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Abstract.  

 

PET/CT images provide a rich data source for clinical prediction models in head 

and neck squamous cell carcinoma (HNSCC). Deep learning models often use 

images in an end-to-end fashion with clinical data or no additional input for pre-

dictions. However, in the context of HNSCC, the tumor region of interest may be 

an informative prior in the generation of improved prediction performance. In 

this study, we utilize a deep learning framework based on a DenseNet architec-

ture to combine PET images, CT images, primary tumor segmentation masks, 

and clinical data as separate channels to predict progression-free survival (PFS) 

in days for HNSCC patients. Through internal validation (10-fold cross-valida-

tion) based on a large set of training data provided by the 2021 HECKTOR Chal-

lenge, we achieve a mean C-index of 0.855 ± 0.060 and  0.650 ± 0.074 when 

observed events are and are not included in the C-index calculation, respectively. 

Ensemble approaches applied to cross-validation folds yield C-index values up 

to 0.698 in the independent test set (external validation). Importantly, the value 

of the added segmentation mask is underscored in both internal and external val-

idation by an improvement of the C-index when compared to models that do not 

utilize the segmentation mask. These promising results highlight the utility of 

including segmentation masks as additional input channels in deep learning pipe-

lines for clinical outcome prediction in HNSCC.   
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1 Introduction 

Deep learning has been studied extensively for medical image segmentation and clini-

cal outcome prediction in head and neck squamous cell carcinoma (HNSCC) [1]. While 

utilizing medical images in an end-to-end framework with no additional data streams 

has become commonplace, previous studies have noted the importance of adding re-

gions of interest in a deep learning workflow to improve predictive performance [2, 3]. 

These regions of interest may help deep learning models localize to areas that harbor 

more relevant information for the downstream prediction task of interest. This may be 

particularly salient for HNSCC patients, where the prognostic status is often informed 

by the re-appearance of tumor volumes in or near the original region of interest (recur-

rence/treatment failure) [4]. Moreover, PET/CT provides a rich source of information 

for the tumor region of interest in HNSCC [5] that may be combined with deep learning 

models to improve prognostic prediction, such as for progression-free survival (PFS). 

Therefore, the development of PET/CT-based deep learning approaches that can effec-

tively combine previously segmented tumor regions of interest with existing architec-

tures is an important component in exploring novel and effective HNSCC outcome pre-

diction models.  

 

In this study, we develop and evaluate a deep learning model based on the DenseNet 

architecture that combines PET/CT images, primary tumor segmentation masks, and 

clinical data to predict PFS in HNSCC patients provided by the 2021 HECKTOR Chal-

lenge. By combining these various information streams, we demonstrate reasonable 

performance on internal and external validation sets.  

 

2 Methods 

We developed a deep learning model for PFS prediction of HNSCC patients using co-

registered 18F-FDG PET and CT imaging data, ground truth primary tumor segmenta-

tion masks, and associated clinical data. The censoring status and time-to-event be-

tween PET/CT scan and event, imaging data, segmentation masks, and clinical data 

were used to train the model. The performance of the trained model for predicting PFS 

was validated using a 10-fold cross-validation approach. An ensemble model based on 

the predictions from the 10-fold cross-validation models was packaged into a Docker 

container to evaluate models on unseen testing data. Most methodological details of our 

study have been previously outlined in a parallel study on Task 2 of the HECKTOR 

Challenge (PFS prediction without using segmentation mask information). Abbreviated 

methodology salient to the use of segmentation masks in our models is as follows.  

 

Data from 224 HNSCC patients from multiple institutions was provided in the 2021 

HECKTOR Challenge [6, 7] training set. Data for these patients included co-registered 
18F-FDG PET and CT scans, clinical data (Center ID, Gender, Age, TNM edition, 

chemotherapy status, TNM group, T-stage, N-stage, and M-stage), and ground truth 
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manual segmentations of primary tumors derived from clinical experts. Images and 

masks were cropped to a bounding box of 144x144x144 mm3 and resampled to a reso-

lution of 1 mm. The CT intensities were truncated in the range of [-200, 200] and then 

normalized to a [-1, 1] scale, while PET intensities were normalized with a z-score. 

Clinical data were mapped to ordinal categorical variables and min-max rescaled. The 

clinical data was reshaped into a 144x144x144 volume by concatenated clinical varia-

bles repeatedly to act as a volumetric input to the deep learning model.  

 

A deep learning convolutional neural network model based on the DenseNet121 [8] 

architecture included in the MONAI Python package [9] was used for the analysis (Fig. 

1). Processed PET/CT, tumor mask, and clinical data volumes were used as separate 

input channels to the model. We used data augmentation by MONAI [9] during training 

which was applied to the PET/CT and tumor mask images. The augmentation included 

random horizontal flips of 50% and random affine transformations with an axial rota-

tion range of 12 degrees and a scale range of 10%. We used a batch size of 2 patients’ 

images, masks, and clinical data. The model was trained for 800 iterations with a learn-

ing rate of 2×10-4 for iterations 0 to 300, 1×10-4 for iterations 301 to 600, and 5×10-5 

for iterations 601 to 800. We used an Adam optimizer and a negative log-likelihood 

loss function.  

 

As defined on the HECKTOR Challenge website, progression was defined based on 

RECIST criteria: either a size increase of known lesions (change of T and or N), or 

appearance of new lesions (change of N and/or M), where disease-specific death was 

also considered a progression event. To model PFS we divided the total time interval 

of 9 years, which covers all values reported for PFS in the training data set, into 20 

discrete intervals of 164.25 days, representing the final 20 output channels of the net-

work. The conditional probabilities of surviving in these intervals were obtained by 

applying a sigmoid function on the 20 outputs channels of the network. We estimated 

the final PFS from the model predicted conditional probabilities by obtaining the sum-

mation of the cumulative probability of surviving each time interval times the duration 

of the time interval of 164.25 days. We used a 10-fold cross-validation approach to 

train and evaluate the model. We assessed the performance of each separate cross-val-

idation model using the concordance index (C-index) from the lifelines Python package 

[10]. We estimated the mean C-index by averaging all the C-index values obtained from 

each fold. It is possible to measure the C-index by ignoring the events observed; there-

fore, as an alternative metric, we also measured this modified C-index in reporting re-

sults.  

 

For the independent test set on the HECKTOR submission portal, we implemented two 

different model ensembling approaches to estimate the PFS from cross-validation re-

sults: a simple average across models (AVERAGE), and a consensus from cumulative 

survival probability derived from mean conditional probability survival vectors 

(CONSENSUS). We packaged these models into Docker images [11] that act as tem-

plates to apply the models to unseen test data. Each Docker image was composed of a 

Python script that predicted PFS (anti-concordant) from PET/CT, tumor masks, and 
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clinical data (user supplied) by accessing previously built 10-fold cross validation mod-

els in the form of .pth files. Two BASH scripts were included in the Docker image that 

allowed organizers to access file repositories for test data and output a .csv file of pre-

dicted PFS. While the Docker images were composed with minimal dependencies and 

small Python distributions, each zipped file was ~3GB in size.  
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Fig. 1. Schematic of the Densenet121 architecture used for the prediction model and the four-

channel input volumetric images representing CT, PET , tumor mask, and clinical data. Ground 

truth tumor segmentation masks for model training were provided by the 2021 HECKTOR Chal-

lenge and accessed via a Docker framework for test set evaluation. The number of repeated dense 

blocks of (6, 12, 24, and 16) are given above each group of blocks. 

3 Results and Discussion 

The 10-fold cross-validation results for each set for the model implementing PET/CT 

images, tumor segmentation masks, and clinical data are shown in Figure 2. Individual 

sets were not significantly different than ground truth PFS except for sets 6 and 7 

(p<0.05). The overall mean C-index across all folds was 0.855 ± 0.060 and 0.65 ± 0.074 

when considering and not considering observed events in the C-index calculation, re-

spectively. For comparison, the equivalent model without segmentation data achieved 

mean C-index values of 0.841 ± 0.045  and 0.622 ± 0.067 when considering and not 

considering observed events in the C-index calculation, respectively. Though gains in 

performance were modest for the 4-channel (with segmentation) model compared to 

the 3-channel (without segmentation) model, these results indicate important prognos-

tic information can further be teased out of a region of interest to improve the perfor-

mance of a deep learning clinic prediction model. Upon submitting our ensemble mod-

els on external test set validation, the AVERAGE method demonstrates a C-index of 

0.696 while the CONSENSUS method demonstrates a C-index of 0.698. Both these 

methods improve upon the analogous submissions in Task 2 of the HECKTOR Chal-

lenge, i.e. 0.689 and 0.694 for the AVERAGE and CONSENSUS models without seg-

mentation masks, respectively. Compared to the internal validation results the increase 

in external validation performance for these models is likely secondary to improved 

generalization introduced by the ensembling approaches. Previous studies have shown 

that combining deep learning methods with information from segmentation masks (par-

ticularly pre-defined radiomic features) can improve outcome prediction in HNSCC 

[2], which is consistent with our results. In addition, manually generated tumor seg-

mentation masks are a byproduct of physician knowledge, so it is possible the added 

segmentation masks allow our models to impart a degree of expert insight into predic-

tions. An interesting future research direction would be implementing deep learning 

interpretability methods [12] on these models to investigate how they differ from mod-

els without provided segmentations. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.14.21264958doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.14.21264958
http://creativecommons.org/licenses/by/4.0/


6 

 
Fig. 2. Kaplan Meier plots showing survival probabilities as a function of time in days for the 

ground truth (GT) PFS and the predicted PFS by the four channel (PET, CT, tumor segmenta-

tion mask, clinical) model. The C-index and the p-value of the logrank test for the GT and pre-
dicted PFS are shown above each subplot. The tables below each plot correspond to the number 

of patients experiencing GT PFS at each time-step.  
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4 Conclusion 

Herein, we have developed and investigated the performance of a deep learning model 

that can utilize PET/CT images, tumor segmentation masks, and clinical data simulta-

neously to predict PFS in HNSCC patients. This approach is innovative since most deep 

learning techniques for medical outcome prediction typically only implement images 

and/or clinical data as model input channels. Our models achieve reasonable perfor-

mance through internal-validation and external test set validation on large heterogenous 

datasets provided by the 2021 HECKTOR Challenge. Moreover, our results indicate 

subregions of interest acting as separate input channels could help add prognostic value 

for HNSCC prognostic deep learning models and should be investigated further.  
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