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ABSTRACT 

Purpose: Despite exome (ES) or genome sequencing (GS) availability,  

chromosomal microarray (CMA) remains the first-line diagnostic tests in most rare 

disorders diagnostic work-up, looking for Copy-number variations (CNV), with a 

diagnostic yield of 10-20%. The question of the equivalence of CMA and ES in CNV 

calling is an organisational and economic question, especially when ordering a GS 

after a negative CMA and/or ES. 

Methods: This work measures the equivalence between CMA and GATK4 exome 

sequencing depth of coverage method in detecting coding CNV on a retrospective 

cohort of 615 unrelated individuals. A prospective detection of ES CNV on a cohort of 

1803 unrelated individuals was performed. 

Results: On the retrospective validation cohort every CNV was accurately detected 

(64/64 events). In the prospective cohort, 32 diagnostics were performed among the 

1803 individuals with CNVs ranging from 704bp to aneuploidy. An incidental finding 

was reported. The overall increase in diagnostic yield was of 1.7%, varying from 

1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with 

chronic kidney failure. 

Conclusions: Combining SNV and CNV detection increases the suitability of exome 

sequencing as a first-tier diagnostic test for suspected rare mendelian disorders. 

Before considering the prescription of a GS after a negative ES, a careful reanalysis 

with updated CNV calling and SNV annotation should be considered. 
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INTRODUCTION 

Copy Number Variants (CNV) represent the imbalance of the genomic material 

compared to the reference genome, resulting in an increase or decrease in genomic 

material. CNVs vary in size, although they are defined as variants with a minimum 

size of 1 kb1.  Adoption of Chromosomal Microarray Analysis2 (CMA) techniques 

have proven invaluable in discovering pathogenic CNVs in a wide variety of diseases, 

especially for diagnosing multiple congenital anomalies (MCA). In routine practice, a 

diagnostic yield of ~15% is reached for patients with intellectual disability disorder or 

MCA, and can be attributed to large CNVs (> 100 kb)3. Despite the rapid adoption of 

next generation sequencing, standard chromosomal analysis and CMA remain the 

first-tier tests for most rare disorders diagnostic work-up 4,5.  

In practice, the average resolution of CMA technologies implemented in 

laboratories is about 50 kb3. In theory, Genome Sequencing (GS) CNV calling is the 

golden path for CNV calling. However, exome sequencing is notably widespread and 

more affordable, thus an accurate CNV calling should be advised on existing data 

before ordering an additional diagnostic test.  

Although ES has intrinsic limitations, common problems are shared by GS and 

ES in calling CNV such as extreme GC contents or low complexity regions. In GS, 

algorithms strategies of type Depth of Coverage (DoC), Split Read , Discordant Pairs 

and Assembly6 can be used, whereas ES CNV calling tools can only use DoC. ES 

specifically encounters additional limitations regarding the targeted enrichment 

(known as capture bias), leading to non-uniform read depths impacting the 

reproducibility and robustness of CNV calling tools7. The ratio of read count between 

a test and a reference is usually preferred to a single-sample analysis, which could 

lead to many false positive8. 
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Numerous tools such as XHMM9, CODEX10, CANOES11, CoNIFER12 or 

ExomeDepth8 were developed when germline ES started to be democratized, none 

of them has really imposed itself as the reference tool. In January 2018 the Broad 

Institute released the fourth version of its GATK13 tool (GATK4) including several 

tools forming a CNV detection module14. This module is based on the principle of 

constructing a learning model from a cohort of patients DoC data that can be further 

reused.  

This study presents an analytical validation framework for a clinical routine of 

GATK4 gCNV calling on ES data supported by a retrospective benchmark on 615 

unrelated index cases with previously acquired CNVs. Results include the 

prospective screening for CNV in 1803 unrelated individuals with no previous CMA. 
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PATIENTS AND METHODS 

Individuals gathering 

Patients were ascertained in the diagnostic routine of the Eurofins Biomnis 

Laboratory (Lyon, France). The referring clinical centers included Nantes, Lyon, 

Montpellier, Paris (Tenon), Grenoble, Besançon, Saint Etienne, Limoges, Poissy, 

Marseille, Orléans and international laboratories (details provided in Supplementary 

Material Table 1). Patients provided written consent. A total of 2418 individuals were 

included in the work. Overall, 615 had CMA, MLPA or NGS-based data available as 

tabulated files and were used as the analytical retrospective validation cohort. Files 

formats were normalized during this study. For the remaining 1803 individuals, no 

question was asked regarding previously available CMA results, and are further 

referred as the prospective screening cohort. 

ES capture sequencing 

For all the 2418 probands, ES libraries were generated using standard 

procedures (Supplementary Materials) for 3 different capture protocols for 

sequencing Roche Medexome kit (n= 447), Twist Bioscience Human Comprehensive 

Exome kit + RefSeq + UTR spike (n= 988), Twist Bioscience Human Comprehensive 

Exome kit + RefSeq spike (n= 983). Libraries were sequenced on Illumina NextSeq 

500 sequencers in paired-end mode (2 x 76bp). 
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ES analysis for CNV calling 

Exome Sequencing data was mapped against the hg38 genome, following the 

Broad Institute GATK best practice guidelines 15. CNV calls were performed with the 

GATK4 CNV calling module. Fine-tuning of ES learning model creation was 

performed according to parameters provided by the Broad Institute teams (shown in 

Supplementary Material). It was therefore decided to divide the calling target into 4 

bins with the GATK IntervalListTools in order to run four instances of the 

GermlineCNVCaller in parallel on our computing infrastructure. The full methodology 

of model building is available in the Supplementary Material.  Each VCFs were then 

annotated with AnnotSV16  version 2.5.1 to add crucial metadata for interpretation by 

the clinician. The output files by AnnotSV were processed by an in-house Python 

script to keep only the annotations of interest, but also to add the occurrence cohort 

counts of each CNV.  

 The diagnostic target represented 41 935 379 bp, defined by the merging of 

UCSC RefSeq and RefSeq Curated17 intervals, with 5’-3’ padding of 20bp. This 

diagnostic target included 21450 genes with 198188 exonic intervals. 

For all samples, CNV were analyzed at the same time as SNV analysis. SNV 

interpretation was done following ACMG recommendations18 . CNVs were prioritized 

based on their frequency in our cohort, and in DGV19 ; the inclusion of an OMIM 

Morbid gene ; the quality metrics of the CNV and the inheritance of the CNV.  

Recurrent CNV were specifically analyzed according to gene content and recurrent 

CNV list of the French AChroPuce consortium (https://acpa-achropuce.com/). 
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Analytical retrospective validation cohort 

Biological results from 615 individuals with previously identified clinically 

relevant CNV were gathered and compared to CNV detection by ES. To ensure 

comparable results across detection techniques, only coding CNV were compared. 

Overall, 72 CNVs were considered as clinically relevant. 64 CNV were used for 

comparison, either classified as VUS, likely pathogenic or pathogenic. Frequent 

polymorphisms and technical artefacts may be confusing and were excluded from the 

analysis. The 64 CNVs included 30 loss, 31 gain (including a XXY phenotype) and 3 

VUS with a copy number of 2 (chromosome X), with sizes ranging from an intragenic 

single exon deletion to large anomalies including aneuploidy (summarized in 

Supplementary material table 2). 

 

Prospective screening cohort 

Prospective cohort included 2418 individuals. CNVs were called only on ES 

data. Each CNV larger than 1 Mb was individually interpreted. Regarding smaller 

CNV, filtering was performed (i) on the quality score QA > 20 and QS > 20; (ii) 

overlapping or impacting a gene referenced in the OMIM database with suspected or 

demonstrated dosage sensitivity (pLI >0.9); (iii) autosomal dominant inheritance for 

heterozygous CNV inheritance. Every homozygous and hemizygous CNV were 

considered. Each filtered CNV was interpreted and classified. Downstream CNV 

validations were performed by the referring centers using standard procedures. 
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RESULTS  

Statistical description of CNV calls 

Across capture kits, the distribution of the CNVs larger than 50kb number was 

varying from an average of 5-10 events. The median number of CNVs smaller than 

50kb varied from 31-36 across capture kits (Figure 1A). The median number of CNV 

encompassing an OMIM morbid gene was comparable across capture kits. For 

morbid CNVs, their distribution is comparable between the 3 models, with a median 

of 4 (< 50kb) or 1 (> 50kb) (Figure 1B).  

Finally, detected CNVs were intersected with the DGV database. Intervals 

were considered comparable when at least 80% of reciprocal overlap was observed. 

A median of 75,56%, 77,78% and 75,76% (Roche, Twist, Twist+UTR) of detected 

CNVs were referenced in the DGV database (Figure 1C). A median of one CNV 

overlapping an OMIM morbid gene and absent from the DGV database was 

observed (Figure 1D). 

 

Defining the model size for ES-CNV calling 

From the Twist model data set (n = 1154), several models were built of 

different sizes and random data (50, 100, 150, 200, 300, 600 samples), with three 

subsamples for each size condition. Then, from the Twist data set, 154 samples were 

randomly selected and were used as a fixed cohort. Iteratively, CNVs were called on 

those samples against the previously constructed models (Figure 2). 
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The lower the number of samples used to build the model, the higher the 

average number of CNVs per patient and vice versa (Figure 2). In addition, the 

smaller the models, the more variable are the distributions between the subsamples. 

Among the 1154 samples, and independently from the calling model, 23 individuals 

were continuously leading to high numbers of CNV calls (> 200). 

Isolating outliers of the ES-CNV calling pipeline 

Among the whole cohort (2418 samples), 2275 individuals had fewer than 200 

events. 143 samples were leading to an excess of CNV calls across capture kits and 

calling models. The distribution of CNV counts is represented by Supplementary 

material Figure 4. These 143 outlier samples were excluded from the interpretation 

and further analysis. Among the 143 samples, 66 were concentrated in seven 

sequencing runs with technical issues; 67 samples were DNA received from 

collaborators (60 DNA extracted from blood and 7 DNA extracted from tissues); 10 

were blood samples received by the laboratory. 

Defining recurrent uncallable regions 

ES CNV calling was unable to quantify the copy number ratio for a significant 

portion of the diagnostic target, 10 and 11% for Twist capture kits and 8.76% for the 

Roche kit. Focusing on the 3593 genes of the OMIM morbidmap identified 32 genes 

totally uncallable for coding CNV (AHDC1, AMER1, BBS12, CHAMP1, CRYAA, 

CSF2RA, DOLK, FLRT3, FZD2, GP1BA, HPS6, IRF2BPL, IRS4, KCNA1, KCNA4, 

KCNA5, MAGEL2, MKRN3, MYORG, PIGW, POMGNT2, RAG2, SAMD9, SAMD9L, 

SLC18A3, SLITRK1, SLITRK6, THBD, TRIM32, UBQLN2, ZNF469, MARCH2). 
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Across capture kits and each calling model, an average of 410 genes are partially 

represented and CNV calling might be impacted (Supplementary material Figure 5).  

Analytical retrospective validation cohort 

Overall, 615 samples were available. Twenty-five (4.0%) samples were 

excluded from the analysis because they were classified as outliers. Among the 72 

selected CNVs, 8 were excluded because they were localised in intergenic regions or 

in a previously defined uncallable region (Supplementary material Figure 6). For the 

590 remaining samples, the 64 CNVs were accurately detected and genotyped 

(Supplementary material table 2). No additional large and rare CNV was reported. 

Prospective screening cohort 

Among the 1803 individuals, 32 CNV and 2 aneuploidies were diagnosed. 

Among the 615 individuals with MCA, 20 diagnoses were performed. Among the 631 

individuals with chronic kidney failure, 12 diagnoses were performed (Supplementary 

material table 3). Regarding the 22 pathogenic or likely pathogenic CNV larger than 

50 kB, ES was the first genetic investigation.  

Patient 4 was presenting with chronic kidney failure and kidney cysts in 

adulthood, revealed an intragenic deletion of COL4A3 at heterozygous state. BAM 

viewing emphasized breakpoints in exon 9 (Figure 3). Breakpoints were verified 

using Sanger sequencing, allowing characterization of the variation : 

NC_000002.12:g.227248049_227251231del ; NM_000091.4:c.469-394_609+29del. 

Small pathogenic or likely pathogenic CNV in genes of recessive inheritance, 

associated with a pathogenic or likely pathogenic SNV on the other allele for 2 

patients were detected. Patient 5, presenting with dilated cardiomyopathy and facial 
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dysmorphism, carried NM_006663.3(PPP1R13L):c.1871_1872del ; 

p.(Arg624Profs*119), maternally inherited, and intragenic duplication of PPP1R13L 

(duplication of exon 2 to exon 7, of 13). Patient 6 presented with growth delay, facial 

dysmorphia, delayed psychomotor development, hyperextensibility, cortical atrophy, 

thin corpus callosum and hypomyelination. ES detected a deletion of the whole 

PYCR2 gene, maternally inherited and a hemizygous point variant paternally 

inherited : NM013328.3(PYCR2):c.751C>T ; p.(Arg251Cys).  
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DISCUSSION 
 

 This study assessed the analytical validity of gCNV calling in an ES routine 

based on a 615 individuals retrospective validation cohort and demonstrated the 

positive impact on ES diagnostic yield through the screening of 1803 individuals. In 

this first-tier ES routine, CNV calling identified 2 aneuploidy, 22 large CNV and 10 

small CNV. 

The 64 CNV gathered from the retrospective validation cohort were accurately 

detected and genotyped by the ES procedure. Previous study had demonstrated the 

equivalence of ES against CMA 20. Another published cohort included 147 samples 

with 102 CNV, and they performed comparison between aCGH CNV detection and 

CANOES CNV detection11. The recall was 87.2% (89/102). They suggested that the 

missed CNV by ES might be secondary to the capture design or size of the event 

with only 1 or 2 targets 11. Our retrospective validation dataset included very small 

events such as hemizygous deletion of one exon in DMD gene or gain of one exon in 

IL1RAPL1 (respectively for individuals 2 and 1, Supplementary material table 2), 

which were accurately identified. These observations suggest that this work may add 

an important validation of the procedure for a clinical ES routine. 

In the validation cohort, the exhaustive detection of CNV may be secondary to 

the preliminary definition of predictive limitations of the procedure. These limitations 

included the definition of uncallable regions, and the prediction of aberrant and noisy 

samples. This study did not aim at deciphering the underlying causes for these 

limitations.  

Analysis of outliers of CNV-ES detection reveal that our workflow is robust and 

suitable for routine diagnosis, with 4% of failed samples (143/1804). Most of those 
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outlier samples could be explained by pre-analytical or analytical issues. Only 10 

blood samples (among 1698) were classified as “outliers”. This failure rate of 0.6% is 

acceptable and comparable or below those of CMA in our practice. To further 

investigate those outliers, we analyzed CNV calls for outliers of the validation cohort : 

all medically relevant CNV were properly called, with high quality metrics. Those data 

suggest that CNV calling is possible for samples initially classified as outliers, but 

require intensive filtration and interpretation, to distinguish authentic CNV and 

background noise. 

Tools to model coverage distributions across exons are widespread in the 

clinical bioinformatics community. On the other hand, the possibility of being able to 

build a learning model, and then to reuse it later on, seems genuinely new. The 

performances of the CNV calling models are certainly correlated to the number of 

data items that were used to build them. However, two models built with the same 

number of data and different sequencing depths will have different results. It is 

therefore more likely that the efficiency of the model is correlated to the cumulative 

sequencing depth of the data that compose it as well as their homogeneity across 

individuals. With the current sequencing data generation processes in our lab, if we 

ever had to reconstruct a model, the number of samples required would most likely 

be around 300. 

GS has been proven to be more efficient for diagnosis than ES, both for SNV 

and CNV21–24. Indeed, in addition to being able to detect exonic, intronic and 

intergenic SNVs and indels, GS can more accurately detect exonic, intronic and 

intergenic structural variants. Unlike ES, the production of GS data does not require 

prior amplification or capture steps. This limits the variability of depth between exons, 

and virtually extinct the uncallable regions. Nevertheless, even if the set of 
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uncaptured zones represents about 4 mb or 10% compared to the defined medical 

target in this study. However, only 0.9% of morbid genes have their entire sequence 

in the blind areas of our pipeline. Copy number variations in these genes will not be 

detected. However, large CNVs encompassing such genes might be detected.  

Careful examination of the data generated by the pipeline allowed 

identification of causing-disease CNV for 35 patients. Among these 35 positive 

results, 8 individuals had a negative CMA before ES prescription. In the 

neurodevelopmental disorder cohort, the added diagnosis range is 1,2% (20/1787). 

This percentage is relatively low compared with the yield of >10% reported for 

genomic microarrays. This can easily be explained by the fact that the vast majority 

of patients with a neurodevelopmental disorder were previously screened negative 

for CNV microarray analysis, resulting in a depletion of pathogenic CNVs in this 

patient group. Clinically relevant CNVs were observed only in patients who had 

previously been screened on a (low-resolution) microarray platform or in patients who 

did not receive microarray-based CNV profiling. This percentage is consistent with 

previous studies analyzing exome based CNV calling within ID cohorts (1.3%25 ; 

1.6%26). Among individuals with chronic kidney failure, the diagnosis yield reaches 

1,9 % (12/631). Only few data highlights the implication of CNV in renal disease. 

Previous studies demonstrated an added diagnosis range of 3.6% (2 of 56 patients)25 

with CNV detection.  

Of note, using an exome-wide CNV detection pipeline raises new incidental 

findings. We identified a deletion of 6 exons of LDLR (responsible for familial 

hypercholesterolemia [OMIM:# 143890)] for a patient referred for 

neurodevelopmental disorders. 
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The commitment to make ES a frontline analysis is not new27. On one hand, it 

has already been shown that ES can be much more efficient than traditional methods 

in terms of diagnostic rates as well as cost-effectiveness28. On the other hand, ES 

has already shown its superiority against some routine genetic analyses such as 

gene panels and single gene testing24,29. The ability to bundle the detection of exonic 

SNVs, Indels and CNVs make the ES strategy an extremely competitive and efficient 

first-tier analysis. In this cohort, two diagnoses were performed by combining CNV 

and SNV calling (0.11%, 2/1803). This observation is consistent with data from a 

large study of 12000 individuals combining CMA and ES for the identification of 17 

diagnoses (0.11%)30. Despite limitations, thousands of exomes will be produced in 

the coming years for the diagnosis of rare disorders. A careful and updated analysis 

will enhance the diagnostic yield of the tests and will participate in reducing the 

diagnostic odyssey of patients with undiagnosed disorders.  

This study highlights the technical validity and the clinical utility of exome-

based CNV screening. Incorporation of CNV analysis in exome sequencing data-

analysis pipelines increases the diagnostic yield of exome sequencing by up to 1,9%. 

Of importance, this increase in diagnostic yield is obtained without any additional 

direct laboratory costs. Combining SNV and CNV detection increases the suitability 

of exome sequencing as a first-tier diagnostic test for many, if not most, suspected 

genetic disorders. Before considering the prescription of a GS after a negatif ES, a 

careful reanalysis with updated CNV calling and SNV annotation should be 

considered. 
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Figure 1. Distribution of the number of called CNV. (A) The total number of 

CNV, (B) the number of CNV containing at least one morbid gene, (C) the number of 

CNV not present in DGV, (D) the number of CNV containing at least one morbid 

gene not present in DGV, per patient according to the CNV size and the model used 

compared to CMA data . CMA (n=300), Roche (n=511), Twist (n=1154), Twist UTR 

(n=383). 
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Figure 2. Distribution of the number of CNVs per patient in the cohort of 

154 fixed patients according to model size and subsampling.  3 sub-samples 

(sub 1-3) of built CNV calling models consisting of 50 to 600 samples sequenced 

with the Twist Human Core Exome kit. CNV reused to call CNV 154 randomly 

selected samples (the same samples for every model) compared to the results of the 

Twist model consisting of 1154 samples on these 154 samples. 
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Figure 3. BAM visualisation of Intragenic heterozygous deletion of 

COL4A3 exon 9. Reads colored, oriented and sorted by insert size with IGV 

software. 
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