).

with surgical type masks. Ski cabins generally

have a small opening on one side, although if we assume that the volume is not actively heated (e.g.
sensible heat from radiators) or passively heated (e.g. latent heat from the occupants), the outdoor and
indoor air temperature can be assumed to be in equilibrium. Hence the effect of removal rate from natural
ventilation (including infiltration) is neglected, as a conservative approach. The data also indicates that the
probability of infection follows a quasi-binary relationship, i.e., for a given scenario either transmission
will occur (P(I) ~ 1) or will not (P(I) ~ 0). This can be observed by analysing the histograms in
Fig. 3 (iii), where the majority of the samples generated by MCS on viral load distributions lead to a value
of P(I|vl) in the neighborhood of the lower and upper bounds 0 and 1. The probability of falling within
the orange zone in the baseline scenario (vl..;; ,—0.05 < Vlip, < Vit p—0.95) is 28%, which is spread
throughout the range 0.05 < P(I|vl) < 0.95. In our study, the rise in probability of infection for several
baseline scenarios occurs at viral loads higher than 10° RNA copies mL", which strikingly correlate to
the findings of van Kampen et al. [61] where the probability of isolating infectious SARS-CoV-2 viruses
in RNA samples starts to increase in the same range. A deeper analysis of Fig. 3 reveals the importance
of introducing appropriate measures that would shift the curves in plot (i) towards the right. Relaxing
preventive measures (i.e. shifting the curve to the left) would yield higher density of samples close to
P(I) ~ 1 and therefore increase the chances of transmitting the disease. This also shows the importance
and effectiveness of large scale diagnostics in asymptomatic or presymptomatic hosts early into their
infection, so that they are placed in isolation before the viral load increases beyond the critical value.

By adopting appropriate measures, tailored for the specific indoor environment, the user could apply
this critical threshold approach vl.,;; ,<¢.05 as a goal / objective for the risk assessment. Approximately

80% of the viral load samples in Ref. [23] are less than 10° RNA copies mL"' and approximately 95%
less than 10° RNA copies mL", therefore by applying control measures such that even with a potential
viral load during transmission of the infected host up to 10°, one still ensures a significantly reduced
chance of on-site transmission, i.e. Ve, ,<0.05 = 10, hence the risk assessment of airborne transmission
could be considered as acceptable. The residual risk linked to the remaining 5% of viral loads above
10° RNA copies mL”! might not be acceptable in settings which possess identified superspreading
characteristics, such as Crowded, Close-contact and Confined settings - three C’s (3C), or for settings
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involving a large gatherings of people, such as conferences, social events or concerts. For such settings
we recommend to either i) increase the threshold to vl ,<0.05 = 10'° RNA copies mL™", which would
probably require a non-negligible upgrade of venue layouts and ventilation systems, or 2) include, in
addition, other diagnostic measures such as a rapid antigen testing strategy of the participants. The latter
option would cover the residual risk of infected hosts with higher viral loads (>109), where this type of
diagnostic technique is most effective.

Choral scenario, with
improved ventilation (4 ACH):

Probability of infection

—— Choral outbreak (real-life)
. —— Delta, non vaccinated
---- Delta, vaccinated
Alpha, non vaccinated
Alpha, vaccinated

0.1 1 10 100 1000 10000
Dose
(infectious virus)

Figure 6: Probability of infection depending on the absorbed dose of infectious virus (vD). Comparison between the real-life outbreak scenario
at the Skagit Valley Chorale event [79] and how it would relate to the epidemiological conditions 18 months into the pandemic. The solid blue
line represents the model results of real-life scenario, with the shaded area corresponding to a 90% CI. The other solid / dashed lines represent
the conditions with different VOCs and vaccination status. The boxplots indicate the distribution of vD for the real-life scenario and with a
hypothetical ventilation improvement for comparison, with the box descriptors indicating the mean (IQR) and the whiskers indicating S5th and
95th percentile.

In this study, we also looked at the effect of pharmaceutical interventions, such as vaccination,
and epidemiological characteristics related to emerging variants of concern (Fig.6). Our findings suggest
the increase transmissibility of a given variant surpasses the counter effect of the vaccination when the
protection level (against the S gene sample in question) is lower than 1 — Ty, - in the case of the
Delta VOC, a protection of 49% would be equivalent to an non-vaccinated host infected with the original
(wild) strain. With a vaccine providing 79% protection against Delta, the chances of on-site transmission
reduced by a factor 6-fold. This analysis is valid as long as average viral loads remain similar from
vaccinated to non-vaccinated hosts; such parameter can be included in the model once accurate data is
available. Since the reasons for increase transmissibility is unknown (e.g. spike mutations that would
alter the infectious dose or an increased level of viral shedding, among others), a dedicated parameter
such as Ty,oc, which is based exclusively on epidemiological data, is most accurate. Vaccination and
host immunity is an important preventive and protective measure, however, according to this model, non-
pharmaceutical interventions such as ventilation, seem to be much more effective with a 14-fold reduction.
Hence, measures which reduce the viral density in the air should be actively supported and included
early in the risk assessment process. When performing risk assessments, it is very important to adopt the
hierarchical pyramid approach for protection measures, starting from eliminating, substituting or reducing
the hazard, following with engineering/scientific measures and administrative controls, and leaving the
prescription of PPE as a last (final) layer of protection, if needed.

To maximize the benefit and global use by the public, it is important that such models are accompan-
ied with a functional user friendly interface where the input parameters are simple and relatively easy to
identify by non-experts. An example is provided for the CARA calculator tool (Supplementary Fig S.13).
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6 Conclusions

Just like any other occupational health and safety risk, it is of vital importance to fully understand the
hazards and the rationale behind the preventive measures. A proper understanding of how respiratory
viruses are transmitted is an essential step towards ensuring proper protection. This paper focuses on
describing the airborne transmission mode of SARS-CoV-2 and proposes a multidisciplinary approach
to assess the most suitable preventive and protective measures. Facility managers, health and safety
professionals, as well as individuals must systematically address the risk of airborne transmission of
respiratory pathogens in indoor settings. Providing easy access to such models, despite their intrinsic
complexity, accompanied by a proper user friendly interface, will greatly facilitate the required analysis
to estimate the risk level. Although the notion of acceptable risk depends on national legislation and
corporate/organisational risk management strategies, this paper provides some guidance on how to
determine whether or not the risk of airborne transmission is mitigated. The COVID Airborne Risk
Assessment (CARA) tool, allows for such a quick and accurate assessment of the indoor setting, which
has been benchmarked against epidemiological and experimental data, as well as other published findings.
Having a simplified model obviously relies upon some of the assumptions and consequent limitations that
were discussed and justified in this study.

The present methodology is highly dependent on the viral load data and associated statistical
descriptors. The use of other datasets would have an impact on the results, which might modify the
findings of this study. Nonetheless, the authors were cautious to choose a distribution that would represent
a broad envelope by taking data during the exponential growth phase of the epidemic, yielding conservative
values compared to other less critical datasets, although this could be considered as a vulnerable aspect of
the model, it is one that can be tuned once further data is published. The same can be said with respect
to immunological effects. Plugging in data on the waning levels of population immunity (from either
natural infection or vaccination) from the time post-infection, or post-inoculation for different vaccine
technologies, would increase the accuracy of the dose-response relation. Hence, detailed modelling of
host immunity dynamics, as well as short-range airborne transmission (discussed above), will be subject
to a future upgrade of CARA.

To conclude, this study shows that with a risk-based approach, transmission can be mitigated in
existing infrastructures without major modifications or costly consolidations plans (e.g. optimizing of
the exposure time / occupation profile, ensuring sufficient natural ventilation adapted to the different
temperature profiles or using adequate face covering measures). In a post-COVID era, we will face a new
paradigm with the inclusion of this novel occupational hazard, using models and tools such as CARA to
endorse healthy buildings and protect their occupants against respiratory infections.
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